Realization of digraphs in Abelian groups and its consequences

Sylwia Cichacz^{1,*}, Zsolt Tuza^{$2,3,\dagger$}

¹AGH University of Science and Technology, Poland

²Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences Budapest, Hungary

³Department of Computer Science and Systems Technology University of Pannonia, Veszprém, Hungary

Latest update on 2019–1–24

Abstract

Let \overrightarrow{G} be a directed graph with no component of order less than 3, and let Γ be a finite Abelian group such that $|\Gamma| \geq 4|V(\overrightarrow{G})|$ or if $|V(\overrightarrow{G})|$ is large enough with respect to an arbitrarily fixed $\varepsilon > 0$ then $|\Gamma| \geq (1 + \varepsilon)|V(\overrightarrow{G})|$. We show that there exists an injective mapping φ from $V(\overrightarrow{G})$ to the group Γ such that $\sum_{x \in V(C)} \varphi(x) = 0$ for every connected component C of \overrightarrow{G} , where 0 is the identity element of Γ . Moreover we show some applications of this result to group distance magic labelings.

^{*}This work was partially supported by the Faculty of Applied Mathematics AGH UST statutory tasks within subsidy of Ministry of Science and Higher Education.

[†]Research supported in part by the National Research, Development and Innovation Office – NKFIH under the grant SNN 129364.

1 Introduction

Let $\overrightarrow{G} = (V, A)$ be a directed graph. An arc \overrightarrow{xy} is considered to be directed from x to y, moreover y is called the *head* and x is called the *tail* of the arc. For a vertex x, the set of head endpoints adjacent to x is denoted by $N^+(x)$, and the set of tail endpoints adjacent to x is denoted by $N^-(x)$.

Assume Γ is an Abelian group of order n with the operation denoted by +. For convenience we will write ka to denote $a + a + \ldots + a$ where the element a appears k times, -a to denote the inverse of a, and we will use a - b instead of a + (-b). Moreover, the notation $\sum_{a \in S} a$ will be used as a short form for $a_1 + a_2 + a_3 + \ldots$, where a_1, a_2, a_3, \ldots are all elements of the set S. The identity element of Γ will be denoted by 0. Recall that any group element $\iota \in \Gamma$ of order 2 (i.e., $\iota \neq 0$ and $2\iota = 0$) is called an *involution*.

Suppose that there exists a mapping ψ from the arc set $E(\vec{G})$ of \vec{G} to an Abelian group Γ such that if we define a mapping φ from the vertex set $V(\vec{G})$ of G to Γ by

$$\varphi_{\psi}(x) = \sum_{y \in N^+(x)} \psi(yx) - \sum_{y \in N^-(x)} \psi(xy), \quad (x \in V(G)),$$

then φ_{ψ} is injective. In this situation, we say that \overrightarrow{G} is *realizable* in Γ , and that the mapping ψ is Γ -*irregular*.

The corresponding problem in the case of simple graphs was considered in [2, 3, 4]. For $\Gamma = (\mathbb{Z}_2)^m$ the problem was raised in [13]. We easily see that if \overrightarrow{G} is realizable in $(\mathbb{Z}_2)^m$, then every component of \overrightarrow{G} has order at least 3 (recall that we are assuming \overrightarrow{G} has no isolated vertex). The following results have been shown:

Theorem 1.1 ([6]). Let \overrightarrow{G} be a directed graph with no component of order less than 3. Then \overrightarrow{G} is realizable in $(\mathbb{Z}_2)^m$ if and only if $|V(\overrightarrow{G})| \leq 2^m$ and $|V(\overrightarrow{G})| \neq 2^m - 2$.

Theorem 1.2 ([9]). Let p be an odd prime and let $m \ge 1$ be an integer. If \overrightarrow{G} is a directed graph without isolated vertices such that $|V(\overrightarrow{G})| \le p^m$, then \overrightarrow{G} is realizable in $(\mathbb{Z}_p)^m$. In this paper we will prove that a directed graph \overrightarrow{G} with no component of order less than 3 is realizable in any Γ of order at least $|V(\overrightarrow{G})|$ such that either Γ is of an odd order or Γ contains exactly three involutions. Moreover we will show that a directed graph \overrightarrow{G} with no component of order less than 3 is realizable in any Γ such that $|\Gamma| \geq 4|V(\overrightarrow{G})|$. Further, the coefficient 4 will be improved substantially for $|V(\overrightarrow{G})|$ large enough. In the last section we will show some applications of this result.

2 Characterizations and sufficient conditions

A subset S of Γ is called a zero-sum subset if $\sum_{a \in S} a = 0$. It turns out that a realization of \overrightarrow{G} in an Abelian group Γ is strongly connected with a zero-sum partition of Γ [1, 9]. Using exactly the same arguments as in [9] for elementary Abelian groups we show the following for general Abelian groups.

Theorem 2.1. A directed graph \overrightarrow{G} with no isolated vertices is realizable in Γ if and only if there exists an injective mapping φ from V(G) to Γ such that $\sum_{x \in V(C)} \varphi(x) = 0$ for every component C of G.

