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Abstract

A proper edge coloring of a graph is strong if it creates no bichromatic path of
length three. It is well known that for a strong edge coloring of a k-regular graph at
least 2k−1 colors are needed. We show that a k-regular graph admits a strong edge
coloring with 2k−1 colors if and only if it covers the Kneser graphK(2k−1, k−1). In
particular, a cubic graph is strongly 5-edge-colorable whenever it covers the Petersen
graph. One of the implications of this result is that a conjecture about strong edge
colorings of subcubic graphs proposed by Faudree et al. [Ars Combin. 29 B (1990),
205–211] is false.

Keywords: strong edge coloring, Petersen coloring, Kneser graph, odd graph, cubic graph,
covering projection

1 Introduction
A strong edge coloring of a graph G is a proper edge coloring with no bichromatic path
of length three; in other words, each color class is an induced matching. The minimum
number of colors for which G admits a strong edge coloring is called the strong chromatic
index, and is denoted by χ′s(G). In 1985, Erdős and Nešetřil proposed the following
conjecture which was later published in [5] and updated by Faudree et al. [7] to fit the
graphs with an even or odd maximum degree.

Conjecture 1.1 (Erdős, Nešetřil, 1988). The strong chromatic index of an arbitrary graph
G satisfies

χ′s(G) ≤

{
5
4
∆(G)2 , if ∆(G) is even

1
4
(5∆(G)2 − 2∆(G) + 1) , if ∆(G) is odd.
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Despite many efforts, this conjecture is still widely open and the best current upper bound
1.772∆(G)2 (provided that ∆(G) is large enough) is due to Hurley et al. [11].

The motivation for this note comes from one of the two extant cases of the conjecture
of Faudree et al. [7, Section 4] about strong edge colorings of subcubic graphs, that is,
graphs with maximum degree 3.

Conjecture 1.2 (Faudree, Schelp, Gyárfás, Tuza, 1990). Let G be a graph with maximum
degree 3. Then

(1) χ′s(G) ≤ 10,

(2) χ′s(G) ≤ 9 if G is bipartite,

(3) χ′s(G) ≤ 9 if G is planar,

(4) χ′s(G) ≤ 6 if G is bipartite and for every edge the sum of degrees of its endvertices
is at most 5,

(5) χ′s(G) ≤ 7 if G is bipartite with girth at least 6,

(6) χ′s(G) ≤ 5 if G is bipartite with large girth.

The first four cases of Conjecture 1.2 have already been resolved. Case (1), which is just
a special case of the conjecture of Erdős and Nešetřil, has been confirmed by Andersen [1]
and by Horák et al. [10]. Case (2) was proved in 1993 by Steger and Yu [17], and Case (3),
just recently, by Kostochka et al. [14]. Case (4) was established by Wu and Lin [18]; it
easily follows also from a result of Maydanskiy [15]. Up to our best knowledge, Cases (5)
and (6) are still open, although several partial results confirming Case (6) are known [3, 4].

Our aim is to show that Case (6) of Conjecture 1.2 is false. In order to be able
to produce infinitely many counterexamples, in Theorem 2.2 we characterize k-regular
graphs with strong chromatic index 2k − 1 as those which admit a covering projection
onto the Kneser graph K(2k − 1, k − 1). In particular, when k = 3, a cubic graph is
strongly 5-edge-colorable if and only if it covers the Kneser graph K(5, 2). However, the
latter is nothing but the Petersen graph. Subsequently, in Theorem 2.4, we construct
bipartite cubic graphs of arbitrarily large girth that do not cover the Petersen graph. By
the former result, their strong chromatic index must be at least 6.

