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Abstract

In this article, we extend Moon’s classic formula for counting spanning trees in complete graphs

containing a fixed spanning forest to complete bipartite graphs. Let (X,Y ) be the bipartition

of the complete bipartite graph Km,n with |X| = m and |Y | = n. We prove that for any given

spanning forest F of Km,n with components T1, T2, . . . , Tk, the number of spanning trees in Km,n

which contain all edges in F is equal to

1

mn

(

k
∏

i=1

(min+ nim)

)(

1−
k
∑

i=1

mini

min+ nim

)

,

where mi = |V (Ti) ∩X| and ni = |V (Ti) ∩ Y | for i = 1, 2, . . . , k.
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1 Introduction

In this paper, we assume that all graphs are loopless, while parallel edges are allowed. For any graph

G, let V (G) and E(G) be the vertex set and edge set of G. For any edge set F ⊆ E(G), let G/F be

the graph obtained from G by contracting all edges in F , and removing all loops. Let T (G) denote

the set of spanning trees of G. For any positive integer k, let JkK denote the set {1, 2, · · · , k}.

Suppose G is a weighted graph with weight function ω : E(G) → R. For any F ⊆ E(G) and

any subgraph H of G, define ω(F ) =
∏

e∈F

ω(e) and ω(H) = ω(E(H)). Let τ(G,ω) =
∑

T∈T (G)

ω(T ).

Sometimes we use τ(G) instead of τ(G,ω) when there is no confusion. It is obvious that for an

unweighted graph G (that is to say, a weighted graph with unit weight on each edge), τ(G) = |T (G)|,

i.e., the number of spanning trees ofG. Throughout this paper, any graph is assumed to be unweighted,

unless it is claimed.

Counting spanning trees in graphs is a very old topic in graph theory having modern connections

with many other fields in mathematics, statistical physics and theoretical computer science, such as

∗Email: fengming.dong@nie.edu.sg and donggraph@163.com.
†Corresponding author. Email: mathsgejun@163.com.
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random walks, the Ising model and Potts model, network reliability, parking functions, knot/link

determinants. See [2–4, 7, 10] for some recent work on counting spanning trees.

For a subgraph H of G, let TH(G) denote the set of spanning trees T ∈ T (G) with E(H) ⊆ E(T ),

and let τH(G) =
∑

T∈TH(G)

ω(T ). For unweighted graph G, τH(G) = |TH(G)|, i.e., the number of

spanning trees of G containing all edges in H . Note that usually the graph H here is a forest or a

tree, because otherwise TH(G) = ∅ and τH(G) = 0.

The celebrated Cayley’s formula [1] states that τ(Kn) = nn−2. In 1964, Moon generalized Cayley’s

formula by obtaining a nice expression of τF (Kn) for any spanning forest F of Kn.

Theorem 1 ( [9], also see Problem 4.4 in [8]). For any spanning forest F of Kn, if c is the number

of components of F and n1, n2, . . . , nc are the orders of those components, then

τF (Kn) = nc−2
c∏

i=1

ni.

It is easy to see that Cayley’s formula is the special case that F is an empty graph. It is also well

known that τ(Km,n) = mn−1nm−1 for any complete bipartite graph Km,n by Fiedler and Sedláček [5].

So there is a natural question: is there a bipartite analogue of Moon’s formula (Theorem 1)? That is

to say, for any given spanning forest F in Km,n, what is the explicit expression of τF (Km,n)?

It turns out that this question is much harder than the case of complete graphs. In [6], this question

was partially answered for two special cases: F is a matching or a tree plus several possible isolated

vertices.

Theorem 2 ( [6]). For any matching M of size k in Km,n,

τM (Km,n) = (m+ n)k−1(m+ n− k)mn−k−1nm−k−1.

Theorem 3 ( [6]). For any tree T of Km,n,

τT (Km,n) = (sn+ tm− st)mn−t−1nm−s−1,

where s = |V (T ) ∩ X |, t = |V (T ) ∩ Y |, and (X,Y ) is the bipartition of Km,n with |X | = m and

|Y | = n.

In this paper, we obtain an explicit expression for τF (Km,n) for an arbitrary spanning forest F of

Km,n.

