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ABSTRACT

A biclique of a graph G is a maximal induced complete bipartite subgraph
of G. The edge-biclique graph of G, KBe(G), is the edge-intersection graph of
the bicliques of G. A graph G diverges (resp. converges or is periodic) under an
operator H whenever limk→∞ |V (Hk(G))| = ∞ (resp. limk→∞Hk(G) = Hm(G)
for some m or Hk(G) = Hk+s(G) for some k and s ≥ 2). The iterated edge-biclique
graph of G, KBk

e (G), is the graph obtained by applying the edge-biclique operator
k successive times to G. In this paper, we first study the connectivity relation
between G and KBe(G). Next, we study the iterated edge-biclique operator KBe.
In particular, we give sufficient conditions for a graph to be convergent or divergent
under the operator KBe, we characterize the behavior of burgeon graphs and we
propose some general conjectures on the subject.
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1 Introduction

Intersection graphs of certain special subgraphs of a general graph have been
studied extensively. We can mention line graphs (intersection graphs of the
edges of a graph), interval graphs (intersection graphs of a family of subpaths
of a path), and in particular, clique graphs (intersection graphs of the family
of all maximal cliques of a graph) [4, 5, 8, 12, 13, 31, 33].

The clique graph of G is denoted by K(G). Clique graphs were introduced
by Hamelink in [21] and characterized in [39]. It was proved in [1] that the
clique graph recognition problem is NP-Complete.

The clique graph can be thought as an operator from Graphs into Graphs.
The iterated clique graph Kk(G) is the graph obtained by applying the clique
operator k successive times. It was introduced by Hedetniemi and Slater in
[22]. Much work has been done in the field of the iterated clique operator,
looking at the possible different behaviors. The goal is to decide whether a
given graph converges, diverges, or is periodic under the clique operator when
k grows to infinity. This question remains open for the general case, moreover,
it is not known if it is computable. However, partial characterizations have
been given for convergent, divergent and periodic graphs, restricted to some
classes of graphs. Some of them lead to polynomial time algorithms to solve
the problem.

For the clique-Helly graph class, graphs which are convergent to the trivial
graph have been characterized in [3]. Cographs, P4-tidy graphs, and circular-
arc graphs are examples of classes where the different behaviors were also
characterized [7, 25]. On the other hand, divergent graphs were considered.
For example, in [36], families of divergent graphs are given. Periodic graphs
were studied in [8, 29]. It has been proved that for every integer i, there
are graphs with period i and graphs which converge in i steps. More results
about iterated clique graphs can be found in [11, 26, 27, 28, 30, 37].

A biclique is a maximal induced complete bipartite subgraph. Bicliques
have applications in various fields, for example biology: protein-protein in-
teraction networks [6], social networks: web community discovery [24], ge-
netics [2], medicine [35], information theory [20], etc. More applications
(including some of these) can be found in [32]. The biclique graph of a graph
G, denoted by KB(G), is the intersection graph of the family of all bicliques
of G. It was defined and characterized in [18]. However no polynomial time
algorithm is known for recognizing biclique graphs. As for clique graphs, the
biclique graph construction can be viewed as an operator between the class
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of graphs.
The iterated biclique graph KBk(G) is the graph obtained by applying

to G the biclique operator k times iteratively. It was introduced in [16]
and all possible behaviors were characterized. It was proven that a graph is
either divergent or convergent, but never periodic (with period bigger than
1). Also, general characterizations for convergent and divergent graphs were
given. These results were based on the fact that if a graph G contains a
clique of size at least 5, then KB(G) or KB2(G) contains a clique of larger
size. Therefore, in that case G diverges. Similarly if G contains the gem or
the rocket graphs as an induced subgraph, then KB(G) contains a clique of
size 5, and again G diverges. Otherwise it was shown that after removing
false-twin vertices of KB(G), the resulting graph is a clique on at most 4
vertices, in which case G converges. Moreover, it was proved that if a graph
G converges, it converges to the graphs K1 or K3, and it does so in at most 3
steps. These characterizations led to anO(n4) time algorithm (later improved
to O(n+m) time [14]) for recognizing convergent or divergent graphs under
the biclique operator.

The edge-biclique graph of a graph G, denoted by KBe(G), is the edge-
intersection graph of the family of all bicliques of G. We recall that edge-
intersection means that KBe(G) has a vertex for each biclique of G and two
vertices are adjacent in KBe(G) if their corresponding bicliques in G share an
edge (and not just a vertex as in KB(G)). The edge-biclique graph KBe(G)
was defined in [19] and studied in [15], however there is no characterization
so far to recognize edge-biclique graphs.

In this work we study edge-biclique graphs not only because of their
mathematical interest but also because in real-life problems, bicliques often
represent the relation between two types of entities (each partition of the
biclique) therefore it would make sense to study when two objects (bicliques)
share a common relationship (an edge) more than just an entity (a vertex).

We first study the relation between G and KBe(G) in terms of connec-
tivity and we present a polynomial time algorithm to decide if KBe(G) is
connected or not. In the rest of the paper, we define and focus on the iter-
ated edge-biclique graph, denoted by KBk

e (G), that is, the graph obtained by
applying to G the edge-biclique operator k times iteratively. We give some
non-trivial sufficient conditions for a graph to be convergent or divergent
under the KBe operator that are based on induced substructures. Later,
we study burgeon graphs and its relation with line graphs and edge-biclique
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graphs†. We also characterize its behavior under the KBe operator. To fin-
ish, we propose some conjectures that would help to fully characterize the
behavior of any graph under the KBe operator.

This work is organized as follows. In Section 2 the necessary notation is
given. In Section 3 we give connectivity results of KBe(G). In Section 4 and
Section 5 we present some results about convergent and divergent graphs,
respectively. In Section 6, we study burgeon graphs. Finally, in Section 7 we
state some general conjectures on the subject.