Proof. The necessity is obvious. To prove the sufficiency, let φ be an injective mapping from $V(\overrightarrow{G})$ to Γ such that $\sum_{x \in V(C)} \varphi(x) = 0$ for every connected component C of \overrightarrow{G} .

Let C be a connected component of \overrightarrow{G} . It suffices to show that there exists a mapping ψ from E(C) to Γ satisfying:

$$\varphi(x) = \sum_{y \in N^+(x)} \psi(yx) - \sum_{y \in N^-(x)} \psi(xy), \quad (x \in V(G)).$$

Now we will construct a spanning tree of C. Let $V(C) = \{x_1, \ldots, x_k\}$ (k = |V(C)|) so that for each $2 \leq i < k$, there exists exactly one arc e_i between $\{x_l, \ldots, x_{i-1}\}$ and x_i . For each $2 \leq i < k$, define a subdigraph C_i of C by setting $V(C_i) = V(C)$ and $E(C_i) = \{e_{i+1}, \ldots, e_k\}$. Let $\psi(e_k) = \varphi(x_k)$. We define ψ backward inductively by

$$\psi(e_i) = \begin{cases} \varphi(x_i) - \sum_{y \in N_{C_i}^+(x_i)} \psi(x_i y) + \sum_{y \in N_{C_i}^-(x_i)} \psi(y x_i), \text{ if } x_i \text{ is the tail of } e_i, \\ -\varphi(x_i) + \sum_{y \in N_{C_i}^+(x_i)} \psi(x_i y) - \sum_{y \in N_{C_i}^-(x_i)} \psi(y x_i), \text{ if } x_i \text{ is the head of } e_i \end{cases}$$

Finally, let $\psi(e) = 0$ for all $e \in E(C) \setminus \{e_2, \ldots, e_m\}$. Then the resulting mapping ψ has the desired property.

The following result is known.

Theorem 2.2 ([10, 14]). Let Γ have order n. For every partition $n-1 = r_1 + r_2 + \ldots + r_t$ of n-1 with $r_i \geq 2$ for $1 \leq i \leq t$ and for any possible positive integer t, there is a partition of $\Gamma - \{0\}$ into pairwise disjoint subsets A_1, A_2, \ldots, A_t such that $|A_i| = r_i$ and $\sum_{a \in A_i} a = 0$ for all $1 \leq i \leq t$ if and only if either Γ is of an odd order or Γ contains exactly three involutions.

By Theorems 2.1 and 2.2 we obtain the following immediately.

Theorem 2.3. A directed graph \overrightarrow{G} with no component of order less than 3 is realizable in any Γ of order at least $|V(\overrightarrow{G})|$ such that either Γ is of an odd order or Γ contains exactly three involutions.

Before we proceed to groups having more than three involutions, we need some lemmas. For the sake of simplicity, for any element $a \in \Gamma$, we are going to use the notation a/2 for an arbitrarily chosen element $b \in \Gamma$ satisfying 2b = a. Let $S_{a/2} = \{b \in \Gamma : 2b = a\}$.

Observation 2.4. If Γ is an Abelian group of even order n, then $|S_{a/2}| \leq n/2$ for any element $a \in \Gamma$, $a \neq 0$.

Proof. If for some $a \neq 0$ there exist $g_1, g_2 \in \Gamma$, $g_1 \neq g_2$ such that $2g_1 = a$ and $2g_2 = a$ then it follows that $2(g_1 - g_2) = 0$ and consequently $g_1 - g_2$ is an involution. Since $2g_1 = a \neq 0$, the number of involutions in Γ is less than $|\Gamma|/2$.

Lemma 2.5. Let \overrightarrow{G} be a directed graph with no component of order less than 3, and let Γ be a finite Abelian group such that $|\Gamma| \ge 4|V(\overrightarrow{G})|$. There exists a Γ -irregular labeling ψ of \overrightarrow{G} such that $\psi(e) \ne 0$ for every $e \in E(\overrightarrow{G})$, and $\varphi_{\psi}(x) \ne 0$ for every $x \in V(\overrightarrow{G})$.

Proof. The proof follows by induction on the number of arcs.

Suppose first that \overrightarrow{G} is a path \overrightarrow{P}_3 with vertices, say, u, v and w and arcs e_1 and e_2 . With no loss of generality we can assume that $e_1 \cap e_2 = v$. Let Γ be an arbitrary Abelian group of order at least 12. Set an element $a \neq 0$ in such a way that $\varphi_{\psi}(u) = a$ (namely, $\psi(vu) = a$ and $\psi(uv) = -a$). Now,

choose any $b \notin \{0, a, -a, -2a\}$ and $b \notin S_{-a/2}$. The number of forbidden values is at most $4 + |\Gamma|/2 < |\Gamma|$. Set now the element *b* in such a way that $\varphi_{\psi}(v) = -a - b$. Both arc labels are different from 0, and so are the vertex weighted degrees, since $\varphi_{\psi}(u) = a$, $\varphi_{\psi}(v) = -a - b$ and $\varphi_{\psi}(w) = b$. It is also obvious that the weighted degrees are three distinct elements of Γ .

