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Abstract

A bridgeless cubic graph G is said to have a 2-bisection if there exists a 2-vertex-
colouring of G (not necessarily proper) such that: (i) the colour classes have the same
cardinality, and (ii) the monochromatic components are either an isolated vertex or an edge.
In 2016, Ban and Linial conjectured that every bridgeless cubic graph, apart from the well-
known Petersen graph, admits a 2-bisection. In the same paper it was shown that every
Class I bridgeless cubic graph admits such a bisection. The Class II bridgeless cubic graphs
which are critical to many conjectures in graph theory are known as snarks, in particular,
those with excessive index at least 5, that is, whose edge set cannot be covered by four
perfect matchings. Moreover, in [J. Graph Theory, 86(2) (2017), 149–158], Esperet et al.
state that a possible counterexample to Ban–Linial’s Conjecture must have circular flow
number at least 5. The same authors also state that although empirical evidence shows that
several graphs obtained from the Petersen graph admit a 2-bisection, they can offer nothing
in the direction of a general proof. Despite some sporadic computational results, until now,
no general result about snarks having excessive index and circular flow number both at
least 5 has been proven. In this work we show that treelike snarks, which are an infinite
family of snarks heavily depending on the Petersen graph and with both their circular flow
number and excessive index at least 5, admit a 2-bisection.
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1 Introduction
All graphs considered in the sequel are finite and simple (without loops and multiple edges).
A bisection of a cubic graph G is a partition of its vertex set into two disjoint subsets B
andW such that |B| = |W|. For simplicity, we shall identify a bisection of G with the 2-
vertex-colouring (not necessarily proper) of G, in which every vertex in B andW is given
colour 1 (black) and 2 (white), respectively. In the figures that follow, black and white
vertices shall be depicted as filled and unfilled circular vertices, respectively. To distin-
guish between coloured and uncoloured vertices, the latter shall have a black square shape.
A monochromatic component is a connected component induced by a colour class of a
vertex-colouring. A k-bisection of a graph G is a bisection of G such that each monochro-
matic component consists of at most k vertices. Therefore, a 2-bisection is a bisection in
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which each monochromatic component is a single vertex or an edge. A 2-colouring of the
vertices of a graph is said to be balanced if the two color classes are of the same cardinality.
Otherwise, it is said to be unbalanced.

In this paper we shall consider 2-bisections in bridgeless cubic graphs, in particular,
with respect to the following recent conjecture by Ban and Linial.

Conjecture 1.1 (Ban–Linial [4]). Every bridgeless cubic graph admits a 2-bisection, ex-
cept for the Petersen graph.

We remark that 2-bisections are equivalent to 4-weak bisections introduced by Esperet
et al. in [8], although, in general, the two definitions do not coincide. In [8], it was shown
that every cubic graph (not necessarily bridgeless) admits a 3-bisection. Recently this result
was extended to the class of simple subcubic graphs by Cui and Liu [6], and to the class of
subcubic multigraphs by Mattiolo and Mazzuoccolo [20]. Abreu et al. proved Ban–Linial’s
Conjecture for cycle permutation graphs [2], and for bridgeless claw-free cubic graphs [1].

In [8], Esperet et al. also showed that a possible counterexample to Ban–Linial’s Con-
jecture must admit circular flow number at least 5, where 5 is the largest possible circu-
lar flow number according to Tutte’s 5-Flow Conjecture (see [12]). Furthermore, since
properly 3-edge-colourable cubic graphs (Class I cubic graphs) admit a 2-bisection (see
Proposition 7 in [4]), for a possible counterexample to Conjecture 1.1 one must search in
the class of bridgeless cubic graphs which do not admit a proper 3-edge-colouring (Class
II bridgeless cubic graphs). The graphs in the latter class are the notorious snarks which
are critical to many conjectures in graph theory (see for example [17]). We note that in
literature, the word snark is often reserved to Class II bridgeless cubic graphs which are
cyclically 4-edge-connected and have girth at least 5, however, in what follows, we shall
not be specifically making use of this refinement because, as already mentioned in [2], there
is no evidence that a minimal counterexample to Ban–Linial’s Conjecture is cyclically 4-
edge-connected and has girth at least 5, if such a counterexample exists. Therefore, in the
sequel, snarks shall represent Class II bridgeless cubic graphs.

