
ar
X

iv
:2

00
7.

05
87

0v
1

 [
cs

.D
S]

 1
1

Ju
l 2

02
0

A subquadratic algorithm for the simultaneous

conjugacy problem

Andrej Brodnik∗ a,b, Aleksander Malnič† c,a, and Rok Požar‡ a

aUniversity of Primorska, IAM/FAMNIT
bUniversity of Ljubljana, FRI
cUniversity of Ljubljana, PeF

July 14, 2020

Abstract

The d-Simultaneous Conjugacy problem in the symmetric group Sn asks whether
there exists a permutation τ ∈ Sn such that bj = τ−1ajτ holds for all j = 1, 2, . . . , d,
where a1, a2, . . . , ad and b1, b2, . . . , bd are given sequences of permutations in Sn.
The time complexity of existing algorithms for solving the problem is O(dn2). We
show that for a given positive integer d the d-Simultaneous Conjugacy problem in
Sn can be solved in o(n2) time.

Keywords: canonical labeling, graph isomorphism, simultaneous conjugacy
problem.

1 Introduction

The d-Simultaneous Conjugacy problem in the symmetric group Sn asks whether
there exists a permutation in Sn which simultaneously conjugates two given d-tuples of
permutations from Sn. More formally, given two ordered d-tuples a = (a1, a2, . . . , ad)
and b = (b1, b2, . . . , bd) of permutations from Sn, is there a permutation τ ∈ Sn such that
bj = τ−1ajτ holds for all indices j = 1, 2, . . . , d? To save words, we shall refer to this
problem as d-SCP in Sn or even just as SCP.

This problem arises in many forms in various fields of mathematics and computer
science, in particular, when deciding whether two objects from a given class are struc-
turally equivalent. A brief list includes the following: in the theory of covering graphs,
the problem of equivalence of covering projections [6], and moreover, the construction of

∗This work is sponsored in part by the Slovenian Research Agency (research program P2-0359 and
research project N2-0053)

†This work is sponsored in part by the Slovenian Research Agency (research program P1-0285 and
research projects N1-0062, J1-9108, J1-9110, J1-9187, J1-1694, J1-1695)

‡Corresponding author. This work is sponsored in part by the Slovenian Research Agency (research
program P1-0404 and research projects N1-0062, J1-9110, J1-9187, J1-1694)

1

http://arxiv.org/abs/2007.05870v1

all regular covering projections along which a given group of automorphisms lifts [8, 9];
in the theory of maps on surfaces, the question whether two oriented maps on a closed
surface are combinatorially isomorphic [7]; in computational group theory, the problem
whether the centralizer in the symmetric group of a given group is non-trivial [10]. Last
but not least, in the design of efficient and fast interconnection networks for computer
systems, the question of equivalence of permutation networks also reduces to the SCP
[11, 12].

Because of its fundamental importance, the complexity of the d-SCP in Sn has been
studied since mid seventies [4]. The problem can be viewed as a special case of the graph
isomorphism problem. More precisely, let Ga be an arc-colored (multi)digraph on the
vertex set [n] = {1, 2, . . . , n} such that there is an arc from u to v colored j if and only
if aj maps u to v, for j = 1, 2, . . . , d. The permutation digraph Gb is defined in a similar
fashion. (See Section 2 for a more formal definition.) The permutation τ ∈ Sn that
simultaneously conjugates the two tuples is precisely a color and direction preserving
isomorphism from Ga onto Gb (assuming that permutations in Sn are multiplied from
left to right). The graph isomorphism problem is hard in general: no polynomial time
algorithm is known, nor is the problem known to be NP-complete. However, there is a
recent result due to Babai [1] presenting a quasipolynomial time algorithm.