Now let \vec{G} be arbitrary directed graph of order n with at least 3 edges, having no component of order less than 3, and let Γ be any Abelian group of order at least 4n. In the induction step we can assume that for every proper subgraph \vec{H} of \vec{G} having no component of order less than 3 and for every Abelian group Γ' of order at least $4|\vec{H}|$, there is a Γ' -irregular labeling ψ_H of \vec{H} in which no edge has label 0 and $\varphi_{\psi_H}(x) \neq 0$ for every $x \in V(\vec{H})$. In particular, there is such labeling of \vec{H} with $\Gamma' = \Gamma$, since $|\Gamma| \geq 4n \geq 4|V(\vec{H})|$. We will extend ψ_H to the labeling ψ of \vec{G} , having the same properties.

We choose \overrightarrow{H} in one of the following ways. If there is a component $C \cong \overrightarrow{P}_3$ of \overrightarrow{G} , then $\overrightarrow{H} = \overrightarrow{G} - C$. Otherwise, if there is a component C and an edge $e \in E(C)$ not being a bridge in C, then $\overrightarrow{H} = \overrightarrow{G} - e$. Finally, if \overrightarrow{G} is a forest with each component of order at least 4, then choose any leaf edge e of any component and let $\overrightarrow{H} = \overrightarrow{G} - e$.

Let us consider the first case. Assume that $\overrightarrow{G} = \overrightarrow{H} \cup \overrightarrow{H}'$, where $V(H') = \{u, v, w\}$ and $E(H') = \{e_1, e_2\}$ such that $e_1 \cap e_2 = u$. Let ψ_H be a Γ irregular labeling of \overrightarrow{H} fulfilling the desired non-zero properties, existing by
the induction hypothesis. Let $\psi(e) = \psi_H(e)$ for $e \in E(\overrightarrow{H})$. Now choose any
element of $a \in \Gamma$ such that $a \neq 0$ and $a \neq \varphi_{\psi_H}(x)$ for $x \in V(\overrightarrow{H})$ and set the
label a on the edge e_1 such that $\varphi_{\psi}(v) = a$. Such a can be chosen, as only n-3vertex weighted degrees have been assigned so far and $|\Gamma| > n-2$. Now choose $b \in \Gamma$ such that $b \notin \{0, a, -a, -2a\}, b \notin S_{-a/2}, b \notin \{\varphi_{\psi_H}(x), -w(x) + a\}$ for $x \in V(H)$ and set b on the arc e_2 such that $\varphi_{\psi}(w) = b$. The number of
forbidden elements is at most $4 + |\Gamma|/2 + 2(n-3) = 2n - 2 + |\Gamma|/2 < |\Gamma|$,
so we can choose such b. Obviously, the two new edge labels are not 0
and neither are the three new weighted degrees $\varphi_{\psi}(v) = a, \varphi_{\psi}(w) = b$ and $\varphi_{\psi}(u) = -a - b$. Also, the three new weighted degrees are pairwise distinct
and not equal to any $\varphi_{\psi}(x)$, where $x \in V(\overrightarrow{H})$.

In the second case, let $\overrightarrow{H} = \overrightarrow{G} - e$ and let ψ_H be a Γ -irregular labeling of \overrightarrow{H} fulfilling the desired non-zero properties, existing by the induction hypothesis. Now let $\psi(y) = \psi_H(y)$ for $y \in E(\overrightarrow{H})$. Let us denote the tail of e by u and the head by v. Choose an element $a \in \Gamma$ such that $a \notin \{0, \varphi_{\psi_H}(u), -\varphi_{\psi_H}(v)\}, a \neq \varphi_{\psi_H}(u) - \varphi_{\psi_H}(x)$ for $x \in V(\overrightarrow{G}) \setminus \{u, v\}$ and $a \neq \varphi_{\psi_H}(x) - \varphi_{\psi_H}(v)$ for $x \in V(\overrightarrow{G}) \setminus \{u, v\}$, and $a \notin S_{(\varphi_{\psi_H}(u) - \varphi_{\psi_H}(v))/2}$. Set $\psi(uv) = a$. The number of forbidden values is at most $3 + 2(n-2) + |\Gamma|/2 < |\Gamma|$, so we can always choose such a. Note that two adjusted weighted degrees remain distinct and because of the way that a was chosen, they are different from any weighted degree $\varphi_{\psi}(x)$ for $x \in V(\overrightarrow{G}) \setminus \{u, v\}$. This means that ψ has the desired property.

Finally, consider the third case. Assume that the ends of e are u and v, where u is the pendant vertex. Having a Γ -irregular labeling ψ_H of \overrightarrow{H} fulfilling the desired non-zero properties, we set $\psi(y) = \psi_H(y)$ for $y \in E(\overrightarrow{H})$. Then we choose $a \in \Gamma$ such that $a \notin \{0, -\varphi_{\psi_H}(v)\}, a \neq \varphi_{\psi_H}(x)$ for $x \in V(\overrightarrow{G}) \setminus \{u, v\}$ and $a \neq \varphi_{\psi_H}(v) - \varphi_{\psi_H}(x)$ for $x \in V(\overrightarrow{G}) \setminus \{u, v\}$, and $a \notin S_{\varphi_{\psi_H}(u)/2}$. There are at most $2 + 2(n-2) + |\Gamma|/2 < |\Gamma|$ forbidden values, so we can choose such a. Put label a on the edge e such that $\varphi_{\psi}(u) = a$. The adjusted weighted degree $\varphi_{\psi}(v)$ and the new weighted degree $\varphi_{\psi}(u)$ are distinct and different from any of the weighted degrees $\varphi_{\psi}(x)$ for $x \in V(G) \setminus \{u, v\}$, so also in this case \overrightarrow{G} has the labeling ψ with the desired property. This completes the proof.