The least number of perfect matchings needed to cover the edge set of a bridgeless
cubic graph G is said to be the excessive index of G, and the Berge–Fulkerson Conjec-
ture states that every bridgeless cubic graph has excessive index at most 5 (see [11, 21]).
Class I cubic graphs have excessive index 3, whilst snarks have excessive index at least
4. In general, snarks having excessive index exactly 4 seem to be more manageable than
the rest, that is, than those snarks which cannot be covered by four perfect matchings.
In fact, two very well-known conjectures—the Cycle Double Cover Conjecture and the
Fan–Raspaud Conjecture—are true for graphs with excessive index at most 4 (see [16, 23,
24] and [9, 10], respectively), whilst they are still widely open for the other snarks. Snarks
which cannot be covered by four perfect matchings have been the subject of many papers
such as [7, 17, 18].

As already mentioned before, two infinite families of bridgeless cubic graphs which
were shown to satisfy Ban–Linial’s Conjecture are cycle permutation graphs and bridgeless
claw-free cubic graphs. In [10], cycle permutation graphs were shown to have excessive
index at most 4, apart from the Petersen graph which has excessive index 5. On the other
hand, it is conjectured [14] that bridgeless claw-free cubic graphs have excessive index at
most 4 (see also [5, 22]).

Snarks with excessive index 4 can have circular flow number 5 (see [13]), and so can
be critical to Conjecture 1.1. At the same time, snarks with excessive index at least 5 can
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have circular flow number strictly less than 5 [19], and consequently admit a 2-bisection by
[8]. However, as far as we know, apart from very few sporadic computational results (see
Observation 4.35† in [2]), no snarks having both their circular flow number and excessive
index at least 5 were studied with respect to Ban–Linial’s Conjecture. Furthermore, Esperet
et al. [8] stated that several graphs obtained from the Petersen graph were checked with
respect to Ban–Linial’s Conjecture and they do in fact admit a 2-bisection (or equivalently,
a 4-weak bisection), however, the authors say that they are far from offering something
in the direction of a general proof. In this sense, we think that our main result dealing
with treelike snarks, whose circular flow number and excessive index are both at least 5,
is another step towards further providing evidence to the correctness of Conjecture 1.1
and surpassing previous encountered hurdles, since treelike snarks heavily depend on the
Petersen graph.

2 Treelike snarks
Treelike snarks were introduced by Abreu et al. [3] in an attempt to further enrich the
family of snarks which cannot be covered by four perfect matchings. In the same paper,
the authors also show that the circular flow number of treelike snarks is at least 5, and that
these snarks admit a 5-cycle double cover.

Before proceeding with the definition of these snarks, we introduce multipoles which
generalise the notion of graphs. A multipole M consists of a set of vertices V (M) and
a set of generalised edges such that each generalised edge is either an edge in the usual
sense (that is, it has two endvertices) or a dangling edge. A dangling edge is a generalised
edge having exactly one endvertex, and a k-pole is a multipole with k dangling edges. The
set of dangling edges of M is denoted by ∂M whilst the set of edges of M having two
endvertices is denoted by E(M). Two dangling edges are joined if they are both deleted
and their endvertices are made adjacent. In a similar way, a dangling edge with endvertex
x is said to be joined to a vertex y, if the dangling edge is deleted and x and y are made
adjacent.

Let s and t be two adjacent vertices of the Petersen graph P and let P ′ be the graph
obtained after deleting s and t (and all the edges incident to them) from P . Consider the
4-pole M obtained from P ′ such that V (M) = V (P ′), E(M) = E(P ′), and each vertex
of degree 2 in P ′ has exactly one dangling edge incident to it in M . We define the left
dangling edges to be the ones corresponding to the edges originally incident to s and not t,
and the right dangling edges to be the ones corresponding to the edges originally incident to
t and not s. We also partition the four dangling edges in ordered pairs, say (l1, l2), referred
to as the first and second left dangling edges, and (r1, r2), referred to as the first and second
right dangling edges. Due to the symmetry of the Petersen graph the order of the dangling
edges in each set of the partition is not relevant, but for simplicity and consistency, we shall
assume that (l1, l2) and (r1, r2) look as in Figure 1. This 4-pole is said to be a Petersen
4-pole.

