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WREATH PRODUCT IN AUTOMORPHISM GROUPS OF

GRAPHS

MARIUSZ GRECH, ANDRZEJ KISIELEWICZ

Abstract. The automorphism group of the composition of graphs G ◦ H

contains the wreath product Aut(H) ≀Aut(G) of the automorphism groups of
the corresponding graphs. The classical problem considered by Sabidussi and
Hemminger was under what conditions G◦H has no other automorphisms. In
this paper we deal with the converse. If the automorphism group of a graph (or
a colored graph or digraph) is the wreath product A ≀B of permutation groups,
then the graph must be the result of the corresponding construction. The
question we consider is whether A and B must be the automorphism groups
of graphs involved in the construction. We solve this problem, generally in
positive, for the wreath product in its natural imprimitive action (which refers
to the results by Sabidussi and Hemminger). Yet, we consider also the same
problems for the wreath product in its product action, which turns out to
be more complicated and leads to interesting open questions involving other
combinatorial structures.

Wreath product is one of the most important combinatorial constructions in the
theory of groups and permutation groups. It is enough to mention its crucial role
in the O’Nan-Scot theorem and the classification of the maximal subgroups of Sn.
Also, many important configurations, as the Hamming scheme H(n,m), involve the
wreath product of permutation groups. The corresponding structure in the theory
of graphs is the composition of graphs, called also the lexicographic product or more
recently the wreath product of graphs (see [1, 4]).

The automorphism group Aut(G ◦ H) of the composition of graphs G and H
contains the wreath product Aut(H) ≀ Aut(G) of the automorphism groups of the
graphs H and G, and often the equality Aut(G◦H) = Aut(H) ≀Aut(G) holds. The
classical results by Sabidussi [18, 19] and Hemminger [12, 13, 14] give the necessary
conditions for the equality above to hold, or using Hemminger words, for the above
product of graphs to have no “unnatural” automorphisms. This was generalized
by Hahn [10, 11] for directed graphs and hypergraphs, and by Dobson and Morris
[4] for colored graphs. As a matter of fact, colored graphs seem a more adequate
setting for this kind of problems (see e.g., [5, 6, 21]). This is due to the fact that
the fundamental construction connected with the question whether a permutation
group A is the automorphism group of a graph is the colored graph G∗(A) defined
by orbitals of the group. Note that automorphisms of colored graphs are also
considered in the literature in terms of permutations preserving factorizations of
complete graphs (see e.g., [9, 16]).

In general, necessary conditions for Aut(G ◦ H) = Aut(H) ≀ Aut(G) are tech-
nical and not easy to state, but in case of finite graphs and digraphs they are
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quite simple. In particular, for finite colored graphs H1 and H2, Aut(H1 ◦H2) =
Aut(H2) ≀Aut(H1) if and only if, for every color k, the following implication holds:
if H1 has a pair of k-twins (two vertices joined by an edge of color k that have
exactly the same neighbors in every color), then the k-complement of H2 is con-
nected. Even if the condition is not satisfied one can construct a graph G such
that Aut(G) = Aut(H2) ≀ Aut(H1). In [7], we have proved1 that if A,B are auto-
morphism groups of some r-colored graphs, than there exists an r-colored graph G
with Aut(G) = A ≀B.

In this paper we consider the converse of these results. Suppose that the au-
tomorphism group of a graph G has the form of the wreath product A ≀ B of two
permutation groups A and B. Does it mean that A and B are the automorphism
groups of some graphs H1 and H2, and if so, can G be obtained as the composition
of H1 and H2?

We show that this is true for vertex transitive colored graphs and digraphs, but
for intransitive graphs and digraphs the situation is more complicated and involves
a generalization of composition of graphs. All these results concern the wreath
product in its imprimitive action. In the second part of the paper we consider the
same problem for the wreath product in the product action. Here the situation turns
out to be more complex and more intriguing. Partial characterizations we obtain
involve the automorphism groups of colored hypergraphs. The open question we
state is strictly connected with the question of characterizing permutation groups
that cannot be represented as the automorphism group of a colored hypergraph.
Are there such groups other than the alternating groups and a few know exceptional
examples? We address this question in more detail at the end of the paper.

1. Definitions and basic facts

Our terminology on graphs and permutation groups is standard. In this section
we recall the most important definitions, fix notation, and remind some basic facts.

By a colored graph G (or more precisely, k-colored graph), we mean a pair G =
(V,E), where V is the set of vertices of G, and E the color function from the set
P2(V ) of unordered pairs of the set vertices V into the set of colors {0, . . . , k − 1}.
Thus, G is a complete graph with colored edges. It can be also viewed as an
arbitrary colored graph where color 0 stands for non-edges.

An automorphism of a colored graph G = (V,E) is a permutation σ of the set V
preserving the edge function: E{v, w} = E{vσ, wσ}, for all v, w ∈ V . (Note that,
in this paper, we adopt the convention to write permutations on the right. Also, for
visibility, we omit a pair of parentheses in denoting the color function, and write
E{v, w} rather than E({v, w})). The group of automorphisms of G will be denoted
by Aut(G), and considered as a permutation group (Aut(G), V ) acting on the set
of the vertices V . Notions and notations for directed graphs are analogous.

Permutation groups are treated up to permutation isomorphism. Generally, a
permutation group A on a set V is denoted (A, V ) or just A, if the set V is clear
from the context. It is always assumed that for a permutation group the cardinality
|V | > 1. Similarly, colored graphs are treated up to color isomorphism (two colored
graphs are color isomorphic if they are isomorphic after suitable renaming colors of
the edges).

1The results of [10, 7] have been rediscovered in [4] without citing.
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We will consider the class GR of all permutation groups that are automorphism
groups of colored graphs, and the class DGR of all those permutation groups that
are automorphism groups of colored directed graphs.

For finite graphs, these classes have been introduced, in fact, by H. Wielandt
in [23], where permutation groups that are automorphism groups of (systems of
relations corresponding to) colored digraphs were called 2-closed, and those that
are automorphism groups of colored graphs where referred to as 2∗-closed.

In [7], it was proved, in particular, that if the permutation groups A and B
belong both to GR, then the wreath product A ≀ B of this groups also belongs to
GR. The result holds for the wreath product both in the imprimitive action and
the product action. It has been proved for finite graphs in a more detailed setting
taking into account the number of colors involved. But for the general version
formulated above the proof easily generalizes, also for the corresponding versions
for the classes DGR. For the case of imprimitive action, these facts were proved
independently in [4]. In this paper we formulate and prove the converse.

Given a permutation group (A, V ), we shall consider the natural actions of A
a on the sets of ordered and unordered pairs of V , denoted V × V and P2(V ),
respectively. The orbits of A in the action on V × V are called orbitals of A, or
more precisely, 2-orbitals. The 2-orbitals consisting of pairs of the form (v, v) are
called trivial. For two orbitals O1, O2 we say that O1 is paired with O2 if and only
if O2 = {(w, v) : (v, w) ∈ O1}. We call an orbital O self-paired if it is paired with
itself. Moreover, we say that a permutation α transposes O1 and O2, if O1α = O2.

The orbits of A in the action on P2(V ) will be called here 2∗-orbitals. Note that
we can think of a 2∗-orbital as a pair of nontrivial paired orbitals (or a nontrivial
self-paired orbital).

Let O0, . . . Ok−1 be all the 2∗-orbitals of a permutation group (A, V ). We define
a colored graph G∗(A) = (V,E), where

E{v, w} = i if and only if the edge {v, w} belongs to the orbit Oi.

This graph will be called the (colored) orbital graph of A. We observe that for
the classes of permutation groups on a set V and classes of colored graphs on
V (considered up to suitable isomorphisms), the operators G∗ and Aut form a
(monotone)Galois connection. In particular, the composition of this two operations
yields a closure operator for permutation groups, which we denote A = Aut(G∗(A)).

Thus, we have A ⊆ A, and A ⊆ B if and only if A ⊆ B. Moreover, A ∈ GR if
and only if A = A (see [5], where theses facts are proved without referring to Galois
connection).

The dual closure operator for colored graphs is G = G∗(Aut(G)). Here the
corresponding order relation is the subcoloring. A colored graph H is a subcoloring

of G if H can be obtained from G by partitioning some colors into larger number of
new colors. We write then H � G. Here, we have G � G (unlike the previous case),
and H � G if and only if H � G. Moreover, if A = Aut(G), then, G∗(A) � G.

Replacing 2∗-orbitals by 2-orbitals we define analogously the colored orbital di-

graph G(A). Then operators Aut and G(. . . ) form a Galois connection between
classes of permutation groups on a set V and classes of colored digraphs on V .

We get another closure operator
←−
A = Aut(G(A)), with the same mentioned prop-

erties. In addition, we have A ⊆
←−
A ⊆ A. Also, every digraph D that has the

automorphism group A is a subcoloring of G(A).
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By SV we denote the group of all permutations on the set V . If V is a set
consisting of n elements, then we write also Sn for SV . By In we denote the least
subgroup of Sn, i.e., that consisting of the identity permutation only. The identity
permutation is denoted generally by id, if no confusion can arise.

Given permutation groups A,B acting on sets V and W , respectively, by the
direct product A × B we mean the permutation group acting on the Cartesian
product V ×W consisting of all permutations γ = (α, β) with α ∈ A, β ∈ B, such
that

(v, w)(α, β) = (vα,wβ)

for every (v, w) ∈ V ×W .
A special role in this paper plays the permutation group In×A = A× In (up to

permutation isomorphism). This group acts just as (A, V ), but the action is on n
copies of V and is done in a parallel way. Therefore, it is called a parallel multiple

of A (note that in [15], and some other papers, it is called the parallel power).

2. The imprimitive action of the wreath product

In this section, we study the wreath product of permutation groups in its natural
imprimitive action. For permutation groups (A, V ) and (B,W ), by the (imprimi-
tive) wreath product A and B, denoted A ≀B, we mean a permutation group acting
on V × W , consisting of all permutations γ for which there exist permutations
αw ∈ A for each w ∈ W and permutation β ∈ B such that

(1) (v, w)γ = (vαw, wβ)

for every (v, w) ∈ V ×W .
Abstractly, the wreath product is a semidirect product of AB and B; for this

fact and more general definition see [2]. In this paper, we define A ≀B merely as a
permutation group (a set of permutations) abstracting from its action on V ×W ,
because our problem does not depend on this action. This approach makes the
definition easier and simplifies the proofs.

Following Cameron [2], we may think of the wreath product A ≀ B as a fibre
bundle over the set W . In pictures (like the left hand side of Figure 1), fibres are
presented as parallel vertical lines over the horizontal line representing the set W .
Each fibre is a copy of V with points permuted by elements of A, independently
in each fibre, and whole fibres are permuted using permutations of B. Thus fibres
form natural blocks of A ≀B.

The corresponding construction for graphs is the composition of graphs. For two
colored graphs, the composition G ◦H of graphs G and H with disjoint vertex sets
W and V is the graph with the vertex set W × V and the edges colored as follows:
the edge from {w1, v1} to {w2, v2} has color c, if the edge {w1, w2} forms an edge
in G of color c or w1 = w2 and the edge {v1, v2} has color c in H . (For directed
graphs the definition is the same).

If G and H are color-disjoint (colored with disjoint sets of colors), then for the
automorphism groups, considered as permutation groups, we have Aut(G ◦ H) =
Aut(H) ≀Aut(G) (note the reverse order in the notation). Most often this equality
holds also if G and H are not color-disjoint (see [4]). Therefore, in cite [1, 4], this
construction is called the wreath product of graphs.
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The reader should be warned that in many papers, as in [4], the opposite order
of components in notation of the wreath product of groups is used (which may be
a source of misunderstanding). We follow the tradition applied in Cameron [2].

In order to describe the structure of the graph G∗(A ≀ B) we introduce the free
composition of colored graphs.

Definition. Let H = (V,E1) and G = (W,E2) be r-colored and s-colored graphs,
respectively. Let O1, . . . , Ot be the orbits of Aut(H) and Q1, . . . , Qu the orbits of
Aut(G). The free composition of G and H , denoted G ◦f H , is the colored graph
(W × V,E) with the color function E is defined as follows:

E{(w1, v1), (w2, v2)} =







(i, j, d) if w1 6= w2, E2{w1, w2} = d, v1 ∈ Oi and
v2 ∈ Oj ,

(k, c) if w1 = w2, E1{v1, v2} = c, and w ∈ Qk.

Here, the colors of H ◦f G are labelled by the pairs (k, c) and the triples (i, j, d),
with k ≤ r, i, j ≤ s, and d and c being colors of G and H , respectively. More
formally, they should be replaced by suitable numbers from 0 to r2u+ st− 1. (The
definition for colored directed digraphs is analogous).

The situation is especially clear under assumption that G and H are color-
disjoint. In this case, if Aut(G) and Aut(H) are transitive, then G ◦f H is simply
the composition G ◦H of graphs. If Aut(H) is transitive, and Aut(G) intransitive,
then G ◦f H is what is called the C-join in [4] (or X-join in [14]).

It is also easy to describe the graph G∗(A ≀ B) in terms of the free composition
of colored graphs. Looking at the orbitals in A ≀ B we see easily that if groups
A and B are transitive, then the graph G = G∗(A ≀ B) is just the composition of
(color-disjoint) G∗(B) and G∗(A). In general, the edges joining points in the fibre
of A ≀ B (called vertical edges) form the graph G∗(A), while the remaining edges
(non-vertical edges) are determined by G∗(B) according to the following.

Proposition 2.1. G∗(A ≀ B) = G∗(B) ◦f G
∗(A)

The construction is presented schematically at the left hand side of Figure 1.
After these remarks we are ready to prove the following.

Theorem 2.2. If an r-colored graph G is vertex transitive, and Aut(G) = A ≀ B,

for some permutation groups A and B, then there exist r-colored graphs H1 and H2

such that Aut(H1) = A and Aut(H2) = B, and G = H2 ◦H1.

Proof. Since Aut(G) = A ≀ B, graph G is an r-colored subcoloring of G∗(A ≀ B).
Since Aut(G) is transitive, both A and B are transitive. Consequently, G∗(A ≀B) =
G∗(B) ◦G∗(A).

It follows that G = H2 ◦H1, where H2, H1 are r-colored subcolorings of G∗(B)
and G∗(A), respectively. This implies that Aut(H2) ⊇ Aut(G∗(B)) = B, and
similarly, Aut(H1) ⊇ A.

Thus, we have A ≀ B = Aut(G) ⊇ Aut(H1) ≀ Aut(H2) ⊇ A ≀ B. It follows that
A = Aut(H1) = A and B = Aut(H2) = B, proving the result. �

The analogous results hold for colored digraphs, as well. If G is not vertex
transitive (which means that at least one of A or B is not transitive), then the
situation is more complex. First of all, if Aut(G) = A ≀ B, then, as we shall see,
A and B may not belong to GR at all. Yet, even if A,B ∈ GR, then although G



6 MARIUSZ GRECH, ANDRZEJ KISIELEWICZ

is a subcoloring of G∗(A ≀ B), it needs not to be the compositions of two suitable
graphs, since now one can use edges between points with coordinates in different
orbits to block unnecessary automorphisms. In fact, this possibility is used in the
proof of Theorem 3.1 in [7]. A part of this theorem may be generalized as follows.

Theorem 2.3. Given two permutation groups A and B, the following hold

(1) If A,B ∈ GR, then A ≀B ∈ GR.
(2) If A,B ∈ DGR, then A ≀B ∈ DGR.

As we have already pointed out earlier, in [7], the above was proved only for
finite graphs and in more detailed form involving the numbers of colors. Yet, if we
ignore calculations concerning the numbers of colors, then one may obtain easily
the proofs of the above statements, working also for infinite graphs and digraphs.
We will need also the following simple observation from [5]:

Lemma 2.4. If A 6= I2, and a permutation α preserves the 2∗-orbitals of A, then
α preserves the orbits of A

It follows easily from the fact that edges with endvertices in a nontrivial orbit
form a union of 2∗-orbitals (for details see [5, Lemma 2.2]).

In the rest of this section, we consider the wreath products of the permutation
groups in which at least one of the components does not belong to the class GR
(or DGR). The problem is more difficult for undirected graphs, so we focus on
undirected graphs.

In the lemmas below we assume generally that A and B are permutation groups
acting on sets V and W , respectively.

Lemma 2.5. If A 6∈ GR ∪ {I2}, then, A ≀B 6∈ GR.

Proof. Let G = G∗(A ≀B). By the properties of the closure discussed in Section 1,
it is enough to show that there exists φ ∈ Aut(G) \ (A ≀B).

Since A /∈ GR, there is α ∈ A\A. We use it to define a permutation φ on V ×W .
For a fixed element w0 ∈W we put

(v, w)φ =

{

(vα,w0) for w = w0

(v, w) for w 6= w0

We will show that φ preserves the colors in G. Let e = {x, y} be an edge of G.
If none of x, y belongs to V × {w0}, then φ(e) = e, and the claim is obvious. Also,
if both x and y belong to V × {w0}, then the colors of φ(e) and e are the same
(since the colored graph spanned on V × {V0} is a copy of G∗(A) and α ∈ A).

Assume that x ∈ V × {w0}, y /∈ V × {w0}. Then, yφ = y, and for x =
(v, w0), xφ = (vα,w0). By Lemma 2.4, v and vα belong to the same orbit of A.
Consequently, there exists α′ ∈ A such that vα′ = vα. Define φ′ as φ above with α
replaced by α′. Then, φ′ ∈ A ≀ B, and xφ′ = xφ and yφ′ = y = yφ. Therefore the
edges e and eφ = eφ′ have the same color, completing the proof. �

Now, we show that in the remaining cases, whether A ≀ B ∈ GR or not depends
on the number t of orbits of A and on whether the parallel multiple It×B ∈ GR or
not.

Lemma 2.6. If t ≥ 1 is the number of orbits of A, and It×B 6∈ GR and B 6= I2,
then A ≀B 6∈ GR.
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G∗(A)

V

t

G∗(B); W G∗(B); W

G = G∗(A ≀ B) G′ = G∗(B × It)

Figure 1. Corresponding non-vertical edges in G and G′

Proof. Let O1, . . . , Ot be the orbits of A. Let G = G∗(A≀B). Then, G = (V ×W,E)
for some edge function E : P2(V ×W ) → {0, . . . , k − 1}. Assume to the contrary
that A ≀ B ∈ GR. Then, Aut(G) = A ≀ B. We use this fact to construct a graph
G′ = (W × {1, . . . , t}, E′) such that Aut(G′) = It×B, thus contradicting the
assumption that It×B 6∈ GR.

Let Q1, . . . , Qs be the orbits of B, and denote F (r, i, j) = rt2 + it+ j. We define
the edge function E′ as follows.

E′{(w1, i), (w2, j)} =







r if w1 6= w2, and for some v1 ∈ Oi and
v2 ∈ Oj , E{(v1, w1), (v2, w2)} = r,

F (r, i, j) + k if w1 = w2, and w1 ∈ Qr.

First observe that this definition does not depend on the choice of v1 and v2
in the first line. Indeed, this is so, since for fixed w1 and w2, the colors of edges
{(v1, w1), (v2, w2)} in G are determined by orbits to which v1 and v2 belong. Thus,
E′ is well-defined.

The construction is presented schematically in Figure 1. The graphG =G∗(A≀B)
on the left was discussed earlier. The graph G′, on the right, is presented as t copies
of (B,W ) put horizontally. The figure shows that the points on vertical lines in G′

correspond to the orbits on vertical lines in G. The colors of the vertical edges in
G′ are given by the second line of the formula for E′.

The colors of non-vertical edges in G′ are determined by the colors of the corre-
sponding non-vertical edges in G. We make use of the fact that two orbits O and
Q in various copies of A in G all the edges joining O and Q have the same color.
In other words, the non-vertical edges in G′ are obtained from the corresponding
non-vertical edges in G just by collapsing orbits of A to points.

Note that the value F (r, i, j) + k is always greater than the value r in the first
line of the definition of E′, which means that the colors of vertical edges are always
different than the colors of non-vertical edges. Moreover, since for different triples
(i, j, r) the values of F (r, i, j)+k are different, it means that different vertical edges
in G′, say {(w1, i1), (w1, j1)} and {(w2, i2), (w2, j2)}, have different colors unless w1

and w2 are in the same orbit of B, i1 = i2, and j1 = j2.
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We show that It×B = Aut(G′). Let φ ∈ It×B. We show that φ preserves the
edge colors in G′. Indeed, we have (w, i)φ = (wβ, i) for some β ∈ B (for any any w
and i). If w1 6= w2, then w1β 6= w2β, and

{(w1, i), (w2, j)}φ = {(w1β, i), (w2β, j)},

which by definition of E′ has the same color r as {(w1, i), (w2, j)}. In turn,

{(w, i), (w, j)}φ = {(wβ, i), (wβ, j)},

has the same color as {(w, i), (w, j)}, since wβ is in the same orbit as w. Conse-
quently, It×B ⊆ Aut(G

′).
For the opposite inclusion, assume now that φ ∈ Aut(G′). By the remarks

following the definition of E′ (and since B 6= I2), φ preserves the partition into sets
of the form {(w, i) : i = 1, . . . , t} (columns of G′) and fixes each set of the form
{(w, i) : w ∈ B} (rows of G′). This means that φ ∈ SW × It, and is of the form
(w, i)φ = (wγ, i), for some permutation γ of W . Since φ preserves the colors of
non-vertical edges in G′ (that by the definition of E′, are obtained by collapsing
orbits in A in G to single points), the permutation (v, w)φ′ = (v, wγ) preserves the
colors of edges in G. Hence, φ′ ∈ A ≀ B, and consequently γ ∈ B. This proves
It×B ⊇ Aut(G

′), and completes the proof. �

Lemma 2.7. Let A ∈ GR ∪ {I2}. If A has t ≥ 1 orbits, and It×B ∈ GR, then
A ≀ B ∈ GR.

Proof. For t = 1 the result follows by Theorem 2.3. If A = I2, then A ≀B = I2 ≀B =
I2×B and the statement is trivial. In the remaining part of the proof, we assume
that A ∈ GR and t ≥ 2.

The proof is in a sense the converse of the previous proof. Now, we construct a
colored graph G = (V ×W,E) such that Aut(G) = A ≀B using a graph G′ such that
Aut(G′) = It×B and a graph G′′ such that Aut(G′′) = A. For non-vertical edges
in G we take colors of the corresponding non-vertical in G′ (as in Figure 1). For
vertical edges, the vertical lines in G are just the copies of G′′, yet we take copies
with different coloring for different orbits of B. The formal definition is as follows.

Let E′ and E′′ be color functions for graphs G′ and G′′, respectively. Let k be
the maximum of the number of colors used in G′ and in G′′.

Let O1, . . . , Ot be the orbits of A.
We define a graph G such that Aut(G) = A ≀B.

E{(v1, w1), (v2, w2)} =







E′{(w1, i), (w2, j)} if w1 6= w2, and v1 ∈ Oi

and v2 ∈ Oj ,
E′′{v1, v2}+ kr if w1 = w2, and w2 ∈ Qr.

We show that A ≀ B = Aut(G). First suppose that φ ∈ Aut(G). Since the
colors of vertical edges are different from the colors of the remaining edges, f
preserves the partition into vertical lines. It follows that (v, w)φ = (vαw, wβ) for
some permutations αw of V and some permutation β of W . We need to show that
αw ∈ A and β ∈ B.

Since, for a fixed w, φ preserve the colors of the edges of the form {(v1, w), (v2, w)},
it follows that

E{(v1, w), (v2, w)} = E{(v1αw, wβ), (v2αw, wβ)}.
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Consequently, E′′(v1, v2) = E′′(v1αw, v2αw), which means that αw ∈ A. The same
argument for non-vertical edges yields

E{(v1, w1), (v2, w2)} = E{(v1αw1
, w1β), (v2αw2

, w2β)}.

Since, w1β 6= w2β, and v1αw1
is in the same orbit Oi of A as v1, while v2αw2

is in
the same orbit Oj of A as v2, we get

E′{(w1, i), (w2, j)} = E′{(w1β, i), (w2β, j)},

for all i, j. It follows that the permutation ψ on the set W × {1, . . . , t} given by
(w, i)ψ = (wβ, i) preserves the colors of G′. Hence, β ∈ B. This proves that
φ ∈ A ≀ B, and consequently, Aut(G) ⊆ A ≀B.

For the converse, assume that f ∈ A ≀B. It means that (v, w)φ = (vαw , wβ) for
some αw ∈ A and β ∈ B. We show that φ preserves the colors of the edges in G.
First consider the vertical edges, i.e. those of the form e = {(v1, w), (v2, w)}. It
follows that

E(eφ) = E{(v1αw, wβ), (v2αw, wβ)} = E′′{v1αw, v2αw}+ kr,

where Or is the orbit of B containing wβ and w. Since E′′{v1αw, v2αw} =
E′′{v1, v2}, we infer that E(eφ) = E(e), as required. For non-vertical edges
e = {(v1, w1), (v2, w2)} with w1 6= w2 (and with v1 ∈ Oi and v2 ∈ Oj) we have

E(eφ) = E{(v1αw1
, w1β), (v2αw2

, w2β)} =

E′{(w1β, i), (w2β, j)} = E′{(w1, i), (w2, j)} = E(e),

which shows that φ preserves the colors of G. It follows that Aut(G) ⊇ A ≀ B,
completing the proof. �

To summarize the results of this section, we make use of the following nice
characterization

Proposition 2.8. [5, Corollary 3.7] For any permutation group B and t > 1, we
have It×B ∈ GR if and only if B ∈ DGR.

Combining the above with the lemmas proved in this section we get the following.

Theorem 2.9. Let A and B be permutation groups. Then, A ≀B ∈ GR if and only

if A ∈ GR ∪ {I2} and one of the following holds.

(1) B ∈ GR ∪ {I2}, or
(2) B ∈ DGR \ (GR ∪ {I2}) and A is intransitive.

Proof. The “if” part follows directly form Lemmas 2.7 combined with Proposi-
tion 2.8. For the “only if” part we use Lemmas 2.5 and 2.6. The only unsettled
case by these lemmas is A ≀ I2. Here we apply [8, Lemma 3.1] and the fact that
A ≀ I2 = A ⊕ A. This yields that A ≀ I2 ∈ GR if and only if A ∈ GR ∪ {I2}, and
completes the proof of the theorem. �

All the proofs in this section may be easily modified to the case of colored directed
graphs. The situation is in fact simpler, and some parts of the proof are void. As
a result we obtain the following.

Theorem 2.10. Let A and B be permutation groups. Then A ≀ B ∈ DGR if and

only if both A,B ∈ DGR.
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3. Product action of the wreath product

Now we study the action of the wreath product on the set VW of functions
from a set W to a set V , refereed to as the product action. We consider the pairs
(β, (αw)w∈W ), where β ∈ SW and (αw)w∈W is a family of permutations in SV

indexed by elements of W . For any such pair we define a permutation φ of the set
VW given by the formula

(2) (fφ)(w) = (f(wβ))αw ,

for any f ∈ VW and any w ∈W .
Given two permutation groups (A, V ) and (B,W ), by (A ≀≀B) we denote the

permutation group consisting of all permutations φ of the set VW defined by the
formula (2) with β ∈ B and αw ∈ A for all w ∈ W . We note that our notation
here is somewhat nonstandard: we use A ≀ B and A ≀≀B to denote two different
permutations groups (sets of permutations) obtained from A and B, corresponding
to two different actions of the abstract wreath product.

A standard way to visualize A ≀≀B is to think about elements being permuted as
functions from VW (or, in other words, global sections containing one point from
each fibre) (see Figure 2; cf. Cameron [2, p. 103]). In case, when |W | = n is finite,
one can think about n-tuples of elements of V , with coordinates permuted by β,
and at each coordinate permuted independently by permutations αw (permutations
of axes and independent permutations along axes).

It should be clear, that formula (2) above defines, in general, a one-to-one map-
ping from the set of pairs (β, (αw)w∈W ), where β ∈ SW and (αw)w∈W is a family
of permutations aw ∈ SV , to the set of permutations φ of VW . This follows easily
from the well-known fact that the product action of the wreath product SV ≀≀SW is
faithful. We will need a simple consequence of this

Lemma 3.1. If β is a permutation of W not in B, or one of αw is a permutation

of V not in A, then φ given by (2) does not belong to A ≀≀B.

The graph G = G∗(A ≀≀B) is much more complex than G∗(A ≀B). We make only
a few remarks. First, we may partition the edges of G into |W | classes. For each
cardinal 1 ≤ i ≤ |W |, we define the class Ri as consisting of those edges (f, g) of G
in which the values of the functions f and g differ at exactly i points. It is clear,
that any permutation φ ∈ A ≀≀B preserves the partition into the classes Ri. The
class R1 may be viewed as the edges parallel to one of the axes of the coordinate
system. In turn, R2 may be viewed as edges contained in planes, not on lines, etc.
One may observe that all lines parallel to one of the axes in G = G∗(A ≀≀B) contains
copies of G∗(A) whose colors depend on orbits of B. Generally, colors of other edges
depend on actions of B on functions whose values are orbits and orbitals of A.

Even in case of transitive groups A and B the construction is complex and there
is no counterpart of Theorem 2.2. Yet, using just the properties of the Galois
connection we may prove, at least, the following useful fact.

Lemma 3.2.

A ≀≀B ⊆ A ≀≀B.

Proof. We use the properties of the Galois connection. We need to prove that
Aut(G∗(A ≀≀B)) ⊆ A ≀≀B. This holds if and only ifG∗(Aut(G∗(A ≀≀B))) � G∗(A ≀≀B).
The first term is equal to G∗(A ≀≀B). Thus, we need to prove that G∗(A ≀≀B) �
G∗(A ≀≀B). The latter follows by the obvious fact that A ≀≀B ⊆ A ≀≀B. �
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V

W

f

g

Figure 2. An edge in G∗(A ≀≀B) of the class R2 represented by
a pair of functions {f, g} differing at exactly 2 points

In [7], the following is proved.

Theorem 3.3. If A,B ∈ GR, then A ≀≀B ∈ GR.

The proof in [7] is only for finite permutation groups, but the part concerning
the result formulated above generalizes easily to infinite groups.

Similarly as in the previous section we have the following

Lemma 3.4. If A /∈ DGR, then A ≀≀B /∈ GR.

Proof. Let G = G∗(A ≀≀B). Similarly as in Lemma 2.5, we need to show that there

exists φ ∈ Aut(G)\(A ≀≀B). Since A /∈ DGR, there exists a permutation α ∈
←−
A \A.

We fix an element w0 ∈W and define f as follows

(fφ)(w) =

{

(f(w))α if w = w0,
f(w) otherwise,

for any w ∈ W . Thus φ acts almost as the identity modifying f only for the value
in w = w0.

First observe that, by Lemma 3.1, φ /∈ A ≀≀B, as required. We proceed to show
that φ preserves the colors of G. Let {f, g} be an edge of G. Then, {f, g}φ =
{fφ, gφ}, and we need to deal with the values f(w0) and g(w0).

We distinguish two cases. If f(w0) 6= g(w0), then (f(w0), g(w0)) is a directed
edge in G(A). Since α preserves orbitals of A, this edge has the same color in G(A)
as (f(w0)α, f(w0)α).

It follows that there exists α′ ∈ A moving the directed edge (f(w0), g(w0)) into
(f(w0)α, g(w0)α). Consequently, f(w0)α

′ = f(w0)α and g(w0)α
′ = g(w0)α. Now,

the permutation f ′ given by

(fφ′)(w) =

{

(f(w))α′ if w = w0,
f(w) otherwise,

for any w ∈ W , belongs to A ≀≀B (since it is of the form (2)). We have fφ = fφ′

and gφ = gφ′. Consequently, {f, g}φ = {f, g}φ′. The latter has the same color
in G∗ as {f, g}, since φ′ preserves the colors of edges. Thus, {f, g}φ has the same
color as {f, g}, as required.
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For the second case, if f(w0) = g(w0), then by Lemma 2.4, there exists α′ ∈ A
such that f(w0)α

′ = f(w0)α, and in consequence, g(w0)α
′ = g(w0)α. The rest of

the argument is the same as in the first case. �

Now, the situation is more complicated than in the case of imprimitive action
of the wreath product. We need a new notion. Given a permutation group (A, V ),
we will say that a permutation α of V transposes orbitals of A, if for every orbital
O of A, Oα is the orbital paired with O. In such a case we say also that A has
transposable orbitals. Obviously, such a permutation α belongs to A. Moreover, if
A has at least one orbital that is not self-paired, then α /∈ A.

Note also, that in case when all orbitals of A are self-paired each α ∈ A transposes
orbitals of A. In this case A ∈ DGR implies A ∈ GR.

Lemma 3.5. Let A ∈ DGR \ (GR ∪ {I2}). If A has transposable orbitals, then

A ≀≀B /∈ GR.

Proof. The proof is similar to the previous one. Let G = G∗(A ≀≀B). We need to
show that there exists φ ∈ Aut(G) \ A ≀≀B. Let α transposes orbitals of A. Then,
since A /∈ GR, α /∈ A. We define φ as (fφ)(w) = (f(w))α, for any w ∈ W .

First observe that, by Lemma 3.1, φ /∈ A ≀≀B. Thus, it remains to show that
φ preserves the colors of G. Let {f, g} be an edge of G. Since α transposes
orbitals of A, for every w ∈ W , the directed edge (f(w), g(w))α is in the same
orbital of A as (g(w), f(w)) (under assumption that f(w) 6= g(w)). Consequently,
(f(w)α, g(w)α) = (g(w)αw , f(w)αw) for some αw ∈ A. If f(w) = g(w), then by
Lemma 2.4, f(w)α = f(w)αw for some αw ∈ A.

Hence, for the permutation φ′ given by (f(w))φ′ = f(w)αw , for any w ∈ W , we
have {f, g}φ = {fφ, gφ} = {gφ′, fφ′} = {f, g}φ′. The latter has the same color in
G as {f, g}, since φ′ ∈ A ≀≀B. Thus, {f, g}φ has the same color as {f, g}, which
completes the proof. �

Let us observe that the conclusion of the lemma does not hold (in general) for
A ∈ GR∪{I2}, since we know, by Theorem 3.3, that if B ∈ GR, then A ≀≀B ∈ GR.
Similar situation is for A = I2. Note that I2 ∈ DGR and it has transposable
orbitals, but as we will see, sometimes I2 ≀≀B ∈ GR, and sometimes not.

Thus, it remains to consider the cases when A ∈ DGR and either no α transposes
orbitals of A or A ∈ GR or A = I2. We proceed to show that in all these cases
A ≀≀B = A ≀≀B′ for some B′. The case A = I2 requires a separate proof.

Lemma 3.6. For any permutation group B

I2 ≀≀B ⊆ I2 ≀≀B.

In particular, if B ∈ GR, then I2 ≀≀B ∈ GR .

Proof. The elements of I2 ≀≀B are functions from W to a 2-element set V , say
V = {0, 1}. Let R be the class of the edges {f, g} in G = G∗(I2 ≀≀B), for which
f(w) = g(w) = 0 except for one point w, in which f(w) 6= g(w). We note that R
is invariant with regard to elements of I2 ≀≀B. This means that, in G∗(I2 ≀≀B), the
edges in R have a color different from that of any edge not in R. By Lemma 3.2,
the elements φ of Aut(G) have the form (2). If any αw in the definition of φ was
a transposition, then for any element of R with f(w) = g(w) = 0 we would have
(fφ)(w) = (gφ)(w) = 1, which means that φ does not preserve the colors of edges,

and contradict the fact φ ∈ Aut(G). Hence, I2 ≀≀B ⊆ I2 ≀≀B, as required.
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Figure 3. The edge {f, g} in the proof of Lemma 3.7 (solid lines)
and its image {f, g}φ = {f ′, g′} (dashed lines).

For the second statement we use the fact that B ∈ GR if and only if B = B. �

We generalize the above lemma for the whole class in question.

Lemma 3.7. Let A ∈ DGR. If no permutation α transposes orbitals of A or A ∈
GR∪ {I2}, then A ≀≀B ⊆ A ≀≀B. In particular, A ≀≀B = A ≀≀B′ for some permutation

group B′ with B ⊆ B′ ⊆ B.

Proof. We prove the first claim. For A = I2 the claim is already proved in the
lemma above. If G ∈ GR, then the claim is immediate by Lemma 3.2. So we may
assume that no permutation α transposes orbitals of A.

Let G = G∗(A ≀≀SW ). In view of Lemma 3.2, it is enough to show that Aut(G) ⊆
A ≀≀SW . By the same lemma, we know that the elements φ ∈ Aut(G) are of the
form (2). Assume to the contrary that for some φ ∈ Aut(G), we have αw1

/∈ A for
some w1 ∈ W . Again, by Lemma 3.2, we have that αw1

∈ A.
We may assume also that β in φ is the identity, that is, β = id. This is so, since

any permutation of the form (2) with all αw equal to the identity is in A ≀≀SW , and
thus in Aut(G), and one may compose φ with a suitable permutation of this form
to get id in place of β.

Denote α1 = αw1
. Since α1 ∈ A \ A, there exist paired orbitals O,O′ of A,

O 6= O′, and (x, y) ∈ O such that (xα1, yα1) ∈ O
′. Since (y, x) ∈ O′ there exists

α′ ∈ A such that (xα1α
′, yα1α

′) = (y, x). Replacing α1 by α1α
′ we may assume

that (xα1, yα1) = (y, x). Then we still have φ ∈ Aut(G) and αw1
= α1 /∈ A.

In turn, fix w2 ∈ W such that w2 6= w1. Denote α2 = αw2
. Since α2 ∈ Aut(G),

there exist paired orbitals Q,Q′ of A, Q 6= Q′, and (s, t) ∈ Q such that (sα2, tα2) ∈
Q. Otherwise, α2 transposes orbitals of A, contrary to the assumption. Now, since
(s, t) ∈ Q there exists α′′ ∈ A such that (sα2α

′′, tα2α
′′) = (s, t). Again, replacing

α2 by α2α
′′ we may assume that (sα2, tα2) = (s, t). The φ modified in such a way

still belongs to Aut(G).
Now, we define two edges in G. For the first edge {f, g} we put f(w1) = x,

f(w2) = s, g(w1) = y, g(w2) = t and f(w) = g(w) = v0, otherwise, for some fixed
v0 ∈ V . For the second edge {f ′, g′} we put f ′(w1) = x, f ′(w2) = t, g′(w1) = y,
g′(w2) = s and f ′(w) = g′(w) = v0φ, otherwise (see Figure 3). This and properties
of α1 and α2 guarantee that {f, g}φ = {f ′, g′}. Since φ ∈ Aut(G), the edges have
the same color.
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Consequently, there exists a permutation ψ ∈ A ≀≀SW such that {f, g}ψ =
{f ′, g′}. We show that this leads to a contradiction. Let (β′, (α′

w)w∈W ) be the
pair defining ψ as in (2). Then we have either fψ = f ′ and gψ = g′ or fψ = g′

and gψ = f ′. In the first case we have (xα1, sα2) = (x, t) and (yα1, tα2) = (y, s).
This implies (s, t)α2 = (t, s), which contradicts the fact that Q is not self-paired.
In the second case we have (xα1, sα2) = (y, s) and (yα1, tα2) = (x, t). This im-
plies (x, y)α1 = (y, x), which contradicts the fact that O is not self-paired. This
completes the proof.

This proves the first statement. Combining it with Lemma 3.2, we obtain
Aut(G) ⊆ A ≀≀B, and since the set of β such that there exists φ ∈ Aut(G) de-
termined by (2) forms a subgroup B′ of B, we obtain Aut(G) ⊆ (A ≀≀B′).

Now, for any β′ ∈ B′, there exists φ ∈ Aut(G) of the form (2) with β = β′

and αw ∈ A (since Aut(G) ⊆ A ≀≀B). It follows that the permutation φ′ with
β = β′ and all αw = id is in Aut(G) (since φ′′ with β′ replaced by id is in Aut(G)).
Consequently, any permutation of the form (2) with all αw ∈ A and β ∈ B′ belongs

to Aut(G). This implies that A ≀≀B = A ≀≀B′, proving the second statement. �

A simple consequence of the lemma above, is that if in addition B ∈ GR, then
A ≀≀B ∈ GR. We show that, using this lemma, GR in the condition B ∈ GR may be
replaced by a larger class BGR of the automorphism groups of colored hypergraphs.

Formally, by a colored hypergraph H we mean a pair H = (V,E), where V is
the set of vertices of H , with |V | > 1, and E the color function from the set P (V )
of nonempty subsets of V into the set of colors {0, . . . , k − 1}. An automorphism
of a colored hypergraph H = (V,E) is a permutation σ of the set V such that its
extension on P (V ) preserves the colors of subsets. The automorphisms of H form
a permutation group on V , which is denoted by Aut(H). In case of finite V , it may
be visualized as the automorphism group of a colored symplex.

This group can be expressed also in terms of the the invariant groups of systems of
unordered relations (cf. [22]) or the symmetry groups of k-valued boolean functions
(cf. [15]). Our notation BGR follows [6] and refers to the term ,,Boolean” (in [22]
they are called orbit closed groups).

The lemma below interestingly connects the classes BGR and GR, studied sep-
arately so far.

Lemma 3.8. Let A ∈ DGR. If there is no permutation transposing orbitals of A
or A ∈ GR ∪ {I2}, then B ∈ BGR implies that A ≀≀B ∈ GR.

Proof. We need to show that A ≀≀B = A ≀≀B. By Lemma 3.7, A ≀≀B = A ≀≀B′ with
B ⊆ B′. Thus we need to show that B′ \B is empty. Assume to the contrary that
there exists γ ∈ B′ \B.

Since B ∈ BGR, there exists a colored hypergraph H with Aut(H) = B. Since
γ /∈ B, there are two nonempty sets X,Y ⊆ V whose colors in H are different, and
Xγ = Y .

We define three functions f, fX and fY belonging to VW . Let v0 6= v1 be two
fixed vertices of V . We define f by f(w) = v0 for all w ∈ W . For fX we put
fX(w) = v0 if w ∈ X , and fX(w) = v1, otherwise. And similarly, fY (w) = v0 if
w ∈ Y , and fY (w) = v1, otherwise.

Consider the edge e = {f, fX} in G∗(A ≀≀B). We will use the permutation φγ
given by (2) with β = γ and αw = id for all w ∈ W . Since γ ∈ B′, φγ ∈ A ≀≀B.
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Consequently, the edge eφγ has the same color in G∗(A ≀≀B) as e. Therefore, there
exist a permutation φ ∈ A ≀≀B of the form (2) such that eφγ = eφ.

Note that, by definition, eφγ = {f, fX}φγ = {f, fY }. Hence, either fφ = f and
fXφ = fY or fφ = fY and fXφ = f .

In the first case, it follows (from the first equation) that w0αw = w0 for all
w ∈ W , and then (from the second equation) that Xβ = Y . This contradicts the
fact that X and Y have different colors in H (since β ∈ Aut(H)). The second case
is possible only in the case when Xβ = Y , which gives the same contradiction and
completes the proof. �

There is at least one case when the condition B ∈ BGR in the lemma above is
necessary.

Proposition 3.9. The product SV ≀≀B ∈ GR if and only if B ∈ BGR.

Proof. The “if” part is proved in Lemma 3.8. For the “only if” part, we assume,
to the contrary that B /∈ BGR and SV ≀≀B = SV ≀≀B.

Given a subset X ⊆W , let RX be the class of all edges {f, g} in G∗(SV ≀≀B) such
that f and g differ at exactly the points of X . Obviously, all edges in this class are
in the same 2∗-orbital of SV ≀≀B. In fact, the 2∗-orbitals of SV ≀≀B are the unions of
classes RX such that RX and RY are in the same 2∗-orbital if and only if Y = Xβ
for some β ∈ B. Consequently, any permutation φ of the form (2) with β preserving
the orbits of B on the subsets of W belongs to SV ≀≀B. Since B /∈ BGR, there is
β ∈ SV \ B that preserves all orbits of B in this action. Hence, the corresponding
φ ∈ SV ≀≀B, but φ /∈ SV ≀≀B, which contradicts our assumption. �

In general, a sufficient condition for A ≀≀B to belong to GR is for A to have a
large enough the number of orbitals comparing with the cardinality of W . Let us
recall that for a transitive group A the rank of A, denoted rank(A), is the number
of orbits in the stabilizer of any point in A, which is equal to the number of orbitals.
The latter allows to generalize this notion to intransitive groups. Thus, in general,
by rank(A) we denote the number of orbitals of A. Note, that this is equal to the
number of nontrivial orbitals plus the number orbits of A.

Lemma 3.10. Let B ⊆ Sn, A ∈ DGR, and assume that either no permutation

transposes orbitals of A or A ∈ GR ∪ {I2}. If rank(A) ≥ n + 1 or rank(A) = n
and all orbitals of A are self-paired, then A ≀≀B ∈ GR.

Proof. By Lemma 3.7, A ≀≀B = A ≀≀B′ for some B′ ⊇ B. We need to show that
B′ = B.

Our general idea is to define a set E of edges e = {f, g} in G = G∗(A ≀≀B), which
is regular (in a sense of [22]) with regard to action of Sn on W . This would imply
that the only permutations in Sn preserving the colors of the edges in E are those
corresponding to action of B.

Later in this proof we use notation β = φ[W ] to specify the permutation of W
defining the permutation φ of VW by the formula (2).

Let E be the set of edges e = {f, g} in in G = G∗(A ≀≀B) satisfying the following
two conditions:

(a) there are k points wi ∈ W at which f(wi) = g(wi), and if i 6= j, then f(wi)
and f(wj) are in different orbits of A,

(b) there are n − k points ui ∈ W at which f(ui) 6= g(ui), and if i 6= j, then
(f(ui), g(ui)) and (f(uj), g(uj)) are in different (nontrivial) orbitals of A.
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In case when k ≥ n we assume that only conditions (a) holds and only for n points.
Since rank(A) ≥ n, the set E is nonempty.

A crucial property is that all f(wi) in (a) are in different orbits of A, and all
pairs (f(ui), g(ui)) in (b) are in different orbitals of A. By this property, it follows
that if φ ∈ A ≀≀B and e ∈ E, then eφ ∈ E. We establish the properties of those
permutations φ ∈ A ≀≀Sn that fix edges in E.

Let e ∈ E and e = eφ for some φ ∈ A ≀≀Sn. As {f, g}φ = {f, g}, we have either
Case (i): fφ = f and gφ = g, or
Case (ii): fφ = g and gφ = f .
In Case (i), by the crucial property mentioned above, β must fix all w ∈ W , that

is β = id is the identity.
In Case (ii), β fixes all wi of (a) and all uj of (b) with the property that

(f(ui), g(ui)) belongs to a self-paired orbital (then αui
in φ transposes f(ui) and

g(ui)). If (f(ui), g(ui)) is in an orbital O of A that is not self-paired, then β must
transpose ui and uj , where (f(uj), g(uj)) is in the orbital of A paired with O. This
case is possible only if for every O represented by a pair (f(ui), g(ui)) in (b), also
the orbital O′ paired with O is represented in (b) by a pair (f(uj), g(uj)). Then,
β is the product of transpositions of pairs (ui, uj) corresponding to pairs of non-
self-paired orbitals represented in (b). If all orbitals of A are self-paired, we have
again, as in Case (i), that β must be the identity.

In case when rank(A) ≥ n+ 1 and a non-self-paired orbital O is represented in
(b) by a pair (f(ui), g(ui)), we may assume that we choose points ui in E in such
a way, that there is no pair (f(uj), g(uj)) in (b) belonging to the orbital O′ paired
with O. Then, Case (ii) is excluded, and it follows that, in any case we consider,
e = eφ implies that β = id.

Now, let e = {f, g} be a fixed edge of the set E as specified above, and φ be
an arbitrary permutation in A ≀≀B = A ≀≀B′. Thus, β = φ[W ] ∈ B′. All we need
to show is that β ∈ B. By the assumption, φ preserves the colors of the edges in
G = G∗(A ≀≀B). Hence, there exists φ′ ∈ A ≀≀B such that eφ = eφ′. Let β′ = φ′[W ].
We infer that e = eφ′φ−1. Since (φ′φ−1)[W ] = β′β−1, by what we have established
above, β′β−1 = id, and consequently, β = β′ ∈ B, as required. �

We note that the proof holds for arbitrary cardinals rank(A) and n, as well.
On the other hand, if n is large enough comparing with rank(A), then A ≀≀B may
not belong to GR. We settle the case when B = An is the alternating group on
n elements. This depends on the number of pairs of non-self-paired orbitals in A.
Denote this number by nsp(A).

Lemma 3.11. Let A ∈ DGR, and either no permutation transposes orbitals of A
or A ∈ GR ∪ {I2}. If rank(A) = n and nsp(A) is even, then A ≀≀An ∈ GR.

Proof. We continue the proof of the previous lemma with B = An. The only
difference is that now Case (ii) is not excluded, and in last line, where we consider
the product β′β−1, we need to take into consideration that, according to in Case (ii),
β′β−1 = τ is the product of transpositions of pairs (ui, uj) corresponding to pairs
of non-self-paired orbitals represented in (b). Then we have β = β′τ−1, and since
nsf(A) is even, τ ∈ An, and consequently, β ∈ An, as required. �

Lemma 3.12. If rank(A) < n or rank(A) = n and nsp(A) is odd, then A ≀≀An /∈
GR.
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Proof. It is enough to show that A ≀≀An ⊇ A ≀≀Sn. To this end, for any edge e =
{f, g} in G∗(A ≀≀An) and any permutation φ ∈ A ≀≀Sn we need to show that there
exists a permutation φ′ ∈ A ≀≀An such that if eφ = eφ′. Let φ be of the form (2). If
β ∈ An, we are done. So, assume that β ∈ Sn \An.

Consider the first case with n > rank(A). Then, there exists w1, w2 ∈ W such
that either f(w1) = g(w1) is in the same orbit as f(w2) = g(w2) or (f(w1), g(w1))
and (f(w2), g(w2)) are in the same orbital. Let α ∈ A be such that f(w1)α = f(w2),
in the first case, or (f(w1), g(w1))α = (f(w2), g(w2)), in the second case.

Let τ = (w1, w2) denote the transposition of w1 and w2. Define β′ = τβ. Then,
clearly, β′ ∈ An. Identify β

′ with the permutation of VW acting only as permuting
fibres, and let α be identified with the permutation of VW with α acting solely on
the fiber w2. Define φ′ as αβ′α−1φ. Then, obviously, fφ = fφ′ and gφ = gφ′ and
consequently, eφ = eφ′, as required.

In the second case, rank(A) = n and nsp(A) is odd, we have either the situation
as above (then the claim is proved) or the situation is as in the proof of Lemma 3.10
with all f(wi) in different orbits and all pairs (f(ui), g(ui)) in different orbitals.
Then, there exist a permutation τ being the product of transpositions of pairs
(ui, uj) corresponding to pairs of non-self-paired orbitals such that eφτ = e (as
before, by φτ we denote the corresponding permutation of the form (2) with β = τ
and all αw = id). Since nsp(A) is odd, τ /∈ An. Consequently, since β ∈ Sn \ An,
τβ ∈ An. Hence, φ′ = φτφ ∈ A ≀≀An. We have eφ′ = eφτφ = eφ, which completes
the proof. �

We summarize the results of this chapter. Let DGR+ denotes the class of per-
mutation groups A ∈ DGR such that either A has not transposable orbitals or
A ∈ GR ∪ {I2}. The most complete result of this section is

Theorem 3.13. If a permutation group B ∈ BGR, then for any permutation group

A, the product A ≀≀B ∈ GR if and only if A ∈ DGR+.

This follows from Lemmas 3.4, 3.5 and 3.8. In case of directed graphs the
same proofs apply when considering only the cases with the assumption that no
permutation transposes orbitals of the group in question. This yields the following.

Theorem 3.14. If a permutation group B ∈ BGR, then for any permutation group

A, the product A ≀≀B ∈ DGR if and only if A ∈ DGR.

For B /∈ BGR we have only the following partial result.

Theorem 3.15. Let (A, V ) and (B,W ) be permutation groups. If (B,W ) /∈ BGR,
then the following hold:

(1) If A /∈ DGR+, then A ≀≀B /∈ GR;
(2) If A ∈ DGR+, and either rank(A) ≥ |W | + 1 or rank(A) = |W | and all

orbitals of A are self-paired, then A ≀≀B ∈ GR.

In addition, we have the full characterization in the cases when A = SV (Proposi-
tion 3.9) or B = An. By Lemmas 3.10, 3.11 and 3.12 we get (with nsp(A) denoting
the number of pairs of non-self-paired orbitals of A):

Proposition 3.16. The product A ≀≀An ∈ GR if and only if A ∈ DGR+ and one

of the following holds

(1) rank(A) ≥ n+ 1, or
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(2) rank(A) = n and nsp(A) is even.

The above results hold for ininite groups and infinite cardinals n, as well. In
case of directed graphs the situation is now more complicated. Our proofs may
be easily modified to obtain analogous results in case of Lemma 3.4, Lemma 3.7,
and Proposition 3.9. For other results, the main problem is that the counterpart of
Theorem 3.3 does not hold. The counterexample is given in the next section.

4. Concluding remarks and open problems

The main open problem raised by this paper is, as we have already mentioned, to
complete the characterization in Theorem 3.15. In view of the consideration in the
previous section, this problem seems rather hard and may lead to many technical
conditions. A more approachable, and a good starting point seems the following.

Problem 1. Characterize those permutation groups B for which the product
Ik ≀≀B ∈ GR.

This may be connected with the problem of a characterization of the class BGR.
In fact, we have very little examples of permutation groups not in BGR, i.e., those
that are not the automorphism groups of colored hypergraphs. The well-known
examples are the alternating groups An for n ≥ 3 and C4 and C5 (see [6]). A few
further examples of exceptional character are primitive groups given in [20] (cf. [22,
Theorem 2.6]) (in the terminology applied therein they are not orbit closed). Using
these examples one can construct further examples via various product operations.
Yet, no characterization of BGR is known.

Although the group C3 /∈ BGR, it belongs to DGR, and this exceptional prop-
erty is used to construct a counterexample mentioned in the previous section. One
may check directly that the group C2 ≀≀C3 is neither in DGR nor in BGR. In
particular, we have that C2, C3 ∈ DGR, which shows that the counterpart of The-
orem 3.3 for DGR does not hold. Generally, one can prove that SV ≀≀Cm /∈ DGR
for any m = 3, 4, 5.

The groups C3, C4, C5 are exceptional in that all they belong to DGR \ BGR.
One may construct more such examples using, again, various product operations,
but we do not know any other transitive example not involving Ci for i = 3, 4, 5.

Problem 2. Is there any primitive permutation group A ∈ DGR, other than
C3 and C5, that does not belong to BGR?

It is a good place to comment on Section 5 in [22] entitled “Wreath products”. We
need to note that Theorem 5.1 (saying that if A,B ∈ BGR, then A ≀B ∈ BGR, and
if B /∈ BGR, then A ≀B /∈ BGR) has been proved much earlier in [3, Theorem 15],
and in more general form in [15, Theorems 5.3 and 5.4]. Moreover, Corollary 5.3 in
this section, giving via the wreath product an infinite number of examples of groups
in BGR that are not relation groups (meaning: are not the automorphism groups
of hypergraphs) is false. Given as an example the group L ≀ C3 is not orbit closed
(here and above we use our notation, reverse to that in [22]). The method suggested
in the proof of this corollary yields on other good example. So the problem below,
posed in [15] (after discovering that [3, Theorem 13] is false) remains still open.

First, recall that the Klein 4-group K4 ⊆ S2 ≀ S2 can be easily seen to be the
automorphism group of a 3-colored hypergraph, but it is also easy to see that it is
not the automorphism group of any (uncolored) hypergraph (cf. [15]).
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Problem 2. Is there any example of a permutation group G ∈ BGR, other than
G = K4, that is not the automorphism group of any (uncolored) hypergraph?
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