The above lemma implies the following.

Theorem 2.6. A directed graph \overrightarrow{G} with no component of order less than 3 is realizable in any Γ such that $|\Gamma| \geq 4|V(\overrightarrow{G})|$.

3 Asymptotic result

Our goal here is to prove that if $|\Gamma|$ gets large, then it is possible to strengthen Theorem 2.6 considerably, by replacing the multiplicative constant 4 in the condition $|\Gamma| \ge 4|V(\overrightarrow{G})|$ with (1 + o(1)), and also omitting the assumption that Γ has more than one involution. In the proof we shall apply the following corollary of Theorem 1.1 from [7].

Lemma 3.1. For every fixed $\varepsilon > 0$ there exists an $n_0 = n_0(\varepsilon)$ with the following properties. If \mathcal{H} is a 3-uniform regular hypergraph with $n > n_0$ vertices such that the degree of regularity is at least n/3, and each vertex pair is contained in at most two hyperedges, then \mathcal{H} contains at least $(1/3 - \varepsilon/3)n$

pairwise disjoint hyperedges. Moreover if \mathcal{H} is a 4-uniform hypergraph with $n > n_0$ vertices, such that the vertex degrees are nearly equal and at least n/4, and each vertex pair is contained in at most three hyperedges, then \mathcal{H} contains at least $(1/4 - \varepsilon/4)n$ pairwise disjoint hyperedges.

In fact the degree condition n/3 (and also n/4 in the 4-uniform case) can be replaced with cn with any constant c > 0, but we shall not need this stronger version of the lemma to allow very small degrees.

As another tool, we will use the following corollary of Theorem 1.1.

Corollary 3.2 ([6]). Let $p \ge 2$ be an integer, and let q_3 , q_4 , q_5 be nonnegative integers such that $3q_3 + 4q_4 + 5q_5 \le 2^p$ and $3q_3 + 4q_4 + 5q_5 \ne 2^p - 2$. Then there exists a family $Z = \{S_1, \ldots, S_{q_3+q_4+q_5}\}$ of $q_3 + q_4 + q_5$ mutually disjoint zero-sum subsets of $(\mathbb{Z}_2)^p$ such that $|S_i| = 3$ for all $1 \le i \le q_3$, $|S_i| = 4$ for all $q_3 + 1 \le i \le q_3 + q_4$, and $|S_i| = 5$ for all $q_3 + q_4 + 1 \le i \le q_3 + q_4 + q_5$.

The main result of this section is the following.

Theorem 3.3. Let $\varepsilon > 0$ be fixed and assume that n is sufficiently large with respect to ε . Let $\Gamma \neq (\mathbb{Z}_2)^m$ be of order n, and consider any integers r_1, r_2, \ldots, r_t with $n > (1 + \varepsilon)(r_1 + r_2 + \ldots + r_t)$ and $r_i \ge 2$ for all $1 \le i \le t$. If $r_i = 2$ holds for at most n/4 terms r_i , then there exist pairwise disjoint subsets A_1, A_2, \ldots, A_t in $\Gamma - \{0\}$ such that $|A_i| = r_i$ and $\sum_{a \in A_i} a = 0$ for $1 \le i \le t$.

Proof. In order to make the structure of the argument more transparent, we split it into several parts.

1° Assume $n > (2/\varepsilon) \cdot n_0(\varepsilon/2)$, where the function n_0 is from Lemma 3.1. We denote by I the set of involutions in Γ , and write R for the set of the other nonzero elements, i.e. $R = \Gamma \setminus (I \cup \{0\})$. We shall distinguish between the elements ι_1, ι_2, \ldots of I with subscripts, and write a, b, c, \ldots for the elements of R. A generic element may simply be denoted by $\iota \in I$ or $a \in R$.

Since $\Gamma \neq (\mathbb{Z}_2)^m$, we have $|R| \geq n/2$. If $|I| \leq \varepsilon n/2$, then we omit *I*, and continue work in *R* alone. (This simplification also involves the elimination of the involution in case if Γ has just one; then of course the elements of *R* sum up to 0.) Otherwise we have both |I| and |R| larger than $n_0(\varepsilon/2)$. Below we describe the procedure for this more general case.

 2° If there are terms r_i larger than 6, we modify the sequence by splitting each large term into a combination of terms 3 and 4. Once the new sequence

admits suitable zero-sum subsets, a solution for the original sequence follows immediately. Note that this step does not create any new $r_i = 2$, i.e. the condition on the number of terms 2 does not get violated. Consequently we may assume $r_i \in \{2, 3, 4, 5\}$ for all $1 \le i \le t$.