2 Preliminaries

Along the paper we restrict to undirected simple graphs. Let G = (V,E) be
a graph with vertex set V (G) and edge set E(G), and let n = |V (G)| and
m = |E(G)|. A subgraph G′ of G is a graph G′ = (V ′, E ′), where V ′ ⊆ V
and E ′ ⊆ E such that all endpoints of the edges of E ′ are in V ′. When E ′

has all the edges of E whose endpoints belong to the vertex subset V ′, we
say that V ′ induces the subgraph G′ = (V ′, E ′), that is, G′ is an induced
subgraph of G. Also, let G[V ′] denote the induced subgraph of G by the set
V ′. A graph G = (V,E) is bipartite when there exist sets U and W such
that V = U ∪W , U ∩W = ∅, U 6= ∅, W 6= ∅ and E ⊆ U ×W . Say that G is
a complete graph when every possible edge belongs to E. A complete graph
on n vertices is denoted Kn. A bipartite graph is complete bipartite when
every vertex of the first set is connected to every vertex of the second set. A
complete bipartite graph on p vertices in one set and q vertices in the other
is denoted Kp,q. A clique of G is a maximal complete induced subgraph,
while a biclique is a maximal induced complete bipartite subgraph of G. The
open neighborhood of a vertex v ∈ V (G), denoted N(v), is the set of vertices
adjacent to v. The closed neighborhood of a vertex v ∈ V (G), denoted N [v],
is the set N(v)∪{v}. Given a vertex v ∈ V (G) and set of vertices S ⊆ V (G),
we denote by NS(v), to the neigborhood of the vertex v restricted to the set
S. Given a set of vertices S ⊆ V (G), S denotes the set V (G) − S. The
degree of a vertex v, denoted by d(v), is defined as d(v) = |N(v)|. A path
(cycle) on k vertices (k ≥ 3), denoted by Pk (Ck), is a sequence of vertices
v1, v2, ..., vk ∈ G such that vi 6= vj for all 1 ≤ i 6= j ≤ k and vi is adjacent
to vi+1 for all 1 ≤ i ≤ k − 1 (and vk is adjacent to v1). A graph is connected

†Burgeon graphs have been studied under the name of inflated graphs mainly consid-
ering the domination problem [9, 10, 23].
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if there exists a path between each pair of vertices. The girth of G is the
length of a shortest induced cycle in the graph. Unless stated otherwise, we
assume that all graphs of this paper are connected.

Given a family of sets H, the intersection graph of H is a graph that
has the members of H as vertices, and there is an edge between two sets
E,F ∈ H when E and F have non-empty intersection.

A graph G is an intersection graph if there exists a family of sets H such
that G is the intersection graph of H. We remark that any graph is an
intersection graph [40].

Let H be any graph operator and let G be a graph. The iterated graph
under the operator H is defined iteratively as follows: H0(G) = G and for
k ≥ 1, Hk(G) = Hk−1(H(G)). We say that G diverges (resp. converges or
is periodic) under the operator H whenever limk→∞ |V (Hk(G))| =∞ (resp.
limk→∞H

k(G) = Hm(G) for some m or Hk(G) = Hk+s(G) for some k and
s ≥ 2). The study of the behavior of a graph G under the operator H consists
of deciding if G converges, diverges or is periodic under H.

We assume that the empty graph is convergent under the operator KBe,
as it is obtained by appyling the edge-biclique operator to a graph that does
not contain any bicliques.

3 Connectivity

In this section we will study the connectivity relation betweenG andKBe(G).
In comparison to the biclique graph KB(G), it was shown in [34, 17] that G
is connected if and only if KB(G) is connected. This result is no longer true
for edge-biclique graphs. For example, just observe that KBe(Kn) consists

of n(n−1)
2

isolated vertices, i.e., it is disconnected.
The main result of this section is the following Theorem that characterizes

when KBe(G) is connected.

Theorem 3.1. Let G be a connected graph. KBe(G) is connected if and only
if there is no subset of vertices S ( V (G) such that for every v, w ∈ S we
have NS(v) = NS(w), and |E(G[S])| ≥ 1, that is, the subgraph induced by S
has at least one edge.

Proof. ⇒) Suppose that there exists a subset of vertices S ( V (G) verifying
Theorem’s hypothesis. Now, as for every pair of vertices v, w ∈ S, NS(v) =
NS(w), and |E(G[S])| ≥ 1, we have that every edge in E(G[S]) will not be
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part of any biclique containing an edge outside E(G[S]). This implies that
KBe(G) is disconnected and proves the “only if” part of the Theorem.
⇐) Suppose that KBe(G) is not connected. We will show how to find a

set S of vertices verifying the hypothesis of the Theorem. Let b be a vertex
in KBe(G) and let B be its corresponding biclique in G. Let SE(B) = {e ∈
E(G) : e belongs to a biclique B′ such that its corresponding vertex b′ ∈
KBe(G) is in the same connected component as b}. Clearly SE(B) 6= E(G)
and SE(B) 6= ∅ as E(B) ⊆ SE(B). Let SV (B) = {v ∈ V (G) : ∃e ∈ SE(B) such
that e is incident to v}. Clearly SV (B) 6= ∅ as V (B) ⊆ SV (B). We have the
following two cases now.