The last three sections of this paper are devoted to further aspects of strong (2k− 1)-
colorings of k-regular graphs, with emphasis on the cubic case. In Section 3, we reflect
on the fact, established in Section 2, that the Kneser graph K(2k − 1, k − 1) has a
unique strong (2k− 1)-coloring up to automorphism. With the help of a result borrowed
from the theory of voltage graphs we are able to provide an example of a cubic graph
on 40 vertices which covers the Petersen graph and admits two substantially different
strong 5-edge-colorings. In Section 4, we explain the relationship of strong 5-colorings
of cubic graphs to the famous Petersen coloring conjecture, and in the final section we
present several open problems. Among them, we propose a strengthening of Case (5) of
Conjecture 1.2, its only remaining open case.
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2 Main results
Let φ be a proper edge coloring of a graph G. An edge e of G is said to be rich with
respect to φ if all the edges adjacent to e receive pairwise distinct colors. If φ is a strong
edge coloring, then each edge must obviously be rich, and vice versa. In particular, every
strong edge coloring of a k-regular graph requires at least 2k − 1 colors. It has been
shown in [7, Theorem 8] that this minimum is also sufficient if G is the Kneser graph
K(2k − 1, k − 1). Recall that the Kneser graph K(m,n), with m ≥ 2n + 1 and n ≥ 2,
is the graph whose vertices are the n-element subsets of a ground set of m elements, say
{1, 2, . . . ,m}, and where two vertices are adjacent if and only if the two corresponding
sets are disjoint. The Kneser graphs K(2k − 1, k − 1) are commonly known as the odd
graphs Ok and have been subject to numerous investigations (see for example the work of
Biggs [2]). The smallest odd graph K(5, 2) is isomorphic to the Petersen graph.

Every odd graph K(2k − 1, k − 1) has a natural – or canonical – strong (2k − 1)-
edge-coloring, which we denote by σk. It can be described as follows: for any edge uv of
K(2k − 1, k − 1) the set u ∪ v ⊆ {1, 2, . . . , 2k − 1} contains precisely 2k − 2 elements, so
we can set σk(uv) to be the missing element of the ground set. It is easy to see that this
coloring is indeed strong. The canonical strong 5-edge-coloring σ3 of the Petersen graph
is represented in Figure 1.

Observe that every strong (2k−1)-edge-coloring σ of any k-regular graph G induces a
vertex coloring σ′ of G where every vertex v is colored with the (k−1)-element set of colors
that do not occur on the edges incident with v. We call σ′ the derived vertex coloring.
Since σ is strong, the colors of any two adjacent vertices of G are disjoint (k− 1)-subsets;
in particular, σ′ is a proper vertex coloring. For the Petersen graph the derived coloring
σ′3 is again indicated in Figure 1.

It is quite remarkable that the edge coloring σ can be uniquely reconstructed from the
vertex coloring σ′: the edge uv is colored with the element of the ground set not occurring
in the set σ′(u) ∪ σ′(v). This fact readily implies that the canonical coloring is a unique
strong (2k− 1)-edge-coloring of K(2k− 1, k− 1) up to automorphism of K(2k− 1, k− 1).
Indeed, consider an arbitrary strong (2k − 1)-edge-coloring τ of K(2k − 1, k − 1). The
derived vertex coloring τ ′ associates with each vertex v of K(2k − 1, k − 1) – which is
a (k − 1)-element subset of {1, 2, . . . , 2k − 1} – another (k − 1)-element subset τ ′(v) of
the same set. In other words, τ ′ sends a vertex of K(2k − 1, k − 1) to another such
vertex. Since τ is strong, the assignment v 7→ τ ′(v) is adjacency-preserving and injective
on the neighbors of v. It means that τ ′ determines a degree-preserving endomorphism α of
K(2k−1, k−1), which necessarily must be an automorphism. The way how the canonical
(2k−1)-edge-coloring σk was defined implies that α transforms σ′k to τ ′, and consequently
σk to τ . Summing up, any two strong (2k − 1)-edge-colorings of K(2k − 1, k − 1) are
equivalent under the action of its automorphism group. Taking into account the fact that
every automorphism of K(2k− 1, k− 1) is induced by a permutation of the ground set [2,
Statement 3.1] we can conclude that any two strong (2k− 1)-colorings of K(2k− 1, k− 1)
can be obtained from each other by a permutation of colors.

We aim to prove that all k-regular graphs whose strong chromatic index equals 2k− 1
are closely related to the Kneser graph K(2k− 1, k− 1), the relationship being a covering
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Figure 1: The unique strong 5-edge-coloring of the Petersen graph along
with the derived proper vertex coloring

projection onto K(2k − 1, k − 1). The pertinent definitions are now in order.
A surjective graph homomorphism f : G̃ → G is called a covering projection if for

every vertex ṽ of G̃ the set of edges incident with ṽ is bijectively mapped onto the set
of edges incident with f(ṽ). (If G is permitted to contain loops, then the definition has
to be applied to the half-edges incident with v rather than the edges themselves.) The
graph G is usually referred to as the base graph and G̃ as a covering graph or a lift of G.
A graph G̃ covers G if there exists such a covering projection.