In order to make further simplification, we state and prove the theorem in the following stronger form:

(*) The required disjoint zero-sum subsets A_i exist also under the weaker assumption that the number of $r_i = 2$ terms is at most |R|/2.

Note that the bound |R|/2 is absolutely tight for every Γ because a zero-sum pair necessarily is of the type (a, -a).

Now, if there is an $r_i = 5$, we may split it into 2 + 3, unless there are exactly |R|/2 terms $r_i = 2$. Similarly, if there is an $r_i = 4$, we may split it into 2+2, unless the number of $r_i = 2$ terms is |R|/2 or |R|/2-1. In this way the family of sequences r_1, \ldots, r_t to be studied is reduced to the following two cases:

- 1. there are exactly |R|/2 or |R|/2 1 terms $r_i = 2$, and all the other terms are 3, 4, or 5; or
- 2. we have $r_i \in \{2, 3\}$ for all $1 \le i \le t$.
- 3° In case of 1., we can obtain the following much stronger result:
- (**) If the number of $r_i = 2$ terms is |R|/2 or |R|/2 1, then the required disjoint zero-sum subsets A_i exist whenever $|\Gamma| \ge r_1 + \cdots + r_t + 5$.

Indeed, if |I| = 1 then we lose at most two elements from R and the only one element of I. Otherwise Γ has at least three involutions and we may apply Corollary 3.2. Namely, the 3-, 4-, and 5-terms can surely be assigned to suitable subsets A_i of I if their sum is at most |I| - 2; and creating the (a, -a) pairs for $a \in R$ we lose at most two elements from R (and the 0-element of Γ).

4° In order to handle the case 2., we create an auxiliary set R^* whose elements represent the inverse pairs of R, i.e. each $a^* \in R^*$ stands for (a, -a); hence $|R^*| = |R|/2$. Note that each inverse-free subset of R defines a unique subset of R^* with the same cardinality, in the natural way, while a k-element subset of R^* may arise from 2^k distinct subsets of R. One should be warned, however, that R^* does not inherit the group structure of R. Indeed, if a+b=c holds inside R, then $a + (-b) \neq (-c)$; that is, $b^* = (-b)^*$, but $(a+b)^* \neq (a-b)^*$.

5° Using Corollary 3.2 again, inside I we define a large family T_I of pairwise disjoint triples which together nearly cover I, such that the sum of the three elements in each triple equals 0. If |I| is a multiple of 3, we can partition I into 3-element zero-sum subsets. Otherwise, if $|I| = 2^p - 1 = 3q + 1$, we find q - 1 triples and one quadruple, each of whose elements sum up to zero. Thus T_I covers all but at most four elements of I.

6° An analogous set T_R of pairwise disjoint triples which nearly cover R is more complicated to construct, because we put *two* requirements instead of just one: if a triple $\{a, b, c\}$ is in T_R , then

- a + b + c = 0; and
- the inverse triple $\{-a, -b, -c\}$ also belongs to T_R .

We first construct an edge-labeled complete graph whose vertex set is R, and each edge $ab \in \binom{R}{2}$ gets the label $\lambda(a, b) := (-a) + (-b)$. Hence $\lambda(-a, a) = 0$ for all a by definition, we shall disregard these edges. At each $a \in R$ precisely |I| edges are labeled from I, and consequently |R| - |I| - 2 edges are labeled from R. The strategy depends on whether the former or the latter is larger.

If |I| < |R|/2, or equivalently $|R| \ge 2|I| + 2$, we keep the edges labeled from R. It means that for all such edges we have $T_{a,b} := (a, b, \lambda(a, b)) \in {R \choose 3}$, moreover every $T_{a,b}$ is a zero-sum triple. This gives rise to the 3-uniform hypergraph, say H_R , whose hyperedges are the triples $T_{a,b}$, each pair of vertices belonging to either 0 or 1 hyperedge, and therefore each vertex being incident with exactly (|R| - |I| - 2)/2 hyperedges, hence the vertex degrees satisfy the inequality $\frac{(|R| - |I| - 2)/2}{|R|} \ge 1/2 - \frac{|I|+2}{4|I|+4} \ge 1/2 - 5/16 = 3/16$.

Note that if $T_{a,b} \in H_R$ then also $T_{-a,-b} \in H_R$ (and of course vice versa), and they yield the same triple $T_{(a,b)^*} = T_{(-a,-b)^*}$ in the corresponding system H_{R^*} over R^* . We observe that inside the 6-tuple $T_{a,b} \cup T_{-a,-b}$ there do not exist any further zero-sum triples. Indeed, a third such triple should contain at least one element from each of $T_{a,b}$ and $T_{-a,-b}$, hence it would be of the form $T_{a,-b}$ or alike. But then we would have $b-a \in \{a+b, -a-b\}$, from where a+a=0 or b+b=0 would follow, contrary to the assumption $a, b \notin I$. (This is in agreement with the comment above that R^* does not inherit the group structure of R.) It follows that the number of triples incident with a vertex in H_{R^*} is exactly the same as that in H_R . In particular, H_{R^*} is regular of a degree at least $\frac{3}{8} |R^*|$. Moreover the maximum number of triples containing a pair a^*, b^* increases from 1 to 2, but not more. Therefore Lemma 3.1 can be applied and we obtain $(1/3 - \varepsilon/6) \cdot |R^*|$ pairwise disjoint triples in R^* . Each of those triples (a^*, b^*, c^*) originates from a triple (a, b, c) with a + b + c = 0, hence it generates (a, b, c) and (-a, -b, -c) inside R. We denote this collection of disjoint zero-sum triples by T_R . They together cover $(1 - \varepsilon/2) \cdot |R|$ elements of R in the case of |I| < |R|/2.