• Case A) E(G[SV (B)]) ⊆ SE(B).
We will show that SV (B) is the desired set. Observe that G[SV (B)]
has at least one edge and it is clearly connected. Now let uw be an
edge such that u ∈ SV (B) and w ∈ SV (B). Let u′ ∈ SV (B) be a vertex
different to u. If u′ is adjacent to w there is nothing to show. Suppose
then that u′ is not adjacent to w. Now, since G[SV (B)] is connected,
there is an induced path u′ = u1u2 . . . uk = u between u′ and u. Let
ui, i ∈ {2, . . . , k}, be the vertex of minimum index of the path that
is adjacent to w. Clearly ui exists as uk = u is adjacent to w. Since
ui−1 is not adjacent to w, the set {ui, ui−1, w} is contained in a biclique
that has the edge ui−1ui. As the edge ui−1ui ∈ SE(B), we have that
the edge uiw ∈ SE(B) as well, thus w ∈ SV (B) which is a contradiction.
We conclude that u′ should be adjacent to w, obtaining that for every
pair of vertices u, u′ ∈ SV (B), we have that NSV (B)

(u) = NSV (B)
(u′) as

desired.

• Case B) ∃e ∈ E(G[SV (B)])− SE(B).
There exists a biclique Be such that e ∈ E(Be) and Be does not have
any edge in common with SE(B). Consider now the sets SE(Be) and
SV (Be) defined likewise SE(B) and SV (B). It is clear that SE(Be) 6= ∅,
SE(B) ∩ SE(Be) = ∅ and SV (Be) 6= ∅. Moreover, SV (Be) ⊆ SV (B). For
this, observe that the endpoints of the edge e, say v, w ∈ Be, belong to
SV (B), as e ∈ E(G[SV (B)]). Furthermore, they should have a common
neighbor, say z ∈ SV (B), with vz, wz ∈ SE(B). If Be is just the edge
e, we obtain directly that SV (Be) ⊆ SV (B). If Be is a larger biclique,
there exists a vertex u ∈ Be, without loss of generality, adjacent to v
and not adjacent to w. Clearly, u belongs to SV (Be). Now if u is not
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adjacent to z, then there is a biclique containing {u, v, z} and since
vz ∈ SE(B), then uv ∈ SE(B) and therefore, e = vw ∈ SE(B) which is a
contradiction. Finally, u is adjacent to z, thus {u, z, w} is contained in a
biclique containing the edge zw ∈ SE(B), therefore uz ∈ SE(B) implying
that u ∈ SV (B). Since G[SV (Be)] is connected, similar arguments can
be applied for every other vertex x ∈ SV (Be). As there is an induced
path from x to vertices u,w, we will obtain that xz ∈ SE(B) and thus
x ∈ SV (B), otherwise we would get a contradiction the same way as
before.

Now, if |SV (Be)| = 2 then it is easy to see that SV (Be) is the desired set.
In what follows we assume that |SV (Be)| ≥ 3.

We will show that SV (Be) ( SV (B) therefore, if SV (Be) does not verify
Case A), then we obtain another set SV (Be′ )

such that SV (Be′ )
( SV (Be)

and we repeat the process. Since the graph is finite, in some point we
will obtain a set of vertices verifying Case A) which will conclude the
proof (see Fig. 2). We will use the following three claims.

Claim 1. ∀e = vw ∈ SE(Be) that belongs to two different bicliques, then

– ∃v1, w1 ∈ SV (Be) such that the pairs of vertices v, v1 and w,w1 are
adjacent, and v, w1, w, v1 and v1, w1 are not adjacent; or

– ∃v1, v2 ∈ SV (Be) such that the pairs of vertices v, v1, v, v2 and v1, v2
are adjacent, and w, v1 and w, v2 are not adjacent.‡

These two options are shown in Figure 1.

Figure 1: Unique two options for an edge vw belonging to two different
bicliques.

‡Note that this Claim is valid for any edge in a graph that belongs to two bicliques.

7



Proof of Claim 1. First observe that since |SV (Be)| ≥ 3, there exists
a vertex, say v1 ∈ SV (Be), adjacent to v and not adjacent to w, i.e.,
the biclique containing the edge vw is bigger than a K1,1. This implies
that vv1 ∈ SE(Be). Now, since vw belongs to another biclique than the
one containing {v, w, v1}, then, one case would be to have a vertex,
say w1 ∈ SV (Be), adjacent to w and not adjacent to v. Moreover, w1

is not adjacent to v1, as otherwise, {v, w, v1, w1} would be in the same
biclique. Clearly, the edge ww1 ∈ SE(Be), as both bicliques intersect in
the edge vw ∈ SE(Be). This shows the first option of the Claim. Now, if
such a vertex w1 does not exist, then it should exist a vertex v2 ∈ SV (Be)

such that v2 is adjacent to v and not adjacent to w. Moreover, since
the biclique containing {v, w, v2} should be different to the one having
{v, w, v1}, this vertex v2 is adjacent to v1. As before, since these two
bicliques have vw ∈ SE(Be) in common, then vv2 ∈ SE(Be) as well. Note
that the edge v1v2 might or might not belong to SE(Be). �

Claim 2. Let e = u1u2 ∈ E(G[SV (B)])− SE(B) and let x ∈ SV (B) such
that u1, u2 ∈ N(x). Then ∀v ∈ SV (Be), v is adjacent to x and the edge
vx ∈ SE(B).

Proof of Claim 2. First note that u1x and u2x belong to SE(B) because
u1u2 ∈ E(G[SV (B)]). Now, since |SV (Be)| ≥ 3, the biclique Be contain-
ing u1u2 is bigger than a K1,1. Let u3 ∈ V (Be) ⊆ SV (Be) be a vertex
different from u1 and u2 such that (without loss of generality) u3, u1 are
not adjacent and u3, u2 are adjacent. Clearly, the edge u3u2 ∈ SE(Be).
If u3 and x are not adjacent, then u2x ∈ SE(B) ∩ SE(Be) (as {u2, x, u3}
is contained in a biclique that intersects Be), which is a contradiction.
Therefore, u3, x are adjacent. Now, since the set {x, u3, u1} is contained
in a biclique that has the edge u1x ∈ SE(B), it follows that u3x ∈ SE(B)