It is well known (see [8], Section 2.3) that for every covering projection f : G̃ → G
there exists a positive integer d such that every vertex of G has exactly d preimages and
every edge of G has exactly d preimages; such a cover is said to be d-fold. For example,
the Petersen graph admits a 5-fold covering projection onto the dumbbell graph (which
consists of two adjacent vertices and a loop attached to each of them).

Covering graphs have been useful in numerous parts of graph theory, especially when
a locally defined structure on the base graph can be ‘lifted’ to the covering graph. This
is true, for example, for edge colorings, flows, embeddings on surfaces, and other graph
structures. The following easy fact is in a similar vein.

Lemma 2.1. Let f : G̃ → G be a covering projection of graphs. If G is strongly n-edge-
colorable for some integer n, then so is G̃.

Proof. Let φ be a strong n-edge-coloring of G. Define an edge coloring φ̃ of G̃ by setting
φ̃(x) = φ(f(x)) for each edge x of G̃. As previously mentioned, every edge of G with
respect to φ is rich. The definition of a covering immediately implies that the same holds
for each edge of G̃ with respect to φ̃. Therefore φ̃ is a strong n-edge-coloring of G̃.

Now we are ready for our main results.

Theorem 2.2. The strong chromatic index of a k-regular graph G equals 2k − 1 if and
only if G covers the Kneser graph K(2k − 1, k − 1).

4



Proof. The backward implication is a direct consequence of Lemma 2.1, so we are left
with the forward implication.

Let σ be a strong edge coloring of a k-regular graph G with 2k − 1 colors from the
set {1, 2, . . . , 2k − 1}. Without loss of generality we may assume that G is connected.
To define a covering projection f : G → K(2k − 1, k − 1) we use the derived vertex
coloring σ′ of G. Recall that for each vertex v of G the color σ′(v) is a (k − 1)-subset of
{1, 2, . . . , 2k−1}. Thus there is a unique vertex v̄ of K(2k−1, k−1) such that σ′(v) = v̄.
Define f by sending v to v̄. The mapping is clearly correctly defined.

We first observe that f : G→ K(2k − 1, k − 1) is a homomorphism. To see this, note
that the colors of adjacent vertices in G are disjoint (k− 1)-elements sets. It follows that
f sends adjacent vertices u and v to disjoint sets ū and v̄. However, in K(2k − 1, k − 1)
such vertices are adjacent. Therefore f sends adjacent vertices to adjacent vertices.

To show that f is a covering projection we need to check that f takes the neighborhood
of every vertex bijectively to K(2k − 1, k − 1), and that f is surjective. Consider an
arbitrary vertex v of G, and note that the k neighbors ui of v, where 1 ≤ i ≤ k, receive
from σ′ pairwise distinct colors σ′(ui). Since f sends each ui to the vertex ūi = σ′(ui) in
K(2k− 1, k− 1), it takes the k neighbors of v to k distinct neighbors of f(v), as required.

Finally, to check that f is surjective it is sufficient to realize that f(G) is a connected
subgraph ofK(2k−1, k−1) and that f(G) is k-regular. Therefore f(G) = K(2k−1, k−1),
which proves that f is a covering projection.

For cubic graph the previous theorem amounts to the following.

Corollary 2.3. The strong chromatic index of a cubic graph G equals 5 if and only if G
covers the Petersen graph.

Our next theorem refutes Case (6) of Conjecture 1.2.

Theorem 2.4. There exist bipartite cubic graphs with arbitrarily large girth and strong
chromatic index at least 6.

Proof. We construct an infinite sequence (Gn)n≥1 of connected bipartite cubic graphs such
that Gn has girth 2n and order a power of 2. Since the order of any graph that covers the
Petersen graph is a multiple of 10, it follows that Gn does not cover the Petersen graph
for any n ≥ 1. From Corollary 2.3 we get that χ′s(Gn) ≥ 6 for each n ≥ 2.

We now construct the sequence by induction on n. For the starting graph G1 we take
the cubic graph consisting of two vertices and three parallel edges, which is connected,
bipartite, and has girth 2. Assume that we have already constructed the graph Gn for
some n ≥ 1. By the induction hypothesis, Gn is connected and bipartite with girth 2n

and order a power of 2. To create Gn+1, we employ the construction of Exoo and Jajcay
described in the proof of Theorem 3.1 of [6]. Their method uses a Z2-homology voltage
assignment on a connected graph H of girth g to produce a 2β(H)-fold covering projection
H̃ → H with H̃ connected of girth 2g, where β(G) denotes the cycle rank (Betti number)
of G. (We refer the reader for details to [6].) If we apply this construction to Gn, we
obtain a connected graph Gn+1 of girth 2n+1 and order 2β(Gn)mn, where mn is the order
of Gn. Since mn is a power of 2, so is the order of Gn+1. Furthermore, Gn+1 is bipartite
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because any covering graph over a bipartite base graph is bipartite. This concludes the
construction of (Gn)n≥1 as well as the entire proof.