A Halin graph is a plane graph consisting of a planar representation of a tree without
degree 2 vertices, and a circuit on the set of its leaves (see [15]). We remark that leaves are
the vertices in a tree having degree 1. Let H be a cubic Halin graph consisting of the tree
T and the circuit K. A treelike snark G is the bridgeless cubic graph that can be obtained
by the following procedure:

†The Petersen graph is the only snark up to 36 vertices which does not admit a 2-bisection.
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Figure 1: The Petersen graph and a Petersen 4-pole

• for every leaf x of T , we add two new vertices, say x1 and x2, and the edges xx1 and
xx2; and

• for every edge xy of K, with x being the predecessor of y with respect to the clock-
wise orientation of K, the edge xy is replaced with a Petersen 4-pole, such that the
first and second left dangling edges of this Petersen 4-pole are joined to x1 and x2,
respectively, whilst the first and second right dangling edges are joined to y1 and y2,
respectively.

Two leaves x and y of T are called consecutive if they are adjacent in the circuit K,
and we shall say that the Petersen 4-pole of G replacing the edge xy of K is in between
the two leaves x and y. Moreover, two consecutive leaves are said to be near if they have
distance two in T , that is, they have a common neighbour in T . We remark that T always
has two near leaves. Similarly, two Petersen 4-poles A and B are called consecutive if
there exist three consecutive leaves x, y, z (that is, x and y are consecutive and y and z are
consecutive) such that A is in between x and y, and B is in between y and z. Again, we
say that the leaf y is in between the Petersen 4-poles A and B.

We next consider various 2-vertex-colourings of a Petersen 4-pole, not necessarily bal-
anced, in which each monochromatic component consists of at most two vertices. For sim-
plicity, the latter shall be referred to as the monochromatic property. A 2-vertex-colouring
of the Petersen 4-pole is said to be all 1-balanced if only the four endvertices of the dan-
gling edges are coloured 1 (see Figure 2). For short, a Petersen 4-pole given this colouring
is said to be an all 1-balanced Petersen 4-pole. An all 2-balanced Petersen 4-pole is defined
in a similar way by interchanging the colours 1 and 2 in the 4-pole.
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Figure 2: An all 1-balanced and an all 2-balanced Petersen 4-pole

We also consider a balanced 2-vertex-colouring of a Petersen 4-pole (respecting the
monochromatic property) in which exactly two endvertices of the four dangling edges are
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coloured 1. Such a colouring is said to be (i, j)-balanced, where i and j belong to {1, 2}
and are equal to the colour of the endvertices of the first left and first right dangling edges,
respectively (see Figure 3). A Petersen 4-pole having this colouring is said to be an (i, j)-
balanced Petersen 4-pole. When i and j are equal, say to 1, we distinguish between the
left and right (1, 1)-balanced Petersen 4-poles as follows: the left (similarly right) (1, 1)-
balanced colouring corresponds to the one in which the endvertex of the first left (similarly
right) dangling edge has a neighbour in the Petersen 4-pole which is coloured 1.
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Figure 3: A (1, 2)-balanced and a left (1, 1)-balanced Petersen 4-pole

Finally, we consider a 2-vertex-colouring of a Petersen 4-pole which once again re-
spects the monochromatic property but is now unbalanced, that is, the two colour classes
do not have the same cardinality. In this colouring |B| = |W| + 2 (or vice-versa) and ex-
actly three of the endvertices of the dangling edges of a Petersen 4-pole are given the same
colour, say 1, without loss of generality (see Figure 4). If, for example, the endvertex of
the first left (similarly right) dangling edge is the one having colour 2, the colouring and
the Petersen 4-pole are said to be 21-unbalanced (similarly 12-unbalanced). The 21- and
12-unbalanced Petersen 4-poles are defined in a similar manner.
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Figure 4: A 21-unbalanced and a 21-unbalanced Petersen 4-pole

One can clearly see that the above constitute (up to symmetry) all the possible 2-vertex-
colourings of a Petersen 4-pole in which each monochromatic component has at most two
vertices.

2.1 Main result

Theorem 2.1. Every treelike snark admits a 2-bisection.