In our context, things are fundamentally different. Namely, when considering the
connected components of Ga and Gb, the additional structure imposed by colors is so
strong that every color and direction preserving isomorphism is uniquely determined by
the image of one arbitrary vertex. This implies that testing for the existence of such an
isomorphism can be done in polynomial time. The first algorithm for the d-SCP in Sn was
proposed in 1977 by Fontet running in time O(dn2) [4]. Five years later, the algorithm
was independently rediscovered by Hoffmann [5]. An important special case of the SCP
occurs when the tuples a and b generate transitive permutation groups or, equivalently,
when Ga and Gb are connected. This restricted problem, referred to as the transitive
SCP, was considered by Sridhar in 1989 [11]. However, his O(dn log(dn))-time algorithm
does not work correctly as we recently showed in [2]. Moreover, in the same paper we also
showed that the transitive SCP can be solved in subquadratic time in n at a given d; more
precisely, we developed an algorithm with the running time O(n2 log d/ logn+ dn logn).

A natural question arises whether the d-SCP in Sn can also be solved in subquadratic
time in n at a given d. The following main result answers the question affirmatively.

Theorem 1.1. Given a positive integer d, the d-SCP in the symmetric group Sn can be
solved in o(n2) time.

The main idea behind our approach is as follows. First, we define two extreme cases
depending on the number of connected components on the one hand, and on the size of
individual components on the other hand. Second, a combination of solutions to these
two extreme cases then yields the desired result in general.

As for the extreme cases, we say that a connected component is large, if it consists of
Θ(n) vertices, and small otherwise. The first extreme case is when a digraph consists of
only large components (and consequently, there are O(1) of them). In the other extreme
the digraph consists of only small components (and consequently, there are ω(1) of them).
In the first case, we simply consider each pair of connected components of the same size
and test whether they are isomorphic by applying the above mentioned subquadratic
algorithm from [2]. As for the other case, a different specially tailored approach is used.
To this end, we present a canonical-labeling-based algorithm that takes O(dn2) time;

2

however, when both digraphs consist only of small connected components its running
time decreases to subquadratic in n at a given d.

The structure of the paper is the following. Section 2 contains the necessary nota-
tion and basic definitions to make the paper self-contained. In Section 3 we present a
canonical-labeling-based algorithm for the SCP. The main theorem is proven in Section 4.
We conclude the paper by discussing some open problems in Section 5.

2 Permutation digraphs and colour-isomorphism

We establish some notation and terminology used in the paper. For the concepts not
defined here see [3].

For i ∈ [n] and g ∈ Sn, we write ig for the image of g under the permutation g rather
than by the more usual g(i). Let σ = (σ1, σ2, . . . , σd) be a d-tuple of permutations in Sn.
The permutation digraph of σ is a pair Gσ = (V,A), where V (Gσ) = V = [n] is the
set of vertices, and A(Gσ) = A is the set of ordered pairs (i, σk), i ∈ [n], k ∈ [d], called
arcs. The size of Gσ is |V (Gσ)|, while the degree of Gσ is |σ|. An arc e = (i, σk) has its
initial vertex ini(e) = i, terminal vertex ter(e) = iσk , and color c(e) = k; the vertex iσk

is also referred to as the out-neighbour of i coloured k. The vertices ini(e) and ter(e)
are the end-vertices of e.

A walk from a vertex v0 to a vertex vm in a permutation digraph Gσ is an alternating
sequence W = v0, e1, v1, e2, . . . , em, vm of vertices and arcs in G such that for each i ∈ [m],
the vertices vi−1 and vi are the end-vertices of the arc ei. If for any two vertices u and v
in Ga there is a walk from u to v, we say that Gσ is connected. Clearly, Gσ is connected
if and only if the tuple a generates a transitive subgroup of Sn. A subdigraph H of Gσ

consists of a subset V (H) ⊆ V (Gσ) and a subset A(H) ⊆ A(Gσ) such that every arc
in A(H) has both end-vertices in V (H). A walk in a subdigraph H of Gσ is a walk in
Gσ consisting only of arcs from A(H). If Gσ is not connected, its maximal connected
subdigraphs are called the connected components of Gσ. Note that there are no arcs
between connected components, and so the components are also permutation digraphs of
degree d.

