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Abstract

Motivated by recent computational models for redistricting and detection of gerrymandering,
we study the following problem on graph partitions. Given a graph G and an integer k ≥ 1, a k-
district map of G is a partition of V (G) into k nonempty subsets, called districts, each of which
induces a connected subgraph of G. A switch is an operation that modifies a k-district map by
reassigning a subset of vertices from one district to an adjacent district; a 1-switch is a switch
that moves a single vertex. We study the connectivity of the configuration space of all k-district
maps of a graph G under 1-switch operations. We give a combinatorial characterization for the
connectedness of this space that can be tested efficiently. We prove that it is PSPACE-complete
to decide whether there exists a sequence of 1-switches that takes a given k-district map into
another; and NP-hard to find the shortest such sequence (even if a sequence of polynomial length
is known to exist). We also present efficient algorithms for computing a sequence of 1-switches
that takes a given k-district map into another when the space is connected, and show that these
algorithms perform a worst-case optimal number of switches up to constant factors.

1 Introduction

An electoral district is a subdivision of territory used in the election of members to a legislative
body. Gerrymandering is the practice of drawing district boundaries with the intent to give
political advantage to a particular group; it tends to occur in electoral systems that elect one
representative per district. Detecting whether gerrymandering has been employed in designing a
given district map and producing unbiased district maps are important problems to ensure fairness
in the outcome of elections. Numerous quality measures have been proposed for the comparison
of district maps [10, 11], but none of them is known to eliminate bias. Research has focused on
exploring the space of all possible district maps that meet certain basic criteria. Since this space
is computationally intractable, even for relatively small instances, randomized algorithms play an
important role in finding “average” district maps under suitable distributions [3]. Being an outlier
may indicate that gerrymandering has been applied in the drawing of a given map [21].
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Fifield et al. [14] model a district map as a vertex partition on an adjacency graph of census
tracts or voting precincts. A census tract is a small territorial subdivision used as a geographic
unit in a census. Each district corresponds to a set of census tracts in the partition and must
induce a connected subgraph. The graphs currently used in practice are the dual graphs of a
terrain partition, where two districts are adjacent if and only if their boundaries intersect in at
least one point. Because of degeneracies, five “wedge-like” districts may meet at a single point and
induce a K5 in the dual graph.1 In particular, the district maps are not necessarily planar.

Starting from a given district map, one can obtain another map by switching a subset of census
tracts from one district to another. The goal is to apply a sequecne of such operations randomly,
and arrive at a uniformly random sample of the space of all possible district maps that meet the
desired criteria. Under some assumptions, Fifield et al. [14] proves that the Markov chain produced
by their experiments is ergodic2. More interestingly, if the assumptions hold, it will have a unique
stationary distribution, which is approximately uniform on the space of all k-district maps. One
of the assumptions is that the underlying sample space is connected under the switch operation.
However, connectedness is only assumed and remains unproven in [14].

In this paper, we provide a rigorous graph-theoretic background for studying the space of district
maps with a given number of districts. We focus on the 1-switch operation that moves precisely one
vertex from one district to an adjacent one. The remainder of the paper will call such an operation
simply a “switch.” Other than requiring connectedness of districts, we do not impose any other
restrictions on the district maps. In particular, the size of a district can be any integer in the range
[1, n− k + 1] where n is the number of census tracts.

The fact that the space of all k-district maps is connected in our model implies that any ape-
riodic Markov chain is also ergodic on the subset of k-district maps that meet the desired criteria.
Thus, our results have implications for models with additional desired criteria (other than connec-
tivity). A natural criterion relevant for the gerrymandering setting is that district maps remain
balanced (that is, all sets have roughly the same size). Besides being an important step in showing
theoretical soundness of a Markov-chain-based sampling approach, our results demonstrate how the
connectivity of the space relates to how well the adjacency graph is connected. This in turn helps
design new operations to traverse the space, and provides a framework for comparing them.