Remark 2.5. The reader can check that the graph G2 constructed in the previous proof
is isomorphic to the graph of the 3-cube Q3, whose strong chromatic index equals 6. Since
the composition of covering projections is again a covering projection, each Gn with n ≥ 3
covers G2, and therefore it is strongly 6-edge-colorable by Lemma 2.1. Theorem 2.2 now
implies that χ′s(Gn) = 6 for each n ≥ 2.

3 Equivalence of coverings and colorings
We have proved that the odd graph K(2k − 1, k − 1) admits a unique strong (2k − 1)-
edge-coloring up to automorphism. It is therefore natural to ask whether the same holds
for the graphs that cover it. As we shall see in this section, the answer is negative, which
at the first glance might seem to be rather counter-intuitive.

We first show that the problem of finding two essentially different strong (2k − 1)-
edge-colorings of a k-regular graph is closely related to the problem of finding two non-
equivalent covering projections of the same k-regular graph onto the odd graph K(2k−1,
k − 1).

We call two edge colorings φ1 and φ2 of a graph G equivalent if there exists an au-
tomorphism α of G such that φ2 = φ1α. Similarly, we say that two covering projections
f1 : G1 → G and f2 : G2 → G are equivalent if there exists an isomorphism ξ : G2 → G1

such that f2 = f1α.
The following theorem shows that for strong (2k−1)-edge-colorings of k-regular graphs

equivalence of colorings coincides with equivalence of coverings.

Theorem 3.1. Every strong (2k − 1)-edge-coloring σ of a k-regular graph G determines
a unique covering projection fσ : G → K(2k − 1, k − 1). Moreover, two such colorings σ
and τ are equivalent if and only if the corresponding covering projections fσ and fτ of G
are equivalent.

Proof. Recall that given a strong (2k−1)-edge-coloring σ of an arbitrary graph G we have
defined a covering projection f by sending an arbitrary vertex v of G to the vertex σ′(v),
where σ′ is the derived vertex coloring of G with colors being the (k− 1)-element subsets
of the (2k − 1)-element set. This is the required covering projection fσ corresponding to
the coloring σ.

Assume that σ and τ are equivalent strong (2k − 1)-edge-colorings of G, and let α
be an automorphism of G such that τ = σα. It follows that τ ′ = σ′α and therefore,
by the definition of the covering projection corresponding to a strong (2k − 1)-edge-
coloring, fτ = fσα. Conversely, if covering projections fσ, fτ : G → K(2k − 1, k − 1) are
equivalent, then there exists an automorphism β of G such that fτ = fσβ. The latter can
be rewritten as τ ′ = σ′β. However, the way how the original strong (2k−1)-edge-coloring
can be reconstructed from the derived vertex coloring implies that τ = σβ, which means
that the colorings σ and τ are equivalent.

6



What remains to be done is to find a k-regular graph G that admits two non-equivalent
covering projections on the Kneser graph K(2k − 1, k − 1). We do it for k = 3, in which
case K(2k − 1, k − 1) coincides with the Petersen graph. For this purpose we need to
recall several notions pertaining to the theory of graph covers.

First of all, it will be convenient to regard each edge (including the loops) as a pair
of oppositely oriented darts. Each dart x directed from u to v has its unique inverse
x−1 directed from v to u. The set of all darts of a graph K is denoted by D(K). The
symmetric group of all permutations of the d-element set {1, 2, . . . , d} is denoted by Sd;
it acts on {1, 2, . . . , d} on the right.