Proof. Let G be a treelike snark. Suppose that G does not admit a 2-bisection. We assume
that the defining tree T of G is of minimum order. Observation 4.35 in [2] states that
the Petersen graph is the only snark up to 36 vertices which does not admit a 2-bisection.
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Consequently, the smallest treelike snark on 34 vertices has a 2-bisection (see also Figure
5), and so we can assume that T has at least two degree 3 vertices. As depicted in Figure

bc

bc

bc

bcb

b b

b

b

b

b

b

bc

bc bc bc

bc bcb

bc

b

b

b

b

bc

b

b

bc

bc

b

bc

bc

b

bc

Figure 5: A 2-bisection of the smallest treelike snark

6, consider two near leaves of T , say x and y, and let e and f be the two edges of T
incident to x and y, respectively. Moreover, let g be the edge of T adjacent to e and
f . Consider the three consecutive Petersen 4-poles A,B,C such that x is in between A
and B, and y is in between B and C. Let a1 and a2 be the two endvertices of the first
and second right dangling edges of the Petersen 4-pole A, respectively, and let c1 and
c2 be the two endvertices of the first and second left dangling edges of the Petersen 4-
pole C, respectively. Let x1 and x2 be the two neighbours of x in G adjacent to a1 and
a2, respectively. Let y1 and y2 be the two neighbours of y in G adjacent to c1 and c2,
respectively. Let u be the vertex in T mutually adjacent to x and y, and let v be the other
neighbour of u in T .

We construct a smaller treelike snark G′ following the procedure presented in Figure
6. Since T has at least two vertices of degree 3, the resulting graph G′ is indeed another
treelike snark. Let T ′ be the tree defining G′. As in Figure 6, z is the leaf in between the
Petersen 4-poles A and C in G′. In this case, let z1 and z2 be the common neighbours of
a1 and c1, and a2 and c2, respectively.

Since |V (T ′)| < |V (T )|, G′ admits a 2-bisection. In what follows we show that we
can always extend the 2-vertex-colouring corresponding to a 2-bisection of G′, to a 2-
vertex-colouring of G which shall give rise to a 2-bisection of the bigger treelike snark G,
a contradiction to our initial assumption. We consider five cases, depending on the colours
of a1, a2, c1, c2 in G′.

Case I. The colours of a1, a2, c1, c2 in G′ are all the same.
Without loss of generality, assume that the colours of a1, a2, c1, c2 are all 1. Conse-

quently, the colours of (z1, z, z2) are (2, 1, 2). The colour given to v can be either 1 or
2. Suppose first that the colour of v is 1. We colour G as follows. The vertices in G
corresponding to V (G′) − {z1, z, z2} are assigned the same colour given to them in G′,
and the vertices (x1, x, x2) and (y1, y, y2) are both assigned the colours (2, 1, 2), that is,
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Figure 6: Induction step in Theorem 2.1

the colours given to (z1, z, z2) in G′. The vertex u is given colour 2 and consequently, this
partial 2-vertex-colouring of G, that is, with the vertices of B still uncoloured, respects the
monochromatic property, and, so far, there are two more vertices coloured 2. However,
since the colours of a1, a2, c1, c2 are all 1, and the colours of x1, x2, y1, y2 are all 2, we can
let B be a 12-unbalanced Petersen 4-pole, giving a 2-bisection of G, a contradiction to our
initial assumption. Therefore, v must be coloured 2 in G′. The vertices in G corresponding
to V (G′) − {z1, z, z2} are assigned the same colour given to them in G′, and the vertices
(x1, x, x2) and (y1, y, y2) are assigned the colours (2, 2, 1) and (2, 1, 2), respectively. The
vertex u is coloured 1 as z. Consequently, this partial 2-vertex-colouring is balanced. If a2
does not have a neighbour in A which is coloured 1, then every monochromatic component
in this partial 2-vertex-colouring has order at most two. In this case, if we colour B as a left
(1, 1)-balanced Petersen 4-pole, a 2-bisection of G is obtained, a contradiction. Therefore,
a2 must have a neighbour in A coloured 1. Since a1 is coloured 1, A is either a 21- or a
21-unbalanced Petersen 4-pole. Consequently, if we change the colour of a2 from 1 to 2,
A becomes a (2, 1)- or a right (1, 1)-balanced Petersen 4-pole, giving a partial 2-vertex-
colouring of G respecting the monochromatic property, with the vertices coloured 2 now
being two more than those coloured 1. However, colouring B as a 21-unbalanced Petersen
4-pole, a 2-bisection of G is obtained, a contradiction. Thus, Case I cannot occur.