Our Results. We consider the graph-theoretic model from [14]. For an n-vertex graph G (the
adjacency graph of precincts or census tracts) and an integer 1 ≤ k ≤ n, we consider the switch
graph Γk(G) in which each node corresponds to a partition of V (G) into k nonempty subsets
(districts), each of which induces a connected subgraph of G, and an edge corresponds to switching
one vertex from one district to an adjacent district (see Section 2 for a definition). We do not
assume planarity of G unless noted otherwise.

1. Connectedness. We prove that Γk(G) is connected if G is biconnected (Theorem 5), and
give a combinatorial characterization of the connectedness of Γk(G) that can be tested in
O(n + m) time, where n = |V (G)| and m = |E(G)| (Theorem 17). In general, however, it
is PSPACE-complete to decide whether two given nodes of Γk(G) are in the same connected
component even when G is planar (Theorem 22), or G is nonplanar and k = 2 (Theorem 23).

2. Shrinkable Districts. One of our key methods to modify a district map is to shrink a
district into a single vertex by a sequence of switch operations. If this is feasible, we call the
district shrinkable; if all districts are shrinkable, we call the district map shrinkable. We

1Similar phenomenon occurs around a lake, where all districts adjacent to the water are pairwise adjacent.
2A Markov chain is ergodic if it is aperiodic and positive recurrent (that is, each state has a positive probability

to be revisited, see [14] for more details).
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prove that the subgraph Γ′k(G) of Γk(G) induced by shrinkable district maps is connected if
G is connected (Theorem 9).

3. Diameter. When G is biconnected, the diameter of Γk(G) is in O(kn), where n = |V (G)|
(Theorem 9), and this bound is the best possible (Theorem 8). When Γk(G) is disconnected,
the diameter of a component may be as large as 2Ω(n) even for planar graphs (Corollary 25).

4. Shortest Path. Finding the distance between two nodes of Γk(G) is NP-hard, even if Γk(G)
is connected (Theorem 29).

Related Previous Work. Graph partitions and graph clustering algorithms [36] are widely used in
divide-and-conquer strategies. These algorithms, however, do not explore the space of all partitions
into k connected subgraphs. Evolutionary algorithms [35], in this context, modify a partition by
random “mutations,” which are successive coarsening and uncoarsening operations, rather than
moving vertices from one subgraph to another.

While the adjacency graph model for district maps has been used for decades in combinatorial
optimization and operations research [33], the objective was finding optimal district maps under one
or more criteria. Since exhaustive search is infeasible and most variants of the optimization problem
are intractable [30], local search heuristics were suggested [34]. Several combinatorial results restrict
G to be a square grid [1, 29]. Heuristic and intractability results are also available for geometric
variants of the optimization problem, where districts are polygons in the plane [15, 25, 32].

Elementary graph operations similar to our 1-switch operation have also been studied. Moti-
vated by the classical “Fifteen” puzzle, Wilson [37] studied the configuration space of t, t < n,
indistinguishable pebbles (a.k.a. tokens [28]) on the vertices of a graph G with n vertices, where
each pebble occupies a unique vertex of G, and can move to any adjacent unoccupied vertex. The
occupied and unoccupied vertices partition V (G) into two subsets. Crucially, the number of peb-
bles is fixed, and the occupied vertices need not induce a connected subgraph. Results include
a combinatorial characterization of the configuration space (a.k.a. token graph) [37], NP-hardness
for deciding connectedness [24], finding the shortest path between two configurations [18, 31], and
bounds on the diameter and the connectivity of the configuration space [26, 28]. Demaine et al. [8]
considered a subgraph of the token graph, where the tokens are located at an independent set. The
diameter and shortest path in the configuration space can often be computed efficiently when the
underlying graph G is a tree [2, 8], or chordal [5]. There are a few results that require the occupied
vertices to induce a connected subgraph, but they are limited to the case where G is a grid [12, 23],
and the number of pebbles is still fixed.