A permutation voltage assignment on a graph K is a mapping κ : D(K) → Sd such
that κ(x−1) = κ(x)−1 for each dart x ∈ D(K). For convenience, we often denote κ(x)
by κx. Every permutation voltage assignment κ on K gives rise to the derived graph Kκ

for K, or the lift of K, which is defined as follows. Set V (Kκ) = V (K) × {1, 2, . . . , d},
D(Kκ) = D(K) × {1, 2, . . . , d}, and for each dart x = uv and i ∈ {1, 2, . . . , d} let the
lifted dart (x, i) join (u, i) to (v, (i)κx). It is easy to see that the natural projection
pκ : Kκ → K which erases the second coordinate is a covering projection. Moreover, a
classical result of the theory of voltage graphs states that every d-fold covering projection
K̃ → K is equivalent to the natural projection Kκ → K for a suitable permutation
voltage assignment κ on K with values in Sd, see [8, Theorem 2.4.5].

Let us henceforth assume that the base graph K is connected. Pick a spanning tree
T of K and let r be an arbitrary vertex of K, the root. For any vertex w of K let T (w)
denote the unique directed path from the root to w, encoded as a sequence of darts, and
let T (w)−1 be the inverse path. Further, for any dart z = uv whose underlying edge is
not contained in T define the permutation θ(z) ∈ Sd by taking the product of voltages
(that is, values of κ) on the closed walk T (u)zT (v)−1, rooted at r, in the order determined
by the walk and starting from the root. If we set κ′(x) = θ(x) whenever x is a cotree
dart and κ′(x) = id otherwise, we obtain a new voltage assignment κ′ on K called the
(T, r)-reduction of κ.

The concept of a (T, r)-reduction of a voltage assignment is quite useful. For example,
it can be shown that the derived graph Kκ is connected if and only if the voltages of κ′
generate a transitive subgroup of Sd. What is more important for us, it can be used to
determine whether or not two covering projections are equivalent. The respective result
is taken from [16, Theorem 2].

Theorem 3.2. Let κ and λ be permutation voltage assignments on a connected graph
K, both having their values in the symmetric group Sd, and let κ′ and λ′ be their (T, r)-
reductions. The natural projections pκ and pλ are equivalent if and only if there exists an
inner automorphism γ of Sd such that λ′ = γκ′.

Now we are prepared to describe an example of a cubic graph that covers the Petersen
graph and has two non-equivalent strong 5-edge-colorings. It is depicted in Figure 3.

Example 3.3. Consider the permutation voltage assignments κ and λ on the Petersen
graph with values in S4 which are represented in Figure 2; the edges not labelled carry the
trivial voltage id (in both directions). The values attached to all the edges are involutions,
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Figure 2: Permutation voltage assignments κ and λ on the Petersen graph
with values in S4.

which means that they unambiguously represent the respective voltage assignments. The
corresponding lifts are isomorphic graphs as can be easily detected from Figure 3; for sim-
plicity, a vertex (v, i) is denoted by vi. We claim that the natural projections pκ : P κ → P

a1

b1

c1d1

e1

f1

g1h1

i1

j1

a2

b2

c2 d2

e2

f2

g2 h2
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j2
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g4h4
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λ

Figure 3: The lifts of the Petersen graph corresponding to the permutation
voltage assignments κ and λ.

and pλ : P λ → P , where P denotes the Petersen graph, are not equivalent. To see it, pick
the spanning tree T indicated in Figure 2 by bold lines and choose the central vertex a to
be the root. Clearly, the (T, a)-reduction κ′ of κ coincides with κ. The (T, a)-reduction λ′
of λ is shown in Figure 4; the value λ′(gf) is not an involution and holds for the indicated
direction. By comparing κ′ and λ′ we immediately conclude that no inner automorphism
γ of Sd such that λ′ = γκ′ can exist, because every inner automorphism preserves the
cycle structure of permutations. Theorem 3.2 now implies that the covering projections
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Figure 4: The (T, a)-reduction λ′ of λ.

pκ and pλ are not equivalent. Further, from Theorem 3.1 we conclude that there exist
strong 5-edge-colorings σ and τ of the graph shown in Figure 3 such that fσ is equivalent
to pκ and fτ is equivalent to pλ. They can be constructed simply by lifting the strong
5-edge-coloring σ3 of the Petersen graph via pκ and pλ, respectively. By the same theorem,
the colorings σ and τ are not equivalent.

4 Strong, normal, and Petersen colorings
Corollary 2.3 links strong edge colorings of cubic graphs to two other interesting types of
edge colorings of cubic graphs – normal colorings and Petersen colorings – and through
them to the outstanding Petersen coloring conjecture of Jaeger [13].

Conjecture 4.1 (Jaeger, 1988). Every bridgeless cubic graph admits a Petersen coloring.

For a cubic graph G a mapping ξ : E(G) → E(P ) is said to be a Petersen coloring
if any two adjacent edges of G are mapped to adjacent edges of the Petersen graph. As
a consequence, for every vertex v of G the three edges incident with v are mapped to
three edges incident with a vertex of P (as P is triangle-free); in particular, ξ is a proper
edge coloring. Nevertheless, a Petersen coloring need not be a homomorphism G → P
because the induced mapping between the vertex sets need not send adjacent vertices of
G to adjacent vertices of P (for example, it can send them to the same vertex). If ξ does
map adjacent vertices to adjacent ones, then it determines a covering projection G→ P .
Conversely, every covering projection G→ P gives rise to a Petersen coloring of G.

In [12, Section 5] Jaeger proved that a cubic graph admits a Petersen coloring if and
only if it has a 5-edge-coloring which he termed ‘normal’. A proper 5-edge-coloring φ of
a cubic graph G is said to be normal if for every edge e of G the number of colors on the
edges adjacent to e is either 2 or 4, but never 3. In the former case, e is called poor, as
opposed to rich (introduced in Section 2), which corresponds to the latter case. Clearly,
a normal 5-edge-coloring with no poor edges is strong.

By combining these observations with Corollary 2.3 we obtain the following four equiv-
alent statements.
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Theorem 4.2. Let G be cubic graph. Then the following statements are equivalent:

(i) χ′s(G) = 5;

(ii) G covers the Petersen graph;

(iii) G admits a normal 5-edge-coloring in which every edge is rich;

(iv) G admits a Petersen coloring which is a homomorphism.

5 Conclusion
Coloring subcubic graphs with five colors without creating a bichromatic path of length 3
is very restrictive. For example, we already need five colors when there are two adjacent
vertices of degree 3 in a graph. Therefore, the existence of infinitely many cubic graphs
admitting a strong 5-edge-coloring is quite surprising.

Figure 5: Subcubic graphs with high strong chromatic indices; the three
graphs above need nine colors and the two graphs below ten colors for any
strong edge coloring.

What if we have more available colors? It is already known that the Heawood graph,
a cubic graph on 14 vertices of girth 6, has strong chromatic index 7. Computational
results reveal that there are two and six cubic graphs of girth at least 6 on 16 and 18
vertices, respectively, for which six colors are not sufficient. It is even not enough to
slightly increase the girth. The Tutte 8-cage, a cubic graph of girth 8 on 30 vertices, does
not admit any strong 6-edge-coloring, nor do five cubic graphs of girth 8 on 38 vertices.
This encourages us to ask the following.
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Question 5.1. Is there a constant C such that every cubic graph of girth at least C admits
a strong 6-edge-coloring?

Perhaps one can find a characterization of cubic graphs admitting a strong 6-edge-
coloring similar to the one presented in this paper for five colors. However, it is likely
that the condition of being bipartite will not play any role in answering the above question,
because Tutte’s 8-cage is bipartite.

Having seven colors available, it seems that cubic graphs become strongly colorable as
soon as they do not contain short cycles. Our computational experiments show that all
cubic graphs of girth at least 5 on at most 26 vertices and all bridgeless subcubic graphs
of girth at least 5 on at most 18 vertices admit a strong 7-edge-coloring. We therefore
propose the following conjecture, which strengthens Case (5) of Conjecture 1.2.

Conjecture 5.2. Let G be a subcubic graph of girth at least 5. Then

χ′s(G) ≤ 7 .

We remark that without restricting girth eight colors are still not sufficient to color
all bridgeless subcubic graphs (see Figure 5 for some examples of graphs that need more
colors). However, as suggested in [9] on the basis of computational evidence, it seems that
nine colors should suffice to color all bridgeless subcubic graphs that are not isomorphic
to either K3,3 with one subdivided edge or to the 8-vertex Möbius ladder known as the
Wagner graph.

Conjecture 5.3 (Hocquard, Lajou, Lužar, 2020). Every bridgeless subcubic graph not
isomorphic to the Wagner graph and the complete bipartite graph K3,3 with one edge
subdivided admits a strong 9-edge-coloring.

In fact, exhaustive computational search indicates that there are no bridgeless subcubic
graphs on more than 12 vertices and strong chromatic index at least 9 (apart from the
graphs in Figure 5 and four graphs on 12 vertices). Thus we can strengthen the above
conjecture to the following.

Conjecture 5.4. If G is a bridgeless subcubic graph on at least 13 vertices, then

χ′s(G) ≤ 8 .
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