Otherwise, if $|I| \ge |R|/2$, note first that $|R| = |I| + 1 = |\Gamma|/2$ must hold, because |R| is divisible by |I| + 1 in every Γ . Indeed, $a + \iota \in R$ holds for all $a \in R$ and $\iota \in I$. Moreover, if $b-a = \iota_1$ and $c-b = \iota_2$ then $c-a = \iota_1 + \iota_2 \in I$ hence the reflexive closure of the relation ' $b-a \in I$ ' is an equivalence relation over R and each of its equivalence classes contains exactly |I| + 1 elements.

Consequently, the set $\{a + \iota \mid \iota \in I\}$ is the same as $R \setminus \{a\}$, therefore we have $-a = a + \iota_0$ for some $\iota_0 \in I$ (and of course $a = (-a) + \iota_0$ also). We observe that $-b = b + \iota_0$ holds for all $b \in R$. Indeed, if $b = a + \iota_1$, then $-b = \iota_1 - a = \iota_1 + (-a) = \iota_1 + a + \iota_0 = b + \iota_0$. (In case of larger R, this property would be guaranteed inside each equivalence class only.)

Let us put $x := \lceil |R|/6 \rceil$, and take x triples from T_I constructed above, such that none of them contains $\iota_0 \in I$. This selection can be done because $|T_I| \ge (|I| - 4)/3 = (|R| - 5)/3 \ge |R|/6 + 1$ whenever Γ is not too small. Recall that each member of T_I is of the form $(\iota_1, \iota_2, \iota_3)$ with $\iota_1 + \iota_2 + \iota_3 =$ 0. We represent the x selected triples with new vertices u_1, u_2, \ldots, u_x , and define a nearly regular 4-uniform hypergraph on the vertex set $Q^* := R^* \cup$ $\{u_1, u_2, \ldots, u_x\}$. The hyperedges are of the form (a^*, b^*, c^*, u_j) , where a is any element, $b = a + \iota_1$, $c = b + \iota_2$ (hence $a = c + \iota_3$). We do this for all $a \in R$ and all permutations of $\iota_1, \iota_2, \iota_3$ in all of the first x triples.

It is important to note that a^*, b^*, c^* are three distinct elements because the triple of T_I containing ι_0 has not been selected. For the same reason, for any fixed permutation $(\iota_1, \iota_2, \iota_3)$ of any selected triple, the elements a and -ayield the same quadruple; that is, disregarding the representing new vertex u_j , we have $\{a^*, (a+\iota_1)^*, (a+\iota_1+\iota_2)^*\} = \{(-a)^*, (-a+\iota_1)^*, (-a+\iota_1+\iota_2)^*\}$. Moreover, since any two of $\iota_1, \iota_2, \iota_3$ sum to the third, the quadruples of the form $\{a^*, (a+\iota_1)^*, (a+\iota_2)^*, (a+\iota_3)^*\}$ partition R^* ; this holds for each u_j . Inside each such quadruple, three of the four 3-element subsets contain a^* . It follows that there are exactly $|R^*| = |R|/2$ hyperedges incident with any u_j , and the degree of an a^* equals $3x \approx |R|/2$. Thus, the conditions of Lemma 3.1 are satisfied, and there is a large packing of 4-element hyperedges (a^*, b^*, c^*, u_j) covering all but at most $(\varepsilon/2) \cdot |Q^*|$ vertices of Q^* .

For every (a^*, b^*, c^*, u_j) and its corresponding $(\iota_1, \iota_2, \iota_3)$ we create the triples¹ $(a, -b, \iota_1), (b, -c, \iota_2), (c, -a, \iota_3)$. All these three are zero-sum triples, and they partition the 9-tuple $\{a, b, c, -a, -b, -c, \iota_1, \iota_2, \iota_3\}$. Observe further that no triangle from T_I is used more than once in the construction; this is ensured by the presence of vertices u_j . In this way we obtain T_R if $|I| \geq |R|/2$.

7° In case 2., we have $r_i \in \{2,3\}$ for all $1 \leq i \leq t$. Let m_k denote the number of terms $r_i = k$ for k = 2, 3.

If $m_3 \leq |T_I|$, we simply take any m_3 triples from T_I , and choose $m_2 \leq |R|/2$ pairs (a, -a) inside R. Otherwise two different situations may occur, depending on whether |I| < |R|/2 or not. In both cases we assume that $m_3 > |T_I|$ holds.