A colour-isomorphism between two permutation digraphs Ga and Gb is a pair
(φV , φA) of bijections, where φV : V (Ga) → V (Gb) and φA : A(Ga) → A(Gb) such that
φV (ini(e)) = ini(φA(e)), φV (ter(e)) = ter(φA(e)) and c(e) = c(φA(e)) for any arc e ∈
A(Va). If there is a colour-isomorphism between Ga and Gb, we say that Ga and Gb are
colour-isomorphic, and we write Ga

∼= Gb.
Let G be the set of permutation digraphs of size n and degree d, and let L be a

set of strings over some fixed-sized alphabet. A labeling function for G is a function
L : G → L. Such a function L : G → L is canonical whenever for all Ga, Gb ∈ G a
colour-isomorphism from Ga onto Gb exists if and only if L(Ga) = L(Gb). In this case,
L(G) is the canonical label of G.

3 A canonical labeling algorithm

We present an algorithm for finding a canonical label of a permutation digraph Ga of size
n and degree d based on publicly known techniques. It runs in O(dn2) time in general,
but in the case when Ga consists of only small connected components its running time
decreases to subquadratic in n at a given d.

3

We first handle the case when Ga is connected. For a fixed v ∈ V (Ga) we rela-
bel the vertices of Ga in a breadth-first-search order starting at v, see the algorithm
Relabel(Ga, v). The out-neighbours of a current vertex are visited in the ascend-
ing order of colours of the respective out-going arcs (lines 7-11 in Relabel). Let
γv : V → V be the resulting relabeling. The relabelled digraph induced by γv is Gav ,
where av = (γ−1

v a1γv, γ
−1
v a2γv, . . . , γ

−1
v adγv) (line 12 in Relabel).

Algorithm Relabel(Ga, v)

Input: Connected permutation digraph Ga of degree d on n vertices, v ∈ V (Ga).
Output: The permutation digraph Gav .

1: Initilize an empty queue Q;
2: Visited = {v};
3: vγv = 1;
4: Enqueue v into Q;
5: while |Visited| 6= n do
6: Dequeue Q into u;
7: for k ← 1 to d do
8: if uak /∈ Visited then
9: Add uak to Visited;

10: (uak)γv = |Visited|;
11: Enqueue uak into Q;

12: Let av = (γ−1
v a1γv, γ

−1
v a2γv, . . . , γ

−1
v adγv);

13: return The digraph Gav ;

The code of a permutation digraph Ga is

C(Ga) = 1a12a1 · · ·na11a22a2 · · ·na2 · · ·1ad2ad · · ·nad ,

which is a string of length dn over [n] obtained by concatenating, in turn, the images of
1, 2, . . . , n under the permutations a1, a2, . . . , ad. For a connected digraph Ga, let C(Ga)
denote the lexicographically smallest string from among codes C(Gav), v ∈ V (Ga). We
now prove that C(Ga) is the canonical label of Ga.

Proposition 3.1. Let Pc be the set of all connected permutation digraphs of size n and
degree d, and let L be the set of all strings of length dn over [n]. Then the function
Lc : Pc → L defined by Lc(Ga) = C(Ga) is a canonical labeling function for Pc.

Proof. We first show that if C(Ga) = C(Gb), then Ga and Gb are colour-isomorphic. Let
u ∈ V (Ga) be a vertex for which the permutation digraphGau returned byRelabel(Ga, u)
has code C(Gau) = C(Ga). Similarly, let w ∈ V (Gb) be a vertex for which the permuta-
tion digraph Gbw returned by Relabel(Gb, w) has code C(Gbw) = C(Gb). By assump-
tion, it follows that C(Gau) = C(Gbw). Hence Gau = Gbw , and since Gau

∼= Ga and
Gbw
∼= Gb it follows that Ga

∼= Gb.
Conversely, let f be a colour-isomorphism mapping Ga onto Gb, and let u ∈ V (Ga) be

a vertex for which the permutation digraph Gau returned by Relabel(Ga, u) has code
C(Gau) = C(Ga). Next, let w = f(u) and consider the permutation digraph Gbw returned
by Relabel(Gb, w). Note that Gau = Gbw , and hence C(Gau) = C(Gbw). It remains
to prove that C(Gbw) = C(Gb). Suppose to the contrary that for some Gbz returned by
Relabel(Gb, z), the string C(Gbz) is lexicographically smaller than the string C(Gbw).

