Polynomial bounds for chromatic number II. Excluding a star-forest

Alex Scott ${ }^{1}$
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
Paul Seymour ${ }^{2}$
Princeton University, Princeton, NJ 08544
Sophie Spirkl ${ }^{3}$
University of Waterloo, Waterloo, Ontario N2L3G1, Canada

[^0]
Abstract

The Gyárfás-Sumner conjecture says that for every forest H, there is a function f_{H} such that if G is H-free then $\chi(G) \leq f_{H}(\omega(G))$ (where χ, ω are the chromatic number and the clique number of $G)$. Louis Esperet conjectured that, whenever such a statement holds, f_{H} can be chosen to be a polynomial. The Gyárfás-Sumner conjecture is only known to be true for a modest set of forests H, and Esperet's conjecture is known in to be true for almost no forests. For instance, it is not known when H is a five-vertex path. Here we prove Esperet's conjecture when each component of H is a star.

1 Introduction

The Gyárfás-Sumner conjecture [6, 20] asserts:
1.1 Conjecture: For every forest H, there is a function f such that $\chi(G) \leq f(\omega(G))$ for every H-free graph G.
(We use $\chi(G)$ and $\omega(G)$ to denote the chromatic number and the clique number of a graph G, and a graph is H-free if it has no induced subgraph isomorphic to H.) This remains open in general, though it has been proved for some very restricted families of trees (see, for example, [1, 7, 8, 9, 11, 13, 14]).

A class \mathcal{C} of graphs is χ-bounded if there is a function f such that $\chi(G) \leq f(\omega(G))$ for every graph G that is an induced subgraph of a member of \mathcal{C} (see [15] for a survey). Thus the Gyárfás-Sumner conjecture asserts that, for every forest H, the class of all H-free graphs is χ-bounded. Esperet 5 conjectured that every χ-bounded class is polynomially χ-bounded, that is, f can be chosen to be a polynomial. Neither conjecture has been settled in general. There is a survey by Schiermeyer and Randerath [19] on related material.

In particular, what happens to Esperet's conjecture when we exclude a forest? For which forests H can we show the following?
1.2 Esperet's conjecture: There is a polynomial f_{H} such that $\chi(G) \leq f_{H}(\omega(G))$ for every H-free graph G.

Not for very many forests H, far fewer than the forests that we know satisfy 1.1. For instance, 1.2 is not known when $H=P_{5}$, the five-vertex path. (This case is of great interest, because it would imply the Erdős-Hajnal conjecture [3, 4, 2] for P_{5}, and the latter is currently the smallest open case of the Erdős-Hajnal conjecture.)

We remark that, if in 1.2 we replace $\omega(G)$ by $\tau(G)$, defined to be the maximum t such that G contains $K_{t, t}$ as a subgraph, then all forests satisfy the modified 1.2. More exactly, the following is shown in [16]:
1.3 For every forest H, there is a polynomial f_{H} such that $\chi(G) \leq f_{H}(\tau(G))$ for every H-free graph G.

One difficulty with 1.2 is that we cannot assume that H is connected, or more exactly, knowing that each component of H satisfies 1.2 does not seem to imply that H itself satisfies 1.2, For instance, while $H=P_{4}$ satisfies 1.2, we do not know the same when H is the disjoint union of two copies of P_{4}.

As far as we are aware, the only forests that were already known to satisfy 1.2 are those of the following three results, and their induced subgraphs (a star is a tree in which one vertex is adjacent to all the others):

1.4 The forest H satisfies 1.2 if either:

- H is the disjoint union of copies of K_{2} (S. Wagon [21]); or
- H is the disjoint union of H^{\prime} and a copy of K_{2}, and H^{\prime} satisfies 1.2 (I. Schiermeyer [18]); or
- H is obtained from a star by subdividing one edge once (X. Liu, J. Schroeder, Z. Wang and X. Yu [12]).

In the next paper of this series [17] we will show a strengthening of the third result of [1.4, that is, 1.2 is true when H is a "double star", a tree with two internal vertices, the most general tree that does not contain a five-vertex path. Our main theorem in this paper is a strengthening of the second result of 1.4 :
1.5 If H is the disjoint union of H^{\prime} and a star, and H^{\prime} satisfies 1.2, then H satisfies 1.2.

A star-forest is a forest in which every component is a star. From 1.5 and the result of [17], we deduce
1.6 If H^{\prime} is a double star, and H is the disjoint union of H^{\prime} and a star-forest, then H satisfies 1.2.

As far as we know (although it seems unlikely), these might be all the forests that satisfy 1.2 ,

2 The proof

We will need the following well-known version of Ramsey's theorem:
2.1 For $k \geq 1$ an integer, if a graph G has no stable subset of size k, then

$$
|V(G)| \leq \omega(G)^{k-1}+\omega(G)^{k-2}+\cdots+\omega(G) .
$$

Consequently $|V(G)|<\omega(G)^{k}$ if $\omega(G)>1$.
Proof. The claim holds for $k \leq 2$, so we assume that $k \geq 3$ and the result holds for $k-1$. Let X be a clique of G of cardinality $\omega(G)$, and for each $x \in X$ let W_{x} be the set of vertices nonadjacent to X. From the inductive hypothesis, $\left|W_{x}\right| \leq \omega(G)^{k-2}+\cdots+\omega(G)$ for each x; but $V(G)$ is the union of the sets $W_{x} \cup\{x\}$ for $x \in X$, and the result follows by adding. This proves 2.1.