Theorem 4. Let (X,Y ) be the bipartition of Km,n with |X | = m and |Y | = n. For any spanning

forest F of Km,n with components T1, T2, . . . , Tk,

τF (Km,n) =
1

mn

(
k∏

i=1

(min+ nim)

)(

1−
k∑

i=1

mini

min+ nim

)

, (1)

where mi = |X ∩ V (Ti)| and ni = |Y ∩ V (Ti)| for all i ∈ JkK.

2 Preliminary results

This section provides some results which will be applied in the next section for proving a key identity.
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Lemma 1. For any set of k pairs of real numbers {ai, bi : i ∈ JkK}, where k ≥ 1, if aiB+ biA 6= 0 for

all i ∈ JkK where A = a1 + a2 + · · ·+ ak and B = b1 + b2 + · · ·+ bk, then

(

1−
k∑

i=1

aibi
aiB + biA

)2

=

(
k∑

i=1

a2i
aiB + biA

)

·

(
k∑

i=1

b2i
aiB + biA

)

. (2)

Proof. Since aiB + biA 6= 0, A and B cannot both be 0.

When A = 0 and B 6= 0, equality (2) holds because

(

1−
k∑

i=1

aibi
aiB + biA

)2

=

(

1−
k∑

i=1

bi
B

)2

= 0,

and (
k∑

i=1

a2i
aiB + biA

)

·

(
k∑

i=1

b2i
aiB + biA

)

=
A

B
·

k∑

i=1

b2i
aiB

= 0.

Similarly, equality (2) holds when B = 0 and A 6= 0. Let Wi = aiB+ biA for i ∈ JkK. When A 6= 0

and B 6= 0, observe that

A

k∑

i=1

aibi
Wi

+B

k∑

i=1

a2i
Wi

=

k∑

i=1

ai(Abi +Bai)

Wi

=

k∑

i=1

ai = A, (3)

implying that
k∑

i=1

a2i
Wi

=
A

B

(

1−
k∑

i=1

aibi
Wi

)

. (4)

Similarly,
k∑

i=1

b2i
Wi

=
B

A

(

1−
k∑

i=1

aibi
Wi

)

. (5)

Clearly, equality (2) follows from (4) and (5).

For a set A of real numbers, in the following, if A is the empty set, we set

∏

a∈A

a = 1 and
∑

a∈A

a = 0. (6)

Lemma 2. Let S be a set of positive integers. For any set of 2|S| real numbers {ai, bi : i ∈ S},

∑

∅6=I⊆S








∏

j∈I

aj








∏

r∈S\I

br







 =
∏

i∈S

(ai + bi)−
∏

i∈S

bi. (7)

Proof. The identity follows from the following fact:

∑

∅⊆I⊆S








∏

j∈I

aj








∏

r∈S\I

br







 =
∏

i∈S

(ai + bi). (8)

Lemma 3. Let S be a set of positive integers. For any set of 3|S| real numbers {ai, bi, ci : i ∈ S},

∑

∅6=I⊆S





(
∑

i∈I

ci

)


∏

j∈I

aj








∏

r∈S\I

br







 =




∏

j∈S

(aj + bj)



 ·
∑

i∈S

ciai
ai + bi

. (9)
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Proof. The identity follows from the following fact:

∑

∅6=I⊆S





(
∑

i∈I

ci

)


∏

j∈I

aj








∏

r∈S\I

br







 =
∑

i∈S



ciai
∏

j∈S\{i}

(aj + bj)



 . (10)

By Lemmas 2 and 3, for an arbitrary real number c, we have

∑

∅6=I⊆S





(

c+
∑

i∈I

ci

)


∏

j∈I

aj








∏

r∈S\I

br







 =




∏

j∈S

(aj + bj)



 ·

(

c+
∑

i∈S

ciai
ai + bi

)

− c
∏

j∈S

bj . (11)

Lemma 4. Let S be a set of positive integers. For any set of 3|S| real numbers {ai, bi, di : i ∈ S},

∑

∅6=I⊆S








∑

i∈S\I

di








∏

j∈I

aj








∏

r∈S\I

br







 =




∏

j∈S

(aj + bj)



·

(
∑

i∈S

dibi
ai + bi

)

−

(
∏

r∈S

br

)

·

(
∑

i∈S

di

)

.