as well. This same argument applies for every vertex in Be, therefore
if V (Be) = SV (Be), then the proof is complete. Otherwise, there ex-
ists another biclique B′ in SV (Be) having an edge in common with Be.
Suppose without loss of generality that the edge u1u2 belongs to both.
Now, by Claim 1, there are two options for this situation. Observe that
in both options, there exists a vertex, say u4 ∈ SV (Be), that is adjacent
to u1 and not to u2, or adjacent to u2 and not u1. That is, there is an
induced P3 containing u4 in one of the extremes. Suppose the first case,
i.e., u4 is adjacent to u1 and not to u2 (the other option is similar). As
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before, u4 must be adjacent to x, otherwise u1x ∈ SE(B) ∩ SE(Be), a
contradiction. Since {u4, x, u2} is contained in a biclique that has the
edge u2x ∈ SE(B), then we have that u4x ∈ SE(B). Observe that this
argument can be used for every vertex in B′. Finally, we apply the
same reasoning we used for B′, to the other bicliques having edges in
SE(Be) that intersect previous analyzed bicliques. This completes the
proof. �

Claim 3. There exists a vertex x ∈ SV (B) such that x /∈ SV (Be).

Proof of Claim 3. By Claim 2, we have a vertex x ∈ SV (B) such that
∀v ∈ SV (Be), v is adjacent to x and the edge vx ∈ SE(B). Finally, since
SE(B) ∩ SE(Be) = ∅, and by definition of the sets SE(Be) and SV (Be), we
have that x /∈ SV (Be). �

To conclude the proof of Case B), by Claim 3, there is a vertex x ∈
SV (B) such that x /∈ SV (Be), thus SV (Be) ( SV (B) as we wanted to show.
Therefore, we can always obtain a set of vertices veryfing Case A) as
desired.

As there are no cases left to analyze, the proof is complete.

Figure 2: In this example we can see three set of edges, SE(red), SE(blue) and
SE(black). Note that SV (black) ( SV (blue) ( SV (red) = V (G), then following
Case B) of the proof of Theorem 3.1, the set SV (black) is the desired one.

To finish the section, we present an O(n × m) algorithm that, given a
graph G, decides if KBe(G) is connected or not. Moreover, if KBe(G) is
disconnected, the algorithm gives a partition of the edges of G such that each
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set of the partition has the edges belonging to bicliques that are in the same
connected component in KBe(G). This algorithm relies mostly in Claim 1
of Theorem 3.1, since otherwise, verifying the condition for all subsets of
vertices S ( V (G) would take exponential time. We also remark that, since
the number of bicliques of a graph can be exponential [38], constructing
KBe(G) to check later if it is connected can take exponential time as well.

Algorithm 1: Connectivity of KBe(G)

Input : A connected graph G.
Output: A partition of E(G) = E1 ∪ · · · ∪ Ek such that each Ei, for

i = 1, . . . , k, has the edges belonging to bicliques that are
in the same connected component in KBe(G).

mark all edges as not used; k ← 0; SE ← ∅;
while there exist unused edges do

k ← k + 1;
take an unused edge e; SE ← SE ∪ {e}; mark e as used;
while SE 6= ∅ do

remove an edge e = vw ∈ SE;
Ek ← Ek ∪ {e};
for every vertex z ∈ N(v)−N(w) and zv not used do

SE ← SE ∪ {zv}; mark zv as used;
end for
for every vertex z ∈ N(w)−N(v) and zw not used do

SE ← SE ∪ {zw}; mark zw as used;
end for

end while

end while
if k = 1 then

return KBe(G) is connected ;
else

return KBe(G) is disconnected and E(G) = E1 ∪ · · · ∪ Ek;
end if

It is clear that Algorithm 1 runs in O(n×m) since each edge is added once
to SE and each time we check all its endpoint’s neighbors. It only remains
to show that the algorithm is correct.

Proposition 3.2. Algorithm 1 correctly finds a partition of E(G) = E1 ∪
· · ·∪Ek such that each Ei, for i = 1, . . . , k, has the edges belonging to bicliques
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that are in the same connected component in KBe(G). In particular, KBe(G)
is connected if and only if k = 1, that is, E1 = E(G).

Proof. Observe that in the first while loop, the algorithm takes an unused
edge (while exists) and adds it to a set SE of edges to analyze. The second
while loop will add all edges that belong to the partition of that edge. For
this, it takes an edge e = vw from SE (while SE 6= ∅) and adds it to the
current edge partition. Now, if e is not a biclique itself (in which case N(v) =
N(w), thus e is alone in its partition), then it must exist other vertex z
verifying z ∈ N(v)−N(w) or z ∈ N(w)−N(v), therefore it adds all edges of
the form zv or zw to SE and to the current partition, respectively. Now, for
each other iteration of the second while loop, the algorithm uses Claim 1 of
Theorem 3.1 to see if an already used edge belongs to another biclique, and
adds these new edges corresponding to those bicliques. When the while loop
ends for an iteration i, that is, SE = ∅, then Ei has all edges that belong
to bicliques that are in the same connected component of KBe(G) as the
biclique containing the initial edge of that iteration.

Finally, if E1 = E(G), then KBe(G) is connected since all edges of the
graph belong to bicliques to one same connected component in KBe(G).
Otherwise, one of the sets SVi

formed with incident vertices to the edges in
Ei (analog definition as SE(B) and SV (B) in Theorem 3.1) verifies that SVi

(
V (G) and therefore Theorem 3.1 holds, that is, KBe(G) is disconnected.

4 Convergence

To start this section we have this first easy result.

Lemma 4.1. For n ≥ 2, the complete graph Kn converges to the empty graph
under the operator KBe in two steps.

Proof. Clearly each edge of Kn is a biclique that does not edge-intersect
with another one. Then KBe(Kn) consists of n(n−1)

2
isolated vertices (and no

bicliques), therefore KB2
e (Kn) is the empty graph.