If $X \subseteq V(G)$, we denote the subgraph induced on X by $G[X]$. When we are working with a graph G and its induced subgraphs, it is convenient to write $\chi(X)$ for $\chi(G[X])$. Now we prove 1.5 , which we restate:
2.2 If H^{\prime} satisfies 1.2, and H is the disjoint union of H^{\prime} and a star, then H satisfies 1.2.

Proof. H is the disjoint union of H^{\prime} and some star S; let S have $k+1$ vertices. Since H^{\prime} satisfies 1.2, and $\chi(G)=\omega(G)$ for all graphs with $\omega(G) \leq 1$, there exists c^{\prime} such that $\chi(G) \leq \omega(G)^{c^{\prime}}$ for every H^{\prime}-free graph G. Choose $c \geq k+2$ such that

$$
x^{c}-(x-1)^{c} \geq 1+x^{k+1}+x^{k(k+2)+c^{\prime}}
$$

for all $x \geq 2$ (it is easy to see that this is possible).
Let G be an H-free graph, and write $\omega(G)=\omega$; we will show that $\chi(G) \leq \omega^{c}$ by induction on ω. If $\omega=1$ then $\chi(G)=1$ as required, so we assume that $\omega \geq 2$. Let $n=\omega^{k+1}$. If every vertex of G has degree less than ω^{c}, then the result holds as we can colour greedily, so we assume that some vertex v has degree at least ω^{c}. Let N be the set of all neighbours of v in G. Let X_{1} be the largest clique contained in N; let X_{2} be the largest clique contained in $N \backslash X_{1}$; and in general, let X_{i} be the largest clique contained in $N \backslash\left(X_{1} \cup \cdots \cup X_{i-1}\right)$. Since $|N| \geq \omega^{c} \geq n \omega$ (because $c \geq k+2$), it follows
that $X_{1}, \ldots, X_{n} \neq \emptyset$. Let $X=X_{1} \cup \cdots \cup X_{n}$, and $X_{0}=N \backslash X$, and $t=\left|X_{n}\right|$. Thus $1 \leq t \leq \omega-1$ (because $\omega(G[N])<\omega)$.
(1) $\chi(N \cup\{v\}) \leq t^{c}+n \omega$.

From the choice of X_{n}, it follows that the largest clique of $G\left[X_{0}\right]$ has cardinality at most $t<\omega$. From the inductive hypothesis, $\chi\left(X_{0}\right) \leq t^{c}$, and since $X \cup\{v\}$ has cardinality at most $n \omega$, it follows that $\chi(N \cup\{v\}) \leq t^{c}+n \omega$. This proves (1).

For each stable set $Y \subseteq X$ with $|Y|=k$, let A_{Y} be the set of vertices in $V(G) \backslash(N \cup\{v\})$ that have no neighbour in Y. Let A be the union of all the sets A_{Y}, and $B=V(G) \backslash(A \cup N \cup\{v\})$.
(2) $\chi(A) \leq(n \omega)^{k} \omega^{c^{\prime}}$.

For each choice of $Y, G\left[A_{Y}\right]$ is H^{\prime}-free (because $Y \cup\{v\}$ induces a copy of S with no edges to A_{Y}, and so $\chi\left(A_{Y}\right) \leq \omega^{c^{\prime}}$. Since there are at most $|X|^{k} \leq(n \omega)^{k}$ choices of Y, it follows that the union A of all the sets A_{Y} has chromatic number at most $(n \omega)^{k} \omega^{c^{\prime}}$. This proves (2).
(3) For each $b \in B, b$ has fewer than ω^{k} non-neighbours in X.

Let Z be the set of vertices in X nonadjacent to b. Since $b \notin A, G[Z]$ has no stable set of cardinality k; and since it also has no clique of cardinality ω, 2.1 implies that $|Z| \leq(\omega-1)^{k}<\omega^{k}$. This proves (3).
(4) $\chi(B) \leq(\omega-t)^{c}$.

Suppose that $C \subseteq B$ is a clique with $|C|=\omega-t+1$. For each $c \in C$, (3) implies that c has a nonneighbour in fewer than ω^{k} of the cliques X_{1}, \ldots, X_{n}; and so fewer than $(\omega-t+1) \omega^{k}$ of the cliques X, \ldots, X_{n} contain a vertex with a non-neighbour in C. Since $(\omega-t+1) \omega^{k} \leq \omega^{k+1}=n$, there exists $i \in\{1, \ldots, n\}$ such that every vertex in X_{i} is adjacent to every vertex of C, and so $C \cup X_{i}$ is a clique. Since $\left|X_{i}\right| \geq\left|X_{n}\right|=t$, it follows that $\left|C \cup X_{i}\right|>\omega$, a contradiction. Thus there is no such clique C, and so $\omega(G[B]) \leq \omega-t$; and from the inductive hypothesis (since $t>0$) it follows that $\chi(B) \leq(\omega-t)^{c}$. This proves (4).