Goraly et al. [19] later considered colored pebbles (tokens). Each color class consists of indistin-
guishable pebbles, unoccupied vertices are considered as one of the color classes [17, 38, 39]: Hence
all vertices in V (G) are occupied and a move can swap the pebbles on two adjacent vertices. The
color classes (including the “unoccupied” color) partition V (G) into subsets. However, the cardi-
nality of each color class remains fixed and the color classes need not induce connected subgraphs.
Results, again, include combinatorial characterizations to connected configuration space [16], NP-
completeness for the connectedness of the configuration space for k ≥ 3 colors, and a polynomial-
time algorithm for finding the shortest path for k = 2 colors. See [6, 27] for recent results on the
parametric complexity of these problems.

The problem of partitioning a graph G into k connected subgraphs with equal (or almost equal)
number of vertices is known as the Balanced Connected k-Partition Problem (BCPk), which
is NP-hard already for k = 2 [13], for grids in general [4], and also hard to approximate within an
absolute error of n1−δ [7].

3



Organization. Section 2 defines the reconfiguration problem formally, and describes some impor-
tant properties of shrinkable districts. Section 3 shows that Γk(G) is connected if G is biconnected,
and Γ′k(G) is connected if G is connected. Section 4 presents our PSPACE-completeness proof and
lower bounds for the diameter of Γk(G), and Section 5 continues with our NP-hardness results for
the shortest path problem. We conclude in Section 6 with open problems.

2 Preliminaries

Let G = (V,E) be a connected graph. A k-district map Π of G is a partition of V (G) into
disjoint nonempty subsets {V1, . . . , Vk} such that the subgraph induced by Vi is connected for all
i ∈ {1, . . . , k}. Each subgraph induced by Vi is called a district. We abuse the notation by writing
Π(v) for the subset in Π that contains vertex v. We now formally define the switch operation. Our
definition matches the previous informal description. Given a k-district map Π = {V1, . . . , Vk}, and
a path (u, v, w) in G such that Π(u) = Π(v) 6= Π(w), a switch (denoted switchΠ(u, v, w)) is an
operation that returns a k-district map obtained from Π by removing v from the subset Π(u) and
adding it to Π(w). More formally,

switchΠ(u, v, w) = Π′ = (Π \ {Π(u),Π(w)}) ∪ {Π(u) \ {v},Π(w) ∪ {v}}

if Π′ is a k-district map. Note that switchΠ(u, v, w) is not defined if Π(v)\{v} induces a disconnected
subgraph. A switch is always reversible since if switchΠ(u, v, w) = Π′, then switchΠ′(w, v, u) = Π.
We may omit the subscript when the map in which the switch is applied is clear from context. For
every graph G and integer k, the switch graph Γk(G) is the graph whose vertex set is the set of all
k-district maps of G, and Π1,Π2 ∈ V (Γk(G)) are connected by an edge if there exist u, v, w ∈ V (G)
such that switchΠ1(u, v, w) = Π2.

2.1 Block Trees and SPQR Trees

Biconnectivity plays an important role in our proofs. In particular, we rely on the concept of a
block tree, which represents the containment relation between the blocks (maximal biconnected
components) and the cut vertices of a connected graph, and a SPQR tree, which is a recursive
decomposition of a biconnected graph. We review both concepts here.

P

S
(a)

S

P

S R
R

(b)

Figure 1: (a) A connected graph and its block tree. Cut vertices are shown in red, and dotted lines
connect two occurrences of the same vertex in adjacent nodes of the block tree. (b) A 2-connected
graph and its SPQR tree. Virtual edges are shown in red. Corresponding pairs of virtual edges are
connected with dotted lines.

Block Trees. Let G be a connected graph. Let B(G) be the set of blocks of G. (Two adjacent
vertices induce a 2-connected subgraph, so a block may be a subgraph with a single edge.) Let C(G)
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be the set of cut vertices in G. Then the block tree T = T (G) is a bipartite graph, whose vertex
set is V (T ) = B(G)∪C(G), and T contains an edge (W, c) ∈ B(G)×C(G) if and only if c ∈W (i.e.,
block W contains vertex c). The definition immediately implies that a leaf and its unique neighbor
induce a block W ∈ B(G) (and never a cut vertex in C(G)). The block tree can be computed
in O(|E(G)|) time and space [22]. For convenience, we label every biconnected component by its
vertex set (i.e., for a block W ∈ B(G), we denote by W the set of vertices in the block).