(12)

Proof. It follows from Lemma 3 and the following fact:

∑

∅6=I⊆S








∑

i∈S\I

di








∏

j∈I

aj








∏

r∈S\I

br







 =
∑

∅6=I⊆S





(
∑

i∈I

di

)
∏

j∈S\I

aj
∏

r∈I

br



−

(
∏

r∈S

br

)

·

(
∑

i∈S

di

)

.

(13)

Lemma 5. Let S be a set of positive integers. For any set of 4|S| real numbers {ai, bi, ci, di : i ∈ S},

∑

∅6=I(S





(
∑

i∈I

ci

)


∑

q∈S\I

dq








∏

j∈I

aj








∏

r∈S\I

br







 =

(
∏

r∈S

(ar + br)

)

·
∑

i,j∈S
i6=j

ciaidjbj
(ai + bi)(aj + bj)

.

(14)

Proof. The result follows from the following fact:

∑

∅6=I(S





(
∑

i∈I

ci

)


∑

q∈S\I

dq








∏

j∈I

aj








∏

r∈S\I

br







 =
∑

i,j∈S
i6=j



ciaidjbj
∏

r∈S\{i,j}

(ar + br)



 . (15)

By Lemmas 4 and 5, for an arbitrary real number c, we have

∑

∅6=I⊆S





(

c+
∑

i∈I

ci

)


∑

q∈S\I

dq








∏

j∈I

aj








∏

r∈S\I

br









=

(
∏

r∈S

(ar + br)

)

·






∑

i,j∈S
i6=j

ciaidjbj
(ai + bi)(aj + bj)

+ c
∑

i∈S

dibi
ai + bi




− c

(
∏

r∈S

br

)

·

(
∑

i∈S

di

)

. (16)
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3 An identity

Define a function φ on 2k variables x1, x2, . . . , xk and y1, y2, . . . , yk, where k ≥ 1, as follows:

φ(x1, y1, x2, y2, . . . , xk, yk) =
1

XY

(
k∏

i=1

(xiY + yiX)

)(

1−
k∑

i=1

xiyi
xiY + yiX

)

, (17)

where X = x1 + x2 + · · ·+ xk and Y = y1 + y2 + · · ·+ yk. Observe that

φ(x1, y1, x2, y2, . . . , xk, yk) =
1

XY






(
k∏

i=1

(xiY + yiX)

)

−
k∑

i=1




xiyi

∏

1≤j≤k
j 6=i

(xjY + yjX)









 .

In the expansion of

(
k∏

i=1

(xiY + yiX)

)

−
k∑

i=1



xiyi
∏

1≤j≤k
j 6=i

(xjY + yjX)



, the expression consisting of

all monomials not divisible by XY is identically 0, as shown below:

Y k

k∏

i=1

xi +Xk

k∏

i=1

yi −
k∑

i=1



yiY
k−1

k∏

j=1

xj



−
k∑

i=1



xiX
k−1

k∏

j=1

yj





= Y k

k∏

j=1

xj +Xk

k∏

j=1

yj − Y k−1
k∏

j=1

xj ·

(
k∑

i=1

yi

)

−Xk−1
k∏

j=1

yj ·

(
k∑

i=1

xi

)

= 0. (18)

It follows that φ(x1, y1, x2, y2, . . . , xk, yk) is a polynomial on 2k variables x1, x2, . . . , xk and y1, y2, . . . , yk.

For k ≤ 3,






φ(x1, y1) = 1;

φ(x1, y1, x2, y2) = z1,2;

φ(x1, y1, x2, y2, x3, y3) = z1,2z1,3 + z1,2z2,3 + z1,3z2,3,

(19)

where zi,j = xiyj + xjyi for all 1 ≤ i < j ≤ 3. For any I ⊆ JkK \ {1}, let

xI = x1 +
∑

i∈I

xi, yI = y1 +
∑

i∈I

yi. (20)

In this section, we shall establish the following identity, which will be applied to prove the main result

in the article.