From (1), (2), (4) we deduce that

$$
\chi(G) \leq \chi(N \cup\{v\})+\chi(A)+\chi(B) \leq t^{c}+n \omega+(n \omega)^{k} \omega^{c^{\prime}}+(\omega-t)^{c} .
$$

Since $1 \leq t \leq \omega-1$ and $c \geq 1$, it follows that $t^{c}+(\omega-t)^{c} \leq 1+(\omega-1)^{c}$, and so

$$
\chi(G) \leq 1+\omega^{k+1}+(n \omega)^{k} \omega^{c^{\prime}}+(\omega-1)^{c} \leq \omega^{c}
$$

from the choice of c and since $\omega \geq 2$. This proves 1.5,

References

[1] M. Chudnovsky, A. Scott and P. Seymour, "Induced subgraphs of graphs with large chromatic number. XII. Distant stars", J. Graph Theory 92 (2019), 237-254, arXiv:1711.08612.
[2] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, "Erdős-Hajnal for graphs with no five-hole", submitted for publication, arXiv:2102.04994.
[3] P. Erdős and A. Hajnal, "On spanned subgraphs of graphs", Graphentheorie und Ihre Anwendungen (Oberhof, 1977).
[4] P. Erdős and A. Hajnal, "Ramsey-type theorems", Discrete Applied Math. 25 (1989), 37-52.
[5] L. Esperet, Graph Colorings, Flows and Perfect Matchings, Habilitation thesis, Université Grenoble Alpes (2017), 24, https://tel.archives-ouvertes.fr/tel-01850463/document.
[6] A. Gyárfás, "On Ramsey covering-numbers", in Infinite and Finite Sets, Vol. II (Colloq., Keszthely, 1973), Coll. Math. Soc. János Bolyai 10, 801-816.
[7] A. Gyárfás, "Problems from the world surrounding perfect graphs", Proceedings of the International Conference on Combinatorial Analysis and its Applications, (Pokrzywna, 1985), Zastos. Mat. 19 (1987), 413-441.
[8] A. Gyárfás, E. Szemerédi and Zs. Tuza, "Induced subtrees in graphs of large chromatic number", Discrete Math. 30 (1980), 235-344.
[9] H. A. Kierstead and S.G. Penrice, "Radius two trees specify χ-bounded classes", J. Graph Theory 18 (1994), 119--129.
[10] H. A. Kierstead and V. Rödl, "Applications of hypergraph coloring to coloring graphs not inducing certain trees", Discrete Math. 150 (1996), 187-193.
[11] H. A. Kierstead and Y. Zhu, "Radius three trees in graphs with large chromatic number", SIAM J. Disc. Math. 17 (2004), 571-581.
[12] X. Liu, J. Schroeder, Z. Wang and X. Yu, "Polynomial χ-binding functions for t-broom-free graphs", arXiv:2106.08871.
[13] A. Scott, "Induced trees in graphs of large chromatic number", J. Graph Theory 24 (1997), 297-311.
[14] A. Scott and P. Seymour, "Induced subgraphs of graphs with large chromatic number. XIII. New brooms", European J. Combinatorics 84 (2020), 103024, arXiv:1807.03768,
[15] A. Scott and P. Seymour, "A survey of χ-boundedness", J. Graph Theory 95 (2020), 473-504, arXiv:1812.07500.
[16] A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds for chromatic number. I. Excluding a biclique and an induced tree", submitted for publication, arXiv:2104.07927.
[17] A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds for chromatic number. III. Excluding a double star", in preparation.
[18] I. Schiermeyer, "On the chromatic number of (P_{5}, windmill)-free graphs", Opuscula Math. 37 (2017), 609-615.
[19] I. Schiermeyer and B. Randerath, "Polynomial χ-binding functions and forbidden induced subgraphs: a survey", Graphs and Combinatorics 35 (2019), 1-31.
[20] D. P. Sumner, "Subtrees of a graph and chromatic number", in The Theory and Applications of Graphs, (G. Chartrand, ed.), John Wiley \& Sons, New York (1981), 557-576.
[21] S. Wagon, "A bound on the chromatic number of graphs without certain induced subgraphs", J. Combinatorial Theory, Ser. B, 29 (1980), 345-346.

[^0]: ${ }^{1}$ Research supported by EPSRC grant EP/V007327/1.
 ${ }^{2}$ Supported by AFOSR grant A9550-19-1-0187, and by NSF grant DMS-1800053.
 ${ }^{3}$ We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number RGPIN-2020-03912]. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), [numéro de référence RGPIN-2020-03912].