Next we show that graphs without induced cycles of length 3 and 4 are
convergent.

Theorem 4.2. If G has girth at least five, then the edge-biclique operator
applied to G converges towards the graph induced by the union of all the
cycles and paths connecting cycles of G.
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Proof. If G has girth at least five, then every biclique is a star. Moreover G
has no triangles, so N(v) is a stable set and thus, for each v of degree more
than one, N [v] is a maximal biclique. Notice also that if u is adjacent to
v, N [u] and N [v] contain a common edge, therefore the vertices in KBe(G)
corresponding to the bicliques N [u] and N [v] will be adjacent. We can con-
clude that KBe(G) is exactly the graph induced by all vertices of degree at
least two of G. For k big enough, the only vertices left in KBk

e (G) are those
which belong to cycles or to paths connecting cycles, that is, G converges
under the operator KBe towards the graph induced by the cycles and paths
connecting cycles of G.

As an immediate result of Theorem 4.2, we obtain the following corollary.

Corollary 4.3. If G has girth at least five and has no vertices of degree one,
then KBe(G) = G.

One natural question that arises from Corollary 4.3 is: Given a graph G
such that KBe(G) = G, does G have girth at least five and no vertices of
degree one? The answer is no, for instance, the graph C7 shown in Figure 3
satisfies that KBe(G) = G but its girth is three§.

Figure 3: The graph C7 is the smallest graph satisfying KBe(G) = G with
girth less than five.

From Theorem 4.2, we also obtain the following results.

Corollary 4.4. For every k ≥ 1, there is a graph that converges in k steps
under the operator KBe.

Proof. Just take any induced cycle Cn, n ≥ 5, and join one of its vertices
to the endpoint of a path Pk. Observe that this graph converges to Cn in
exactly k steps (see Fig 4).

Corollary 4.5. Trees converge to the empty graph under the operator KBe.
§Found using the computer.
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Figure 4: Graph G that converges in k steps under the operator KBe

5 Divergence

In this section we study the divergence of the operator KBe. We start with
the following definition.

Definition 5.1. Let G be a graph and let C = v0v1 . . . vn−1 be an induced
cycle of length n ≥ 5. We say that C has good neighbors whenever for all
vertices v ∈ V (G) − C, if {vi−1, vi+1} ⊆ N(v) then vi ∈ N(v), for i =
0, . . . , n− 1 and all subindices taken (mod n). (see Fig 5).

Figure 5: G has a cycle with good neighbors while G′ has not, since v is
adjacent to vi−1 and vi+1 but not adjacent to vi.

Now we present an important proposition that assures that the good
neighbors property is invariant through the iterations of the operator KBe.

Proposition 5.2. Let G be a graph and let C = v0v1 . . . vn−1 be an induced
cycle of length n ≥ 5 with good neighbors. Let Bi, i = 0, . . . , n−1, be bicliques
in G containing the vertices {vi−1, vi, vi+1} (mod n), respectively, and let bi,
i = 0, . . . , n − 1, be the vertices in KBe(G) corresponding to the bicliques
Bi ∈ G. Then V (Bi) ⊆ N [vi] and C ′ = b0b1 . . . bn−1 is an induced cycle of
KBe(G). Moreover, C ′ has good neighbors.
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Proof. As C is an induced cycle in G, let Bi, i = 0, . . . , n − 1, be bicliques
that contain the vertices {vi−1, vi, vi+1} (mod n), respectively. Clearly, each
Bi intersects Bi+1 in the edge vivi+1, therefore if we call bi, i = 0, . . . , n− 1,
the corresponding vertices in KBe(G) to the bicliques Bi, then we have that
b0b1 . . . bn−1 form a cycle C ′ in KBe(G). Now, let v ∈ G be a vertex in
Bi − {vi−1, vi, vi+1}. As Bi is a biclique of G, either v is adjacent to vi−1
and vi+1 but not adjacent to vi, which is not possible because C has good
neighbors, or v is adjacent to vi. Therefore, for all i = 0, . . . , n− 1, V (Bi) ⊆
N [vi] and C ′ is an induced cycle of KBe(G).

Now, let b ∈ V (KBe(G))−C ′ be a vertex such that {bi−1, bi+1} ⊆ N(b) for
some i. IfB is the biclique ofG corresponding to the vertex b ∈ KBe(G), then
B contains vi−1 and vi+1, since V (Bi−1) ⊆ N [vi−1] and V (Bi+1) ⊆ N [vi+1].
As vi−1 and vi+1 are not adjacent inG, there exists a vertex v ∈ B∩Bi−1∩Bi+1

such that v is adjacent to both vi−1 and vi+1. If v 6= vi, since C has good
neighbors, v must also be adjacent to vi, contradicting the fact that v ∈ Bi−1
(or Bi+1). Therefore, v = vi and B and Bi have an edge in common, that is,
b is adjacent to bi in KBe(G) and thus C ′ has good neighbors.

Before the main theorem, we define the following family of graphs.

Definition 5.3. For n ≥ 3 and m ≥ 1, the (n,m)−necklace graph on n+m
vertices consists of an induced cycle Cn and a complete graph Km, such that
for an edge e ∈ Cn, every vertex of the Km is only adjacent to both endpoints
of e (see Fig 6).

Figure 6: (5, 1)− necklace and (6, 3)− necklace graphs.

Now we present the main theorem of this section.
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Theorem 5.4. Let G be a graph that contains an induced (n,m)−necklace,
n ≥ 5, m ≥ 1, such that its cycle has good neighbors. Then, either KB2

e (G)
or KB3

e (G) contains an induced (n,m′) − necklace such that its cycle has
good neighbors, and m′ > m.