Case II. In G′, the vertices a1, a2 are coloured 1 and the vertices c1, c2 are coloured 2,
or vice-versa.

Without loss of generality, assume that the colours of a1, a2 are 1, and the colours of
c1, c2 are 2. We first claim that the colours of z1 and z2 must be the same. For, suppose not.
If z1 is coloured 1, then z must be coloured 2, but this implies that z, z2, c2 are all coloured
2, a contradiction. Thus, without loss of generality, we assume that z1, z2 are coloured 2,
implying that z is coloured 1. We consider two cases, depending on whether v is coloured
1 or 2. Suppose first that v is coloured 1. We colour G as follows. The vertices in G
corresponding to V (G′) − {z1, z, z2} are assigned the same colour given to them in G′,
and the vertices (x1, x, x2) and (y1, y, y2) are both assigned the colours (2, 1, 2). The ver-
tex u is given colour 2 and consequently, every monochromatic component in this partial
2-vertex-colouring has order at most two. However, there are two more vertices coloured 2
so far. Since the colours of a1, a2 are both 1, and the colours of x1, x2 are both 2, we can
let B either be a 21- or a 21-unbalanced Petersen 4-pole, giving a 2-bisection of G. This
is a contradiction, and so v must be coloured 2 in G′. As before, we proceed by colouring
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the vertices in G corresponding to V (G′)− {z1, z, z2} with the same colour given to them
in G′. The vertices (x1, x, x2) are assigned the colours (2, 1, 2), and since c1, c2 are both
coloured 2, we can colour (y1, y, y2) with the colours (1, 2, 1). The vertex u is coloured 1
as z. One can see that all the monochromatic components in this partial 2-vertex-colouring
have order at most two, but, so far, there are two more vertices coloured 1. If we let B be
a 12-unbalanced Petersen 4-pole, we obtain a 2-bisection of G, a contradiction once again.
Therefore, we cannot have Case II.

Case III. In G′, the vertices a1, c1 are coloured 1 and the vertices a2, c2 are coloured
2, or vice-versa.

Without loss of generality, assume that the colours of a1, c1 are 1, and the colours of
a2, c2 are 2. In this case, (z1, z2) must be coloured (2, 1). Without loss of generality, as-
sume that v is coloured 1. Therefore, z must be coloured 2. We colour G as follows. The
vertices in G corresponding to V (G′) − {z1, z, z2} are assigned the same colour given to
them in G′, and the vertices (x1, x, x2) and (y1, y, y2) are assigned the colours (1, 2, 1) and
(2, 1, 1), respectively. The vertex u is given colour 2 as z. If the vertex a1 has no neighbour
in A coloured 1, then this partial 2-vertex-colouring respects the monochromatic property
and, so far, there are two more vertices coloured 1. However, letting B be a 21-unbalanced
Petersen 4-pole gives a 2-bisection of G, a contradiction. Therefore, a1 has a neighbour in
A coloured 1. Therefore, A must be a right (1, 1)- or a (2, 1)-balanced Petersen 4-pole. If
we change the colour 1 of a1 to 2, A becomes a 12- or a 12-unbalanced Petersen 4-pole.
Because of this step, the resulting partial 2-vertex-colouring of G is now balanced and re-
spects the monochromatic property. However, if we let B to be the all 2-balanced Petersen
4-pole, we get that G has a 2-bisection, a contradiction. Hence, we cannot have Case III.

Case IV. In G′, the vertices a1, c2 are coloured 1 and the vertices a2, c1 are coloured 2,
or vice-versa.