If |I| < |R|/2, we take the triples of T_I , moreover $2 \cdot \lceil (m_3 - |T_I|)/2 \rceil$ triples from T_R in such a way that if a triple (a, b, c) is selected, then we also select (-a, -b, -c). This may yield one more triple than what we need, which we shall forget at the very end; but currently it is kept, in order to ensure that the rest of R consist of inverse pairs.

If $|I| \ge |R|/2$, we again start with the triples of T_I , but then replace $\lceil (m_3 - |T_I|)/2 \rceil$ of them with three triples from T_R each. This can be done by choosing $\lceil (m_3 - |T_I|)/2 \rceil$ from the first x members of T_I , and replacing them with the triples covering $\{a, b, c, -a, -b, -c, \iota_1, \iota_2, \iota_3\}$ as constructed above.

In either case, since I is covered with the exception of at most four elements, there remains enough room for selecting the m_2 pairs (a, -a) in the part of R which is not covered by the selected triples. This completes the proof of the theorem.

Corollary 3.4. There exists a function $h_0 : \mathbb{N} \to \mathbb{N}$ with the following properties: $h_0(n) = o(n)$, and if $h \ge h_0$ is any integer function, then every Γ of order n admits a zero-sum set $A_0 \subset \Gamma$ such that $|A_0| = h(n)$ and $\Gamma \setminus A_0$ is partitionable into pairwise disjoint zero-sum subsets A_1, A_2, \ldots, A_t with $|A_i| = r_i$ whenever $r_1 + r_2 + \ldots + r_t = n - |A_0|$ and $r_i \ge 3$ for all $1 \le i \le t$.

Due to the possible strengthening indicated after Lemma 3.1, the above proof shows that only an overwhelming presence of values $r_i = 3$ can be

¹Their inverse triples $(-a, b, \iota_1)$, $(-b, c, \iota_2)$, $(-c, a, \iota_3)$ would be equally fine.

responsible for the error term εn . For this reason, on slightly restricted sequences of the r_i we can obtain an almost optimal result.

Corollary 3.5. If the number of $r_i = 3$ is at most $(1/3-c) \cdot n$ for a fixed c > 0, and the number of $r_i = 2$ does not exceed n/4, then for sufficiently large $n > n_c$ every sequence r_1, \ldots, r_t admits disjoint zero-sum subsets A_1, \ldots, A_t with $|A_i| = r_i$ in every Γ of order $n \ge r_1 + \ldots + r_t + 5$.

As in the preceding proof, n/4 can be replaced with |R|/2 also here. On the one hand this condition depends on the actual Γ , while the restricted version given in the corollary is universally valid. On the other hand the modified condition |R|/2 is best possible for every Γ .

Remark 3.6. The bound on the number of pairs $r_i = 2$ in Theorem 3.3 is tight, because |R| = n/2 may occur, and then only n/4 zero-sum pairs exist in Γ .

The following conjecture was raised recently.

Conjecture 3.7 ([5]). Let Γ of order n have more than one involution. For every partition $n - 1 = r_1 + r_2 + \ldots + r_t$ of n - 1 with $r_i \ge 3$ for $1 \le i \le t$ and for any possible positive integer t, there is a partition of $\Gamma - \{0\}$ into pairwise disjoint subsets A_1, A_2, \ldots, A_t such that $|A_i| = r_i$ and $\sum_{a \in A_i} a = 0$ for $1 \le i \le t$.

Note that the conjecture is true for $\Gamma \cong (\mathbb{Z}_2)^m$ as Egawa proved in [6]. Moreover since for every Γ having more than one involution we have $\sum_{g \in \Gamma} g = 0$, the following two observations are valid by Theorem 2.6 and Corollary 3.5, respectively.

Observation 3.8. Let Γ of order n have more than one involution. For every partition $n - 1 = r_1 + r_2 + \ldots + r_t$ of n - 1, with $r_i \ge 3$ for $1 \le i \le t$ and $r_t \ge 3n/4$, for any possible positive integer t, there is a partition of $\Gamma - \{0\}$ into pairwise disjoint subsets A_1, A_2, \ldots, A_t , such that $|A_i| = r_i$ and $\sum_{a \in A_i} a = 0$ for $1 \le i \le t$.

Observation 3.9. Let Γ of large enough order n have more than one involution. For every partition $n - 1 = r_1 + r_2 + \ldots + r_t$ of n - 1, with $r_i \ge 4$ for $1 \le i \le t$, for any possible positive integer t, there is a partition of $\Gamma - \{0\}$ into pairwise disjoint subsets A_1, A_2, \ldots, A_t , such that $|A_i| = r_i$ and $\sum_{a \in A_i} a = 0$ for $1 \le i \le t$.

Proof. If $n_t \geq 5$, we apply Corollary 3.5 for n_1, \ldots, n_{t-1} to create the first t-1 sets. The remaining n_t elements of Γ automatically sum up to zero, serving for the largest set. Otherwise, if all $n_1 = \ldots = n_t = 4$, using the notation in the proof of Theorem 3.3 we partition $I \cup \{0\} \cong (\mathbb{Z}_2)^m$ into zero-sum quadruples by Egawa's theorem, and partition R into quadruples of the type (a, b, -a, -b).