SPQR Trees. Let G be a biconnected graph. A deletion of a (vertex) 2-cut {u, v} disconnects G
into two or more components C1, . . . , Ci, i ≥ 2. A split component of {u, v} is the subgraphs of
G induced by V (Cj) ∪ {u, v} for j = 1, . . . , i, or the graph induced by {u, v} if uv ∈ E(G). The
SPQR-tree TG of G represents a recursive decomposition of G defined by its 2-cuts. A node µ of
TG is associated with a multigraph called skeleton(µ) on a subset of V (G) obtained by adding a
virtual edge uv to a split component of the 2-cut {u, v}, or by creating a virtual (parallel) edge uv
for each split component of {u, v}. Hence, an edge in skeleton(µ) is real if it is an edge in G, or
virtual otherwise. A node µ has a type in {S,P,R}. If the type of µ is S, then skeleton(µ) is a cycle
of 3 or more vertices. If the type of µ is P, then skeleton(µ) consists of 3 or more parallel edges
between a pair of vertices. If the type of µ is R, then skeleton(µ) is a 3-connected graph on 4 or more
vertices. Two nodes µ1 and µ2 of TG are adjacent if skeleton(µ1) and skeleton(µ2) share exactly two
vertices, u and v, that form a 2-cut in G. Each virtual edge in skeleton(µ) has a corresponding pair
in skeleton(µ′) for some adjacent node µ′; see Figure 1(b). The graph G can be reconstructed from
the skeletons of the nodes in TG by identifying every pair of corresponding virtual edges and then
deleting all virtual edges. No two S nodes (resp., no two P nodes) are adjacent. Therefore, TG is
uniquely defined by G. If µ is a leaf in TG, then skeleton(µ) has a unique virtual edge; in particular
the type of every leaf is S or R. The SPQR tree TG has O(|E(G)|) nodes and can be computed in
O(|E(G)|) time [9].

2.2 Shrinkability

Consider a graph G and a k-district map Π. We say that the operation switchΠ(u, v, w) shrinks
Π(u) to Π(u) \ {v}, and expands Π(w) to Π(w) ∪ {v}. A sequence of switches shrinks (resp.,
expands) Vi to V ′i if there exists a sequence of consecutive switches that jointly shrink (resp.,
expand) Vi to V ′i . A subset Vi ∈ Π (and its induced district) is shrinkable if it can be shrunk to a
singleton (district of size one) by a sequence of |Vi| − 1 switches; otherwise it is unshrinkable. A
k-district map is shrinkable if each of its districts is shrinkable. A district Vi is said to contain a
block W ∈ B(G) if it contains all vertices in W .

In the remainder of this section we state some simple properties that will be used later.

Lemma 1. A switch operation cannot move a leaf of G from one district to another.

Proof. Let v ∈ V (G) be a leaf in G, and let u ∈ V (G) be its unique neighbor. Since v is a leaf there
is no path (u, v, w) and hence there is no valid switchΠ(u, v, w) moving v to another district.

Lemma 2. Let T be the block tree of a graph G, and let Π be a k-district map on G. If a district
V` contains two leaves of T , say Wi,Wj ∈ B(G), then a switch operation cannot move any vertex
from Wi ∪Wj to another district. Consequently, V` is unshrinkable.

Proof. Suppose, for the sake of contradiction, that Wi ∪Wj ⊆ V` and a switch moves some vertex
v ∈ Wi ∪Wj to another district. Since Wi and Wj are leaves in T , only their cut vertices can be
adjacent to vertices outside of Wi ∪Wj . Then, v is a cut vertex in Π(v) and Π(v) \ {v} does not
induce a connected subgraph in G, a contradiction.
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Since Wi 6= Wj , there are at least two vertices, one from each block, that remain in V` after any
sequence of switch operation. Consequently, V` cannot become a singleton.