Without loss of generality, assume that the colours of a1, c2 are 1, and the colours of
a2, c1 are 2. As in Case II, z1 and z2 must have the same colour, and so, without loss of
generality, we can assume that these two vertices are both coloured 2. Consequently, z
must be coloured 1. We consider two cases depending on whether v is coloured 1 or 2.
Suppose first that the colour of v is 1. We extend the colouring of G′ to G as follows.
The vertices in G corresponding to V (G′)−{z1, z, z2} are assigned the same colour given
to them in G′, and the vertices (x1, x, x2) and (y1, y, y2) are both assigned the colours
(2, 1, 2). The vertex u is given colour 2 and consequently, every monochromatic com-
ponent in this partial 2-vertex-colouring has order at most two, and, so far, there are two
more vertices coloured 2. However, letting B be a 21-unbalanced Petersen 4-pole gives
a 2-bisection of G, a contradiction. Therefore, v must be coloured 2. The vertices in G
corresponding to V (G′) − {z1, z, z2} are assigned the same colour given to them in G′,
but this time the vertices (x1, x, x2) and (y1, y, y2) are assigned the colours (2, 2, 1) and
(2, 1, 2), respectively. The vertex u is coloured 1 as z. As a result, we can see that this
partial 2-vertex-colouring is balanced and respects the monochromatic property. However,
letting B be an all 1-balanced Petersen 4-pole gives a 2-bisection of G, a contradiction
once again. So we must have Case V.

Case V. Exactly three of a1, a2, c1, c2 have the same colour in G′.
Without loss of generality, assume that a1, a2, c1 have colour 1 and c2 has colour 2.
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Consequently, the colour of z1 is 2. We consider three cases depending on the colours of
(v, z, z2). When the colour of v is 1, (z, z2) can be coloured (1, 2) or (2, 1). Suppose
we have the former case. We colour G as follows. The vertices in G corresponding to
V (G′) − {z1, z, z2} are assigned the same colour given to them in G′, and the vertices
(x1, x, x2) and (y1, y, y2) are both assigned the colours (2, 1, 2). The vertex u is given
colour 2 and consequently, the resulting partial 2-vertex-colouring respects the monochro-
matic property and, so far, there are two more vertices coloured 2. However, if we let B be
a 12-unbalanced Petersen 4-pole, a 2-bisection of G is obtained, a contradiction. Therefore,
the colours of (z, z2) are (2, 1). We colour G as follows. The vertices in G corresponding to
V (G′)−{z1, z, z2} are assigned the same colour given to them in G′, but this time the ver-
tices (x1, x, x2) and (y1, y, y2) are assigned the colours (2, 1, 2) and (2, 1, 1), respectively.
The vertex u is coloured 2 as z, and consequently, the resulting partial 2-vertex-colouring
is balanced and respects the monochromatic property. However, if we let B be a right
(1, 1)-balanced Petersen 4-pole, a 2-bisection of G is obtained, a contradiction. Hence,
we must have that the colours of (v, z, z2) are (2, 1, 2). The vertices in G corresponding
to V (G′) − {z1, z, z2} are assigned the same colour given to them in G′, and the vertices
(x1, x, x2) and (y1, y, y2) are assigned the colours (2, 1, 2) and (2, 2, 1), respectively. The
vertex u is given colour 1 as z, and consequently, this partial 2-vertex-colouring is balanced
and every monochromatic component has order at most two. However, if we let B be an
all-1 balanced Petersen 4-pole, a 2-bisection of G is obtained, a contradiction once again.

Since there are no more cases to consider, our initial assumption is wrong. Therefore,
every treelike snark admits a 2-bisection, proving our theorem.

Finally, we remark that it would be quite intriguing to see whether the above proof
can be further extended to accommodate a recent class of snarks which contains treelike
snarks: Halin snarks. These snarks, introduced in [18] by Máčajová and Škoviera, were
shown to have excessive index at least 5. Moreover, whenever the building blocks (referred
to as Halin fragments) used for the construction of a Halin snark are exclusively made up of
decollineators (see [18] for definition) originating from snarks having circular flow number
at least 5, the circular flow number of the resulting Halin snark is at least 5 as well. In the
above proof, we explicitly took advantage of the symmetry of Petersen 4-poles and of the
behaviour of 2-vertex-colourings (and their corresponding monochromatic components) in
such a pole. In this sense, we remark that in general it is still not clear what assumptions
need to be made with regards to the building blocks of Halin snarks in order to tackle this
more general problem.
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