4 Some applications

Consider a simple graph G = (V, E) whose order we denote by n = |V|. The open neighborhood N(x) of a vertex x is the set of vertices adjacent to x, and the degree d(x) of x is |N(x)|, the order of the neighborhood of x. In this paper we also investigate group distance magic labelings, which belong to a large family of magic-type labelings. Generally speaking, a magic-type labeling of G = (V, E) is a mapping from V, E, or $V \cup E$ to a set of labels which most often is a set of integers or group elements. The magic labeling (in the classical point of view) with labels being the elements of an Abelian group has been studied for a long time (see papers by Stanley [11, 12]). Froncek in [8] defined the notion of group distance magic graphs, which are the graphs allowing a bijective labeling of vertices with elements of an Abelian group resulting in a constant sum of neighbor labels.

A Γ -distance magic labeling of a graph G = (V, E) with |V| = n is a bijection ℓ from V to an Abelian group Γ of order n such that the weight $w(x) = \sum_{y \in N(x)} \ell(y)$ of every vertex $x \in V$ is equal to the same element $\mu \in \Gamma$, called the magic constant.

Notice that the constant sum partitions of a group Γ lead to complete multipartite Γ -distance magic labeled graphs. For instance, the partition $\{0\}, \{1, 2, 4\}, \{3, 5, 6\}$ of the group \mathbb{Z}_7 with constant sum 0 leads to a \mathbb{Z}_7 distance magic labeling of the complete tripartite graph $K_{1,3,3}$ (see [5]). Using Theorem 3.8 we are able to prove the following.

Observation 4.1. Let $G = K_{n_1,n_2,...,n_t}$ be a complete t-partite graph such that $3 \leq n_1 \leq n_2 \leq ... \leq n_t$ and $n = n_1 + n_2 + ... + n_t$. Let Γ be an Abelian group of order n having more than three involutions. The graph G is Γ -distance magic whenever $n_t \geq 3n/4 - 1$.

Proof. There exists a zero-sum partition A'_1, A'_2, \ldots, A'_t of the set $\Gamma - \{0\}$ such that $|A'_t| = n_t - 1$ and $|A'_i| = n_i$ for every $1 \le i \le t - 1$ by Theorem 3.8.

Set $A_t = A'_t \cup \{0\}$ and $A_i = A'_i$ for every $1 \le i \le t-1$. Label now the vertices from V_i , where V_i is the vertex class of cardinality n_i , using the elements from the set A_i for $i \in \{1, 2, \ldots, t\}$.

Analogously, for n large enough, by Observation 3.9 we can obtain:

Observation 4.2. Let Γ be an Abelian group of large enough order n having more than one involution. If $G = K_{n_1,n_2,\ldots,n_t}$ is a complete t-partite graph such that $4 \leq n_1 \leq n_2 \leq \ldots \leq n_t$ and $n = n_1 + n_2 + \ldots + n_t$, then G is a Γ -distance magic graph.

References

- M. Aigner and E. Triesch, Codings of graphs with binary edge labels, Graphs and Combinatorics 10 (1994) 1–10.
- M. Anholcer, S. Cichacz, Group irregular labelings of disconnected graphs, Contributions to Discrete Mathematics 12(2) (2017) 158–166.
- [3] M. Anholcer, S. Cichacz, M. Milanič, Group irregularity strength of connected graphs, Journal of Combinatorial Optimization 30(1) (2015) 1–17.
- [4] M. Anholcer, S. Cichacz, J. Przybyło, Linear bounds on nowhere-zero group irregularity strength and nowhere-zero group sum chromatic number of graphs, Applied Mathematics and Computation 343 (2019) 149– 155.
- [5] S. Cichacz, Zero sum partition into sets of the same order and its applications, Electronic Journal of Combinatorics 25(1) (2018), #P1.20.
- Y. Egawa, Graph labelings in elementary abelian 2-groups, Tokyo Journal of Mathematics 20 (1997) 365–379.
- [7] P. Frankl, V. Rödl, Near perfect coverings in graphs and hypergraphs, European Journal of Combinatorics 6 (1985) 317–326.
- [8] D. Froncek, Group distance magic labeling of Cartesian product of cycles, Australasian Journal of Combinatorics 55 (2013) 167–174.
- [9] Y. Fukuchi, Graph labelings in elementary abelian groups, Discrete Mathematics 189 (1998) 117–122.

- [10] G. Kaplan, A. Lev, Y. Roditty, On zero-sum partitions and anti-magic trees, Discrete Mathematics 309(8) (2009) 2010–2014.
- [11] R.P. Stanley, Linear homogeneous Diophantine equations and magic labelings of graphs, Duke Mathematical Journal 40 (1973) 607–632.
- [12] R.P. Stanley, Magic labeling of graphs, symmetric magic squares, systems of parameters and CohenMacaulay rings, Duke Mathematical Journal 43 (1976) 511–531.
- [13] Zs. Tuza, Encoding the vertices of a graph with binary edge-labels, Sequences-combinatorics, compression, security and transmission (R.M. Capocelli, ed.). Springer-Verlag 1990, 287–299.
- [14] X. Zeng, On zero-sum partitions of abelian groups. *Integers* 15 Paper No. A44: 16 pp, 2015.