Proof. Let Cn = v0v1 . . . vn−1 be the induced cycle and Km = {w1, . . . , wm}
be the complete graph of the (n,m) − necklace, respectively. Let vivi+1,
for some i ∈ {0, . . . , n − 1} (mod n), be the edge of the Cn such that wj

is adjacent to vi and vi+1 for all j = 1, . . . ,m. Let Bt, t = 0, . . . , n − 1,
be bicliques that contain the vertices {vt−1, vt, vt+1} (mod n), respectively,
and let bt, t = 0, . . . , n− 1, be the corresponding vertices in KBe(G) to the
bicliques Bt. By Proposition 5.2, C ′n = b0b1 . . . bn−1 is an induced cycle in
KBe(G) with good neighbors.

Consider these two families of bicliques B1 = {B1
j : {wj, vi, vi−1} ⊆

B1
j , j = 1, . . . ,m} and B2 = {B2

j : {wj, vi+1, vi+2} ⊆ B2
j , j = 1, . . . ,m}.

Clearly, all these 2m bicliques are different and moreover, they are different
to the bicliques Bt for t = 0, . . . , n − 1 as Cn has good neighbors. Now we
can see that (

⋂m
j=1B

1
j )∩Bi−1∩Bi = {vi−1, vi} and (

⋂m
j=1B

2
j )∩Bi+1∩Bi+2 =

{vi+1, vi+2}. Therefore if b1j and b2j , j = 1, . . . ,m, are the corresponding
vertices in KBe(G) to the bicliques B1

j and B2
j , we have that in KBe(G),

K1
m = {b11, . . . , b1m} and K2

m = {b21, . . . , b2m} are two complete graphs such
that b1j is adjacent to bi−1 and bi, and b2j is adjacent to bi+1 and bi+2, for all
j = 1, . . . ,m. Notice that as Cn has good neighbors in G, then in KBe(G) we
have N(b1j)∩C ′n = {bi−1, bi} and N(b2j)∩C ′n = {bi+1, bi+2}, for all j = 1, . . . ,m
(see Fig 7).

Now, let B̃t, t = 0, . . . , n − 1, be the bicliques of KBe(G) that contain

the vertices {bt−1, bt, bt+1} (mod n), respectively, and b̃t, t = 0, . . . , n − 1,

be the corresponding vertices in KB2
e (G) to the bicliques B̃t. Again, by

Proposition 5.2, C ′′n = b̃0b̃1 . . . b̃n−1 is an induced cycle in KB2
e (G) with good

neighbors.
Now for each b1j , j = 1, . . . ,m, we have that {b1j , bi, bi+1} is contained in

a biclique B̃1
j . Similarly, for each b2j , j = 1, . . . ,m, {b2j , bi, bi+1} is contained

in a biclique B̃2
j . In the worst case (to minimize the number of bicliques), if

there is exactly a perfect matching between K1
m and K2

m, say b1j is adjacent

to b2j , for each j = 1, . . . ,m, then B̃1
j = B̃2

j . We have the following two cases:
Case A: There is at least one vertex b11 ∈ K1

m not adjacent to any vertex

of K2
m. Clearly, the biclique B̃1

1 is different to the m bicliques B̃2
j , for all
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Figure 7: First iteration of the operator KBe applied to G containing an
induced (n,m)− necklace with good neighbors.

j = 1, . . . ,m, and furthermore, these m + 1 bicliques are different to the
bicliques B̃t for t = 0, . . . , n−1. Observe that (

⋂m
j=1 B̃

2
j )∩B1

1 = {bi, bi+1} and

moreover, B̃i∩B̃i+1 = {bi, bi+1}. Therefore, if b̃11 and b̃2j , j = 1, . . . ,m, are the

corresponding vertices in KB2
e (G) to the bicliques B̃1

1 and B̃2
j , respectively,

we have that in KB2
e (G), {b̃11, b̃21, . . . , b̃2m} is a complete graph on m + 1

vertices such that, as C ′n has good neighbors, every vertex of this Km+1 is

only adjacent to b̃i and to b̃i+1 on the cycle C ′′n. That is, KB2
e (G) contains

an induced (n,m+ 1)− necklace such that its cycle C ′′n has good neighbors.
See Fig 8.

Case B: Every vertex of K1
m is adjacent to at least one vertex of K2

m (and
by symmetry every vertex of K2

m is adjacent to at least one vertex of K1
m). As

explained above, the worst case is when there is a perfect matching between
K1

m and K2
m. Without loss of generality, suppose that b1j is adjacent to b2j for

each j = 1, . . . ,m, otherwise we would obtain at least m+ 1 bicliques having
the edge bibi+1 in common and therefore KB2

e (G) will contain an induced
(n,m + 1) − necklace such that its cycle C ′′n has good neighbors. As there

is a matching between K1
m and K2

m, let B̃′j be the bicliques that contain the
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Figure 8: Case A: Second iteration of the operator KBe.

set {b1j , bi, bi+1, b
2
j} for each j = 1, . . . ,m. These bicliques contain the edge

bibi+1 and they are different to the bicliques B̃t for t = 0, . . . , n− 1. Then, if
b̃′j, j = 1, . . . ,m, are the corresponding vertices in KB2

e (G) to the bicliques

B̃′j, we have that in KB2
e (G), {b̃′1, . . . , b̃′m} is a complete graph on m vertices

such that, as C ′n has good neighbors, every vertex of this Km is only adjacent

to b̃i and to b̃i+1 on the cycle C ′′n.
Now for each b1j , j = 1, . . . ,m, we have that {b1j , bi−1, bi−2} is contained

in a biclique B̃1
j . All these m bicliques have the edge bi−1bi−2 in common. In

addition, they are clearly different to the bicliques B̃t, t = 0, . . . , n − 1 and
B̃′j, j = 1, . . . ,m. Suppose now that there is an edge in common between

the bicliques, say B̃1
1 and B̃′1. Then, there must exist a vertex b ∈ KBe(G)

adjacent to bi−2, b
1
1 and bi+1. This implies that in G, there must exist a

biclique B (corresponding to the vertex b ∈ KBe(G)) that has edges in
common with the bicliques Bi−2, B