Theorem 5. For any 2k real numbers x1, x2, . . . , xk and y1, y2, . . . , yk, where k ≥ 2,

φ(x1, y1, x2, y2, . . . , xk, yk) =
∑

∅6=I⊆JkK\{1}




(−1)|I|−1




∏

j∈I

(x1yj + xjy1)



φ(xI , yI , xs, ys
︸ ︷︷ ︸

∀s∈JkK\(I∪{1})

)




 ,

(21)

where φ(xI , yI , xs, ys
︸ ︷︷ ︸

∀s∈JkK\(I∪{1})

) = φ(xI , yI , xi1 , yi2 , . . . , xir , yir ), {i1, i2, . . . , ir} = JkK \ (I ∪ {1}) and

r = k − 1− |I|.

Proof. Let I be a non-empty subset of JkK \ {1}. Then

xI +
∑

s∈JkK\(I∪{1})

xs =

k∑

i=1

xi = X (22)
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and

yI +
∑

s∈JkK\(I∪{1})

ys =

k∑

i=1

yi = Y. (23)

In the remainder of the proof of Theorem 5, let WI = xIY + yIX , and for each i ∈ JkK, let

Wi = xiY + yiX and wi = xiy1 + yix1.

By the definition of the function φ,

φ(xI , yI , xs, ys
︸ ︷︷ ︸

∀s∈JkK\(I∪{1})

) =
WI

XY
·




∏

i∈JkK\(I∪{1})

Wi







1−
xIyI
WI

−
∑

i∈JkK\(I∪{1})

xiyi
Wi



 . (24)

Thus, the right-hand side of (21) can be expressed as

1

XY
(Γ1 − Γ2 − Γ3) , (25)

where

Γ1 =
∑

∅6=I⊆JkK\{1}



(−1)|I|−1WI




∏

j∈I

wj








∏

i∈JkK\(I∪{1})

Wi







 , (26)

Γ2 =
∑

∅6=I⊆JkK\{1}



(−1)|I|−1xIyI




∏

j∈I

wj








∏

i∈JkK\(I∪{1})

Wi







 , (27)

Γ3 =
∑

∅6=I⊆JkK\{1}



(−1)|I|−1WI




∏

j∈I

wj








∏

i∈JkK\(I∪{1})

Wi








∑

i∈JkK\(I∪{1})

xiyi
Wi







 . (28)

In the following, we shall apply Lemmas 1– 5 to simplify Γ1,Γ2 and Γ3 in order to show that

Γ1 − Γ2 − Γ3 =

(
k∏

i=1

(xiY + yiX)

)(

1−
k∑

i=1

xiyi
xiY + yiX

)

. (29)

Let X ′ = X − x1 and Y ′ = Y − y1. Also let







Z =
k∏

i=2

(xiY
′ + yiX

′),

Z1 =
k∑

i=2

xiyi

xiY ′+yiX′ , Z2 =
k∑

i=2

x2

i

xiY ′+yiX′ , Z3 =
k∑

i=2

y2

i

xiY ′+yiX′ .

(30)

Note that for any non-empty subset I of JkK \ {1},

yIX + xIY − xIyI =

(

y1 +
∑

i∈I

yi

)

X +

(

x1 +
∑

i∈I

xi

)


∑

i∈JkK\(I∪{1})

yi



 . (31)

In the remainder of this section, let W ′
i denote xiY

′ + yiX
′ for each i ∈ JkK. By applying identities

(11), (16) and (31),

Γ1 − Γ2

=
∑

∅6=I⊆JkK\{1}



(−1)|I|−1(WI − xIyI)




∏

j∈I

wj








∏

i∈JkK\(I∪{1})

Wi









by (31)
= X

∑

∅6=I⊆JkK\{1}



(−1)|I|−1

(

y1 +
∑

i∈I

yi

)


∏

j∈I

wj








∏

i∈JkK\(I∪{1})

Wi
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+
∑

∅6=I⊆JkK\{1}



(−1)|I|−1

(

x1 +
∑

i∈I

xi

)


∑

i∈JkK\(I∪{1})

yi








∏

j∈I

wj








∏

i∈JkK\(I∪{1})

Wi









= −X
∑

∅6=I⊆JkK\{1}





(

y1 +
∑

i∈I

yi

)