Lemma 3. Let Π be a k-district map on G for some k ≥ 2, and let Vi ∈ Π such that Vi contains
at most one leaf of the block tree T of G. Then Vi is shrinkable. Furthermore,

• if Vi does not contain any leaf of the block tree, then Vi can be shrunk to any of its vertices;

• if Vi contains a leaf Wj ∈ B(G) of the block tree, then Vi can be shrunk to a vertex v if and
only if v ∈Wj and v is not the parent cut vertex of Wj.

In both cases, a sequence of |Vi| − 1 switches that shrink Vi can be computed in O(|E(G)|) time.

Proof. We first prove a necessary condition for shrinking a district to a target vertex. Assume that
Vi can be shrunk to a vertex t ∈ Vi, and Vi contains exactly one leaf Wj ∈ B(G) of the block tree.
Let cj be the parent cut vertex of Wj . Since every path between Wj \ {cj} and Vi \Wj contains
cj , no vertex in Wj \ {cj} can change districts until cj and all vertices of Vi outside of Wj have
switched to some other districts. At this point, we have Vi = Wj \ {cj}, consequently t ∈Wj \ {cj},
as required.

We next show that the above conditions are sufficient. Assume that Vi and a target vertex t ∈ Vi
satisfy the above restrictions. It is enough to show that if Vi 6= {t}, there exists a vertex v ∈ Vi \{t},
such that v can be switched to another district; and t and Vi \ {v} satisfy the conditions above.
Then we can successively switch all vertices in Vi \ {t} to other districts until Vi = {t}.

Let G′ be the subgraph induced by Vi. Compute the block tree of G′, and denote it by T ′. Root
T ′ at the block vertex in the tree that contains t. We distinguish between cases.

• If G′ is not biconnected, then G′ contains two or more leaf blocks. Let W ′ ∈ B(G′) be a
leaf block in T ′ other than the root, and let c′ ∈ C(G′) be its parent cut vertex. Note that
W ′ is not a leaf block in T , otherwise Vi would contain this leaf block, contradicting our
assumptions. Then, it is either a subset of a nonleaf block of T or a proper subset of a leaf
block of T . In either case, there exists a vertex v ∈W ′ \ {c′} adjacent to some vertex u 6∈ Vi.
Since W ′ is biconnected, W ′ \ {v} induces a connected subgraph in G; consequently Vi \ {v}
induces a connected subgraph, as well. Therefore, v can be switched to the district of u.

• If G′ is biconnected, then G′ is a subgraph of some block W ∈ B(G). We claim that there
exists a vertex v ∈ Vi \ {t} adjacent to some vertex u 6∈ Vi. To prove the claim, suppose the
contrary. Then every path between Vi \ {t} and V (G) \ Vi goes through t. This implies that
t is a cut vertex, and Vi is a leaf block in T , which contradicts our assumption. Now again, v
can be switched to the district of u.

First, note that the switch operation maintain the property that Vi contains at most one leaf block
of T . Indeed, since we shrink Vi, the number of leaf blocks contained in Vi monotonically decreases.
Second, we show that t remains a valid choice for the target vertex. If Vi \ {v} contains the same
leaf blocks as Vi, then t remains a valid target. Otherwise Vi contains a leaf block, say Wj , and
Vi \ {v} does not, then v is the parent cut vertex of Wj . In this case, t ∈ Vi \ {v}, and any vertex
in Vi \ {v} is a valid choice for t. This proves that Vi is shrinkable, as required.

Our proof is constructive and leads to an efficient algorithm that successively switches every
vertex in Vi \ {t} to some other districts until Vi = {t}. The block trees T and T ′ can be computed
in O(|E(G)|) time [22]. While Vi is shrunk, we maintain the induced subgraph G′, and the set of
edges between Vi and V (G) \ Vi in O(|E(G)|) total time. While T ′ contains two or more blocks,
we can successively switch all vertices of a leaf block W ′ that does not contain t to other districts;
eliminating the need for recomputing T ′. Then, the total running time is O(|E(G)|).
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Lemma 4. The shrinkability (resp., unshrinkability) of a k-district map on a graph G is invariant
under switch operations.