1
1 and Bi+1. Therefore, as Cn has good

neighbors, there must exist a vertex v ∈ B adjacent to the vertices vi−2 and
vi+1. Finally, as B has an edge in common with the biclique B1

1 , v must
be adjacent to either to vi, or to vi−1 and w1. In both cases we obtain a
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contradiction as B would contain either the K3 = {v, vi, vi+1} or the K3 =
{v, vi−2, vi−1} which is not possible if B is a biclique. We can conclude then

that there are no edges in common between the bicliques B̃1
j and B̃′j, for all

j = 1, . . . ,m. Now let b̃1j be the vertices in KB2
e (G) corresponding to the

bicliques B̃1
j of KB(G), for j = 1, . . . ,m respectively. Then, these vertices

form a Km in KB2
e (G) and they are only adjacent to the vertices b̃i−2 and

b̃i−1 of the cycle C ′′n. See Fig 9.

Figure 9: Case B: Second iteration of the operator KBe.

Now, let βt, t = 0, . . . , n − 1, be bicliques of KB2
e (G) that contain the

vertices {b̃t−1, b̃t, b̃t+1} (mod n), respectively, and β̃t, t = 0, . . . , n−1, the cor-
responding vertices in KB3

e (G) to the bicliques βt. By Proposition 5.2, C ′′′n =

β̃0β̃1 . . . β̃n−1 is an induced cycle in KB3
e (G) with good neighbors. To finish,

consider the following two families of bicliques: β1 = {β1
j : {b̃1j , b̃i−1, b̃i} ⊆

β1
j , j = 1, . . . ,m} and β2 = {β2

j : {b̃′j, b̃i−1, b̃i} ⊆ β2
j , j = 1, . . . ,m}. Clearly,

all these 2m bicliques are different as there are no edges in common between
the bicliques B̃1

j and B̃′j, for all j = 1, . . . ,m, and moreover, they are different
to the bicliques βt for t = 0, . . . , n − 1 as C ′′n has good neighbors. Since all

these 2m bicliques contain the edge b̃i−1b̃i, then if β̃1
j and β̃2

j , j = 1, . . . ,m,
are the corresponding vertices in KB3

e (G) to the bicliques β1
j and β2

j , respec-

tively, we have that in KB3
e (G), {β̃1

1 , . . . , β̃
1
m, β̃

2
1 , . . . , β̃

2
m} is a complete graph

on 2m vertices such that, as C ′′′n has good neighbors, every vertex of this K2m
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is only adjacent to β̃i and to β̃i−1 on the cycle C ′′′n . That is, KB3
e (G) contains

an induced (n, 2m) − necklace such that its cycle C ′′′n has good neighbors.
See Fig 10.

Figure 10: Case B: Third iteration of the operator KBe.

As a corollary, we obtain the following divergence theorem.

Theorem 5.5. Let G be a graph that contains an induced (n,m)−necklace,
n ≥ 5, m ≥ 1, such that its cycle has good neighbors. Then G diverges under
the operator KBe.

Proof. Applying Theorem 5.4 several times, we obtain that either KB2
e (G)

or KB3
e (G) contains an induced (n,m′) − necklace, and m′ > m. Then

KB4
e (G), KB5

e (G) or KB6
e (G) contains an induced (n,m′′)− necklace, and

m′′ > m′, etc., all having its cycles with good neighbors. Therefore, G is
divergent under the operator KBe as limk→∞ |V (KBk

e (G))| =∞.

To finish the section, we obtain a second corollary.

Corollary 5.6. Let G be a graph and let Cn be an induced cycle of length
n ≥ 5 with good neighbors. If there is a vertex v ∈ V (G) − Cn such that
N(v) ∩ Cn has at least one edge and not all Cn, then G diverges under the
operator KBe.

Proof. Just observe that KBe(G) satisfies conditions of Theorem 5.5.
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6 Burgeon graphs

In this section we will study the iterated edge-biclique graph of burgeon
graphs and its relationship with the iterated line graph.

Definition 6.1. Let G be a graph. We define the burgeon graph of G, denoted
by B(G), as the graph obtained by replacing each vertex v of G by a clique
Cv of d(v) vertices, such that each vertex of the clique Cv is only adjacent
(to the outside of Cv) to exactly one vertex of another clique Cu if and only
if u and v are adjacent in G. See Fig 11.

Figure 11: Graph G and the construction of B(G).

Recall the definition of the line graph of a graph G, denoted by L(G), as
the intersection graph of the edges of G, that is, L(G) has one vertex for each
edge of G and two vertices v, w in L(G) are adjacent if their corresponding
edges in G have a common endpoint. Next theorem shows the connection
between the three operators KBe, B and L.

Theorem 6.2. Let G be a graph on n ≥ 2 vertices. Then KBe(B(G)) =
B(L(G)).