4

Consider now the permutation digraph G
af

−1(z) returned by Relabel(Ga, f
−1(z)). Sim-

ilarly as above, C(Gbz) = C(G
af

−1(z)). Since C(Gbz) is lexicographically smaller then
C(Gbw) = C(Gau), it follows that C(G

af
−1(z)) is lexicographically smaller than C(Gau).

A contradiction.

Next, we bound the time complexity of computing C(Ga).

Lemma 3.2. The canonical label C(Ga) of a connected permutation digraph Ga of size
n and degree d can be computed in O(dn2) time.

Proof. One call of Relabel(Ga, v) takes time O(dn) in order to construct Gav , while its
code C(Gav) can also be computed in linear time. Since this has to be repeated for each
v ∈ V (Ga), the total running time for constructing the codes is O(dn2). Clearly, choosing
the lexicographically smallest code does not increase this time bound.

In the reminder of this section we consider the case when Ga is not connected. Let
us denote the connected components of Ga by H1, H2, . . . , Hk, and recall that each such
component is a permutation digraph of degree d. Further, let us concatenate the re-
spective canonical labels C(H1), C(H2), . . . , C(Hk) in such an order that the resulting
string C∗(Ga) is lexicographically smallest. The following result shows that C∗(Ga) is
the canonical label of Ga.

Theorem 3.3. Let P be the set of all permutation digraphs of size n and degree d, and
let L be the set of all strings of length dn over [n]. Then the function L : P → L defined
by L(Ga) = C∗(Ga) is a canonical labeling function for P.

Proof. The proof follows from the description of C∗(Ga) above and Proposition 3.1.

In the next section we will make use of the following result regarding permutation
digraphs when all connected components have equal size.

Corollary 3.4. If a permutation digraph Ga of size n and degree d consists of precisely
k equal-sized connected components, then its canonical label C∗(Ga) can be computed in
O(dn2/k) time.

Proof. Let H1, H2, . . . , Hk be the connected components of Ga. Since each component
Hi is of size n/k we can find its canonical label C(Hi), by Lemma 3.2, in O(d(n/k)2)
time. Consequently, the total running time for constructing the canonical labels of all
components is O(dn2/k). To compute C∗(Ga), all we need to do is to sort these labels.
Using radix sort this can be done in time O(dn/k(n/k + k)), which obviously does not
increase the time bound O(dn2/k).

4 Proof of main result

Recall that a tuple a is simultaneously conjugate to a tuple b if and only if the permutation
digraph Ga is color-isomorphic to the permutation digraph Gb. Before considering the
general case when the digraphsGa andGb have variable size components, we deal with two
extreme cases, namely, when the digraphs have either only equal-sized small components
or only equal-sized large components.

5

Lemma 4.1. Let Ga and Gb be permutation digraphs, each of size n and degree d, and
let both Ga and Gb consist of only small equal-sized connected components. Then we can
test whether Ga and Gb are colour-isomorphic in time o(n2) at a given d.

Proof. Let k be the number of connected components. By Corollary 3.4 we can com-
pute the canonical labels of both digraphs and hence perform the isomorphism test in
time O(dn2/k). Since all components are small, we have k = ω(1) and consequently
O(dn2/k) = o(n2) at a given d.

Lemma 4.2. Let Ga and Gb be permutation digraphs, each of size n and degree d, and
let both Ga and Gb consist of only large equal-sized connected components. Then we can
test whether Ga and Gb are colour-isomorphic in O(n2 log d/ logn+ dn logn) time.

Proof. Let k be the number of connected components. Since all components are large,
we have k = O(1). Obviously, at most k2 = O(1) pairs of components, each of size n/k =
O(n), need to be tested for isomorphism. By [2], this requires a total of O(n2 log d/ logn+
dn logn) time.

We are now ready to prove the main result.

Proof of Theorem 1.1. Finding the components of Ga and Gb requires O(dn) time. If
Ga and Gb do not have an equal number of components of the same size, they are not
isomorphic, which can be tested by sorting the sizes of the components in time o(n2).
So, let Ga and Gb have pi components of size ni, i ∈ [r], where without loss of generality
we may assume that components of sizes n1, n2, . . . , nj are large, and the remaining
ones are small. Obviously, components of different sizes can be tested separately. By
Lemma 4.2, we can test pi = O(1) large components of size ni for isomorphism in time
O(n2

i log d/ log(ni)+dni logni). On the other hand, by Corollary 3.4, we can test pi small
components of size ni in time O(dpin

2
i). Finally, for a large enough constant c the total

time is bounded from above by

c

(j
∑

i=1

dn2
i

logni

+
r

∑

i=j+1

dpin
2

i

)

≤ cdmax

{

n1

log(n1)
, . . . ,

nj

log(nj)
, nj+1, . . . , nr

} r
∑

i=1

pini.

The max-term is o(n) since ni/ log(ni) = o(n) for each large component as well as ni =
o(n) for each small component. The final result follows as

∑r
i=1

pini = n.

5 Concluding remarks

It remains an open problem whether for a given positive integer d the d-SCP in the
symmetric group Sn can be solved in a strongly subqudratic time in n, that is, in time
O(n2−ǫ) for some ǫ > 0. Further, completely unanswered is the question of the problem’s
lower bound, except for the trivial one, Ω(n). The obvious question is whether it can
be raised to Ω(n log n) reflecting erroneous Sridhar’s upper bound, or even to a higher
bound by proving conditional lower bounds based on conjectures of hardness for well-
studied problems, as it was already done for a number of other problems.

6

References

[1] L. Babai, Graph isomorphism in quasipolynomial time [extended abstract]. In: Pro-
ceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing,
STOC 16, pages 684–697, New York, NY, USA, 2016.

[2] A. Brodnik, A. Malnič, R. Požar, The simultaneous conjugacy problem in the sym-
metric group, arXiv:1907.07889v2.

[3] R. Diestel, “Graph Theory”, Springer-Verlag, New York, 2005.

[4] M. Fontet, Calcul de Centralisateur d’un Grupe de Permutatations,
Bull. Soc. Math. France Mem. 49-50 (1977), 53–63.

[5] C. M Hoffmann, Subcomplete Generalization of Graph Isomorphism. J. of Comp.
and Sys. Sci. 25 (1982), 332–359.

[6] A. Malnič, R. Nedela, M. Škoviera, Lifting graph automorphisms by voltage assign-
ments. European J. Combin. 21 (2000), 927–947.

[7] A. Malnič, R. Nedela, M. Škoviera, Regular homomorphisms and regular maps.
European J. Combin. 23 (2002), 449–461.

[8] P. Potočnik, R. Požar, Smallest tetravalent half-arc-transitive graphs with the vertex-
stabiliser isomorphic to the dihedral group of order 8, J. Combin. Theory Ser. A 145
(2017), 172–183.

[9] R. Požar, Computing stable epimorphisms onto finite groups. J. Symbolic Comput.
92 (2019), 22–30.

[10] Á. Seress, “Permutation group algorithms”, Cambridge Tracts in Mathematics 152.
Cambridge University Press, 2003.

[11] M. A. Sridhar, A fast algorithm for testing isomorphism of permutation networks.
IEEE Trans. Computers (TC) 38(6) (1989), 903–909.

[12] A. Yavuz Oruç, M. Yaman Oruç, On testing isomorphism of permutation networks.
IEEE Trans. Computers (TC) 34 (1985), 958-962.

7

	1 Introduction
	2 Permutation digraphs and colour-isomorphism
	3 A canonical labeling algorithm
	4 Proof of main result
	5 Concluding remarks