Proof. Every unshrinkable k-district map contains some unshrinkable district V`. Lemmas 2–3 show
that a subset V` ∈ Π is unshrinkable if and only if V` contains at least two leaves of the block tree,
say Wi,Wj ⊂ V`. By Lemma 3, Wi ∪ Wj ⊆ V` after any sequence of switches, so V` remains
unshrinkable. The rest of the proof is implied by the reversibility of switches.

3 Connectedness

In this section we characterize graphs G for which the switch graph Γk(G) is connected. We give
two results depending on the connectivity of G.

3.1 Biconnected Graphs

Theorem 5. For every biconnected graph G with n vertices, and for every integer 1 ≤ k ≤ n, the
switch graph Γk(G) is connected and its diameter is bounded by O(kn).

Proof. We may assume that 1 < k < n, otherwise Γk(G) is trivially connected. We present an
algorithm (Algorithm 1) that performs a sequence of switches that transform Π into a canonical
k-district map of G, that we denote by Π0. We show that Π0 depends only on G and k (but not on
Π). Consequently, any two k-district maps can be transformed to Π0, and Γk(G) is connected.

Algorithm 1 Canonical Algorithm for Biconnected Graphs

1: procedure Canonical(G, k,Π)
2: while k > 1 do
3: Compute the SPQR tree TG of G; order the leaves by DFS; let µ be the first leaf.
4: if µ is an S node (and skeleton(µ) is a cycle with one virtual edge) then
5: Let skeleton(µ) = (v1, . . . , vt), where v1vt is the virtual edge; set i = 2.
6: while i < t and k > 1 do
7: Shrink Π(vi) to {vi}.
8: Delete vertex vi from G, and put i := i+ 1 and k := k − 1.

9: else µ is an R node (and skeleton(µ) is triconnected)
10: Let v be an arbitrary vertex that is not incident to the (unique) virtual edge.
11: Shrink Π(v) to {v}.
12: Delete vertex v from G, and put k := k − 1.

Proof of Correctness. Algorithm 1 successively shrinks a district into a single vertex, and then
deletes this vertex from the graph, and the corresponding district from Π, until the number of
districts drops to 1. We need to show that each district that the algorithm shrinks into a singleton
is shrinkable. We prove an invariant that imply this property:

Claim 6. G remains connected and the district map Π remains shrinkable during Algorithm 1.

Proof. In a biconnected graph, every district is shrinkable by Lemma 3. Let µ be the leaf node in
line 3 of the algorithm. If µ is a R node, then the graph G remains biconnected after the deletion of
a vertex, and so the (k−1)-district map of the remaining graph is shrinkable. If µ is an S node, then
G obtained by deleting vertex vi is either biconnected or a biconnected graph with a “dangling”
path (vi+1, . . . , vt). In both cases, G has at most one leaf block (namely, a 1-edge block at the end of
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the dangling path). By Lemma 3, every district that contains at most one leaf block is shrinkable,
and so the district map remains shrinkable.

The following claim establishes that the switch graph Γk(G) is connected since it contains a
path from any district map to the district map produced by Algorithm 1.

Claim 7. The district map Π0 depends only on G and k.

Proof. The map Π0 contains the deleted singleton districts and one larger district. Since each vertex
deleted from the graph G was selected based on the current graph G, its SPQR tree, and the DFS
order of its leaves, the sequence of deleted vertices depends only on G and k.

Analysis. Algorithm 1 successively shrinks k − 1 districts into singletons. By Lemma 3, for each
district this is done by a sequence of O(n) switches that can be computed in O(|E(G)|) time. Overall
Algorithm 1 runs in O(k|E(G)|) time and performs O(kn) switch operations. For any two k-district
maps, Π1 and Π2, there exists a sequence of O(kn) switches that takes Π1 to Π0 and then to Π2.
Therefore, the diameter of Γk(G) is O