Proof. Observe first that in B(G) we have two types of edges. Edges of
type I will be the edges inside the cliques and edges of type II will be the
edges joining different cliques (these are in one-to-one correspondence with
the edges of G). Now, as B(G) has no induced C4 and there is at most one
edge of type II between each pair of cliques, we have that all bicliques of
B(G) are isomorphic to K1,2. Moreover, each biclique is formed with an edge
of type I and an edge of type II sharing a common vertex. Consider now
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an edge e = vw ∈ G and its corresponding edge eB = vBwB ∈ B(G), with
vB ∈ Cv and wB ∈ Cw. Note that eB is of type II. The edge eB belongs
to exactly d(v) − 1 + d(w) − 1 = d(v) + d(w) − 2 bicliques in B(G). First
d(v) − 1 bicliques are formed with the edge eB and each choice of an edge
in Cv having vB as an endpoint, while the other d(w)− 1 bicliques, with the
edge eB and each choice of an edge in Cw having wB as an endpoint. Since
all these bicliques have the edge eB in common, their corresponding vertices
in KBe(B(G)) form a clique of size d(v)+d(w)−2. For each edge eB ∈ B(G)
of type II, call CeB this clique in KBe(B(G)). Finally, observe that there
is exactly one edge between two cliques CeB , Ce′B

of KBe(B(G)) if and only
if there are two bicliques in B(G) containing eB and e′B respectively, and a
common edge of type I. That is, e and e′ are adjacent in G.

Now, in L(G), each vertex, say eL (that corresponds to an edge e = vw of
G), is adjacent to d(v) + d(w)− 2 other vertices in L(G). Thus, each vertex
of L will form a clique, say CeL , of size d(v) + d(w)− 2 vertices in B(L(G)).
Finally, there is exactly one edge between two cliques CeL , Ce′L

of B(L(G))
if and only if the vertices eL and e′L are adjacent in L(G). That is, e and e′

are adjacent in G.
We conclude therefore that KBe(B(G)) = B(L(G)) as desired (see Fig-

ure 12).

As a corollary, we can characterize the behavior of burgeon graphs under
the KBe operator.

Corollary 6.3. Let G be a graph. B(G) is divergent under the KBe operator
if and only if G is not a cycle, a path or a K1,3.

Proof. Theorem 6.2 implies that KBn
e (B(G)) = B(Ln(G)). Also, we know

by [41] that G diverges under the L operator if and only if G is not a cycle,
a path, or a K1,3. Combining both last statements along with the fact that
B(G) has at least as many vertices asG (for |V (G)| 6= 2), the result holds.

Corollary 6.4. Let G be a graph. B(G) is convergent under the KBe oper-
ator if and only if G is a cycle, a path or a K1,3. Moreover, it converges to
itself, to the empty graph or to C6, respectively.

Last corollary can be stated only in terms of burgeon graphs applying the
B operator as follows.
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Figure 12: Example of the relationship of Theorem 6.2.

Corollary 6.5. Let G = B(H) for some graph H. G is convergent under the
KBe operator if and only if G is a cycle, a path or the net graph (see Fig 13).
Moreover, it converges to itself, to the empty graph or to C6, respectively.

Figure 13: The net graph.

Note that one can verify in polynomial time if given a graph G, there
exists some graph H such that G = B(H). Moreover, since checking if G
is a cycle, a path or the net graph can also be done in polynomial time, we
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can conclude that deciding the behavoir of a burgeon graph under the KBe

operator is polynomial as well.
We finish the section with the following result.

Proposition 6.6. Let G = B(H) for some graph H. Then KBe(G) is a
cycle, a path or it contains an induced (n,m)− necklace, n ≥ 6 and m ≥ 1,
with good neighbors.

Proof. By previous results, G is either divergent or convergent under theKBe

operator, therefore if it is convergent, then G is a cycle, a path or the net
graph, thus KBe(G) is a cycle, a (shorter) path or a C6, respectively. Now,
if it is divergent, then G is not a cycle, a path or the net graph, therefore H
is not a cycle, a path or a K1,3. This implies that H contains the paw graph,
the chair graph (see Fig 14) or a K1,4, not necessarily induced. We will show
that B(L(H)) contains an induced (n,m)−necklace, n ≥ 6 and m ≥ 1, with
good neighbors, then by Theorem 6.2, B(L(H)) = KBe(B(H)) = KBe(G)
contains it as well. We will also use the following remark; given a graph X,
and X ′ a subgraph of X not necessarily induced, then L(X ′) and B(X ′) are
induced subgraphs of L(X) and B(X), respectively.

Observe now that L(paw) = diamond, L(K1,4) = K4 and L(chair) =
paw, and B(diamond), B(K4) and B(paw), contain an induced (n,m) −
necklace, n ≥ 6 and m ≥ 1, therefore following the remark, B(L(H)) =
KBe(G) also contains an induced (n,m)− necklace, n ≥ 6 and m ≥ 1.

Note that the induced (n,m) − necklace, n ≥ 6 and m ≥ 1, in KBe(G)
always have good neighbors, since the operator B applied to any graph, never
contains an induced C4.

Figure 14: The paw and the chair graphs.
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7 Open problems

We propose the following conjectures.

Conjecture 7.1. A graph G is either divergent or convergent under the KBe

operator but never periodic (with period bigger than 1).

Conjecture 7.2. G = KBe(G) if and only if G = C7, G = G9 or G has
girth at least five and has no vertices of degree one (see Fig. 15).

Figure 15: Graphs C7 and G9 satisfying KBe(G) = G with girth less than
five.

Note that Corollary 4.3 together with the fact that KBe(C7) = C7,
KBe(G9) = G9 prove the “only if” part of Conjecture 7.2.

Conjecture 7.3. It is computable to decide if a graph diverges or converges
under the operator KBe.

Despite that it seems that a small number of graphs contain an induced
(n,m) − necklace, n ≥ 5, m ≥ 1, we believe that all divergent graphs will
contain one in some iteration under the operator KBe. We propose therefore
the following conjecture.

Conjecture 7.4. A graph G is divergent under the operator KBe if and
only if there exists some k such that KBk

e (G) contains an induced (n,m) −
necklace, n ≥ 5, m ≥ 1, with its cycle having good neighbors.

Clearly Theorem 5.5 proves the “only if” part of Conjecture 7.4 and
moreover, the “if” part along with Conjecture 7.1 imply Conjecture 7.3.
Note that all these conjectures are true for burgeon graphs.
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