∏

j∈I

(−wj)








∏

i∈JkK\(I∪{1})

Wi









−
∑

∅6=I⊆JkK\{1}





(

x1 +
∑

i∈I

xi

)


∑

i∈JkK\(I∪{1})

yi








∏

j∈I

(−wj)








∏

i∈JkK\(I∪{1})

Wi









by (11),(16)
= Xy1

k∏

i=2

Wi −X
k∏

j=2

W ′
j

(

y1 −
k∑

i=2

yiwi

W ′
i

)

+ x1

(
k∏

i=2

Wi

)



k∑

j=2

yj





+

(
k∏

r=2

W ′
r

)





∑

2≤i,j≤k
i6=j

xiyjwiWj

W ′
iW

′
j

− x1

k∑

i=2

yiWi

W ′
i






=
k∏

i=1

Wi − x1y1

k∏

i=2

Wi −XZ (y1 − x1Z3 − y1Z1) + Z




−x1(Y Z1 +XZ3) +

∑

2≤i,j≤k
i6=j

xiyjwiWj

W ′
iW

′
j






=

k∏

i=1

Wi − x1y1

k∏

i=2

Wi − Z (y1X − y1XZ1 + x1Y Z1) + Z
∑

2≤i,j≤k
i6=j

xiyjwiWj

W ′
iW

′
j

, (32)

where in the second last equality, we combine Xy1
k∏

i=2

Wi and x1

k∏

i=2

Wi

(
k∑

j=2

yj

)

to obtain
k∏

i=1

Wi −

x1y1
k∏

i=2

Wi.

By applying identity (16), we have

Γ3 = −
∑

∅6=I⊆JkK\{1}





(

W1 +
∑

i∈I

Wi

)


∑

i∈JkK\(I∪{1})

xiyi
Wi








∏

j∈I

(−wj)








∏

i∈JkK\(I∪{1})

Wi









by (16)
= W1

(
k∏

i=2

Wi

)(
k∑

i=2

xiyi
Wi

)

+

(
k∏

i=2

W ′
i

)



−W1

k∑

i=2

xiyi
W ′

i

+
∑

2≤i,j≤k
i6=j

wiWixjyj
W ′

iW
′
j






=

(
k∏

i=1

Wi

)(
k∑

i=2

xiyi
Wi

)

−W1ZZ1 + Z
∑

2≤i,j≤k
i6=j

wiWixjyj
W ′

iW
′
j

. (33)

Note that for any set S of positive integers, and real numbers ai, bi for i ∈ S, we have

∑

i,j∈S
i6=j

(aibj) =

(
∑

i∈S

ai

)

·

(
∑

i∈S

bi

)

−
∑

i∈S

(aibi).

Thus,

∑

2≤i,j≤k

i6=j

xiyjwiWj

W ′
iW

′
j

−
∑

2≤i,j≤k

i6=j

wiWixjyj
W ′

iW
′
j

=

(
k∑

i=2

xiwi

W ′
i

)

·

(
k∑

i=2

yiWi

W ′
i

)

−
k∑

i=2

xiyiwiWi

(W ′
i )

2
−

((
k∑

i=2

xiyi
W ′

i

)

·

(
k∑

i=2

wiWi

W ′
i

)

−
k∑

i=2

xiyiwiWi

(W ′
i )

2

)

= (x1Z1 + y1Z2)(Y
′ + y1Z1 + x1Z3)− Z1(x1Y

′ + y1X
′ + x2

1Z3 + y21Z2 + 2x1y1Z1)

= y1(Y
′Z2 −X ′Z1) + x1y1(Z2Z3 − Z2

1 )
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= y1(Y
′Z2 −X ′Z1) + x1y1(1− 2Z1)

= y1(Y
′Z2 + x1 −X ′Z1 − 2x1Z1), (34)

where the second last equality follows from the fact that (Z1 − 1)2 = Z2Z3 by Lemma 1. Thus, by

(32), (33) and (34),

Γ1 − Γ2 − Γ3 −

(
k∏

i=1

(xiY + yiX)

)(

1−
k∑

i=1

xiyi
xiY + yiX

)

= −Z (y1X − y1XZ1 + x1Y Z1) + ZZ1(x1Y + y1X) + Zy1(Y
′Z2 + x1 −X ′Z1 − 2x1Z1)

= y1Z(X ′Z1 + Y ′Z2 −X ′)

= y1Z

(

−X ′ +

k∑

i=2

xi(yiX
′ + xiY

′)

xiY ′ + yiX ′

)

= 0. (35)

Thus, (21) follows from (25), (35) and the definition of φ(x1, y1, x2, y2, . . . , xk, yk) in (17).

4 Counting spanning trees in a special type of multigraphs

Let V = {vi : i ∈ JkK} and E = {vivj : i, j ∈ JkK and i 6= j} be the vertex set and edge set of the

complete graph Kk, where k ≥ 1. Let ω be a weight function on E. If ω(vivj) is a nonnegative integer

for all i, j with 1 ≤ i < j ≤ k, then τ(Kk, ω) is the number of spanning trees of the multigraph with

vertex set {u1, u2, . . . , uk} which contains exactly ω(vivj) parallel edges joining ui and uj for all i, j

with 1 ≤ i < j ≤ k.

For any non-empty subset I of JkK \ {1}, let GI denote the complete graph of order k − |I| with

vertex set {vI} ∪ {vi : i ∈ JkK \ (I ∪ {1})} and weight function ωI on the edge set of GI defined as

follows: 





ωI(vivj) = ω(vivj), ∀i, j ∈ JkK \ (I ∪ {1}), i 6= j;

ωI(vIvj) =
∑

r∈I∪{1}

ω(vrvj), ∀j ∈ JkK \ (I ∪ {1}).
(36)

Note that GI is actually the graph obtained from Kk by identifying all vertices in {vi : i ∈ I ∪ {1}}

as one vertex.

By the inclusion-exclusion principle, the following recursive relation on τ(Kk, ω) can be obtained.

Lemma 6. For any weight function ω on the edge set E of Kk,

τ(Kk, ω) =
∑

∅6=I⊆JkK\{1}

(

(−1)|I|−1τ(GI , ωI)
∏

i∈I

ω(v1vi)

)

. (37)

Proof. For any i ∈ JkK\{1}, let Ai denote the set of members T in T (Kk) with v1vi ∈ E(T ). Clearly,

T (Kk) =

k⋃

i=2

Ai. (38)

For any T ∈ T (Kk), by the inclusion-exclusion principle,

∑

∅6=I⊆JkK\{1}

(

(−1)|I|−1|{T } ∩
⋂

i∈I

Ai|

)

= 1. (39)
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Thus,

τ(Kk, ω) =
∑

T∈
⋃

2≤i≤k Ai

ω(T ) =
∑

∅6=I⊆JkK\{1}



(−1)|I|−1
∑

T∈
⋂

i∈I Ai

ω(T )



 . (40)

Let I be any non-empty subset of JkK\{1} and let HI denote the multiple graph obtained from Kk by

identifying all vertices in the set {vi : i ∈ I ∪{1}} and removing all loops produced. The vertex set of

HI is (V (Kk)\ {vi : i ∈ I ∪{1}})∪vI . Clearly, HI includes each edge vivj , where i, j ∈ JkK\ (I ∪{1}),

while each edge vivj in Kk, where i ∈ I∪{1} and j ∈ JkK\(I∪{1}), is changed to an edge ofHI joining

vI and vj . There are exactly 1+ |I| parallel edges in HI joining vI and vj for each j ∈ JkK \ (I ∪ {1}).

The weight function on E(HI) is the restriction of ω to E(HI) and parallel edges in HI may have

different weights.

For each T ∈
⋂

i∈I Ai, let TI be the tree obtained from T by identifying all vertices in the set

{vi : i ∈ I ∪ {1}}. Clearly ω(T ) and ω(TI) have the following relation:

ω(T ) =
∏

i∈I

ω(v1vi) · ω(TI). (41)

Moreover, T → TI is a bijection from
⋂

i∈I Ai to T (HI), implying that

∑

T∈
⋂

i∈I
Ai

ω(T ) =
∏

i∈I

ω(v1vi) ·
∑

T∈
⋂

i∈I
Ai

ω(TI) = τ(HI , ω) ·
∏

i∈I

ω(v1vi). (42)

Note that GT can be obtained from HI by merging all parallel edges with ends vI and vj into one for

each j ∈ JkK \ (I ∪ {1}). By the definition of ωI , τ(HI , ω) = τ(GI , ωI). Thus, (37) follows from (40)

and (42).

Recall the function φ defined in the previous section. In the following, we shall show that τ(Kk, ω)

can be expressed in terms of φ when ω satisfies certain conditions.

Theorem 6. Let V = {v1, v2, . . . , vk} be the the vertex set of the complete graph Kk, where k ≥ 1,

and ω be a weight function on the edge set E of Kk. If there exist 2k real numbers x1, x2, . . . , xk and

y1, y2, . . . , yk such that ω(vivj) = xiyj + xjyi holds for every pair i and j with 1 ≤ i < j ≤ k, then,

τ(Kk, ω) = φ(x1, y1, x2, y2, . . . , xk, yk). (43)

Proof. Note that for 1 ≤ k ≤ 3,

τ(Kk, ω) =







1, k = 1;

ω(v1v2), k = 2;

ω(v1v2)ω(v1v3) + ω(v1v2)ω(v2v3) + ω(v1v3)ω(v2v3), k = 3.

(44)

As ω(vivj) = xiyj + xjyi, (43) follows from (19) and (44) when k ≤ 3.

Assume that the result holds for k ≤ N , where N ≥ 3. In the following, we assume that k = N +1

and show that it holds in this case by induction.

Recall that for any non-empty subset of I of JkK \ {1}, GI is the complete graph with vertex set

{vI} ∪ {vj : j ∈ JkK \ (I ∪ {1})} and weight function ωI on its edge set defined in (36), i.e.,






ωI(vivj) = ω(vivj) = xiyj + xjyi, ∀i, j ∈ JkK \ (I ∪ {1}), i 6= j;

ωI(vIvj) =
∑

r∈I∪{1}

(xryj + xjyr) = xIyj + yIxj , ∀j ∈ JkK \ (I ∪ {1}).
(45)
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where xI = x1 +
∑

r∈I

xr and yI = y1 +
∑

r∈I

yr.

As GI is a complete graph of order k − |I| < k with a weight function ωI satisfying conditions in

(45), by inductive assumption, (43) holds for GI , i.e.,

τ(GI , ωI) = φ(xI , yI , xi, yi
︸ ︷︷ ︸

∀i∈JkK\(I∪{1})

). (46)

By Lemma 6, (46) and Theorem 5,

τ(Kk, ω) =
∑

∅6=I⊆JkK\{1}

(−1)|I|−1τ(GI , ωI)
∏

i∈I

ω(v1vi)

=
∑

∅6=I⊆JkK\{1}

(

(−1)|I|−1τ(GI , ωI)
∏

i∈I

(xiy1 + yix1)

)

=
∑

∅6=I⊆JkK\{1}




(−1)|I|−1

∏

i∈I

(xiy1 + yix1) · φ(xI , yI , xi, yi
︸ ︷︷ ︸

∀i∈JkK\(I∪{1})

)






= φ(x1, y1, x2, y2, · · · , xk, yk). (47)

Hence the result holds.

5 Spanning trees in Km,n containing a spanning forest F

Now we are ready to prove the main result.

Proof of Theorem 4. For any spanning forest F of Km,n with components T1, T2, . . . , Tk, observe

that

τF (Km,n) = τ(Km,n/F ), (48)

where Km,n is unweighted and Km,n/F is the multigraph obtained from Km,n by contracting all edges

in F . Note that Km,n/F is a multigraph of order k whose vertices correspond to components of F , as

Km,n/F can also be obtained from Km,n by identifying all vertices in Ti for all i ∈ JkK, and removing

all loops. Thus, we may assume that Km,n/F has vertices v1, v2, . . . , vk such that the number of

parallel edges joining vi and vj is equal to the number of edges in Km,n with one end in Ti and the

other end in Tj .

As |X ∩ V (Ts)| = ms and |Y ∩ V (Ts)| = ns for all s = 1, 2, . . . , k, Km,n/F contains exactly

minj +mjni parallel edges joining vi and vj for all 1 ≤ i < j ≤ k. By Theorem 6,

τ(Km,n/F ) = φ(m1, n1,m2, n2, . . . ,mk, nk). (49)

Thus, by (48) and the definition of φ(x1, y1, x2, y2, . . . , xk, yk) in (17), the result holds. �

6 Remarks

Another approach for proving the main result is to establish results analogue to Lemma 6 and Theo-

rem 5. The following identity analogue to Lemma 6 can be obtained easily:

τ(Kk, ω) =
∑

∅6=I⊆JkK\{1}

(

τ(GI , ω
′
I)
∏

i∈I

ω(v1vi)

)

, (50)

10



where ω′
I is different from ωI defined in (36), as for any j ∈ JkK \ (I ∪ {1}),

ω′
I(vIvj) =

∑

r∈I

ω(vrvj) = ωI(vIvj)− ω(v1vj), (51)

although ω′
I(vivj) = ωI(vivj) for all i, j ∈ JkK \ (I ∪ {1}) with i 6= j.

By Theorem 4 and (50), the following identity analogue to Theorem 5 holds:

φ(x1, y1, x2, y2, · · · , xk, yk) =
∑

∅6=I⊆JkK\{1}






∏

j∈I

(x1yj + xjy1)φ(x
′
I , y

′
I , xs, ys

︸ ︷︷ ︸

∀s∈JkK\(I∪{1})

)




 , (52)

where x′
I =

∑

i∈I

xi = xI − x1 and y′I =
∑

i∈I

yi = yI − y1.

However, it is quite challenging to prove (52) directly. Note that for any I with ∅ 6= I ⊆ JkK \ {1},






x′
I +

∑

i∈I xi = x2 + x3 + · · ·+ xk = X − x1,

y′I +
∑

i∈I yi = y2 + y3 + · · ·+ yk = Y − x1.
(53)

By the definition of the function φ,

φ(x′
I , y

′
I , xs, ys

︸ ︷︷ ︸

∀s∈JkK\(I∪{1})

) =
x′
IY

′ + y′IX
′

X ′Y ′
·




∏

i∈JkK\(I∪{1})

(xiY
′ + yiX

′)





·



1−
x′
Iy

′
I

x′
IY

′ + y′IX
′
−

∑

i∈JkK\(I∪{1})

xiyi
xiY ′ + yiX ′



 , (54)

where X ′ = X − x1 and Y ′ = Y − y1. Observe that the left-hand of (52) has a denominator XY ,

while its right-hand side has a denominator X ′Y ′.

Clearly, the main result (i.e., Theorem 4) also follows from (50) and (52).

In the end, we propose some problems.

Problem 1. Find a bijective proof for Theorem 4.

Another problem is to extend Theorem 4 to complete k-partite graphs, where k ≥ 3.

Problem 2. LetKn1,n2,··· ,nk
be a complete k-partite graph and F be a spanning forest in Kn1,n2,...,nk

,

where k ≥ 3. Find a formula for counting the number of spanning trees in Kn1,n2,...,nk
which contain

all edges in F .

For k = 3, we propose the following conjecture for a lower bound of τF (Kn1,n2,n3
).

Conjecture 1. LetX1, X2 andX3 be the partite sets of the complete tripartite graphKn1,n2,n3
, where

|Xi| = ni for i ∈ J3K. For any spanning forest F in Kn1,n2,n3
with k components T1, T2, · · · , Tk,

τF (Kn1,n2,n3
) ≥

1

n1n2 + n1n3 + n2n3

(
k∏

i=1

((n− n1)n1,i + (n− n2)n2,i + (n− n3)n3,i)

)

·

(

1−
k∑

i=1

n1,in2,i + n1,in3,i + n2,in3,i

(n− n1)n1,i + (n− n2)n2,i + (n− n3)n3,i

)

, (55)

where n = n1 + n2 + n3 and ns,i = |Xs ∩ V (Ti)| for s = 1, 2, 3 and i ∈ JkK.

It is trivial to verify that the equality of (55) holds for k ≤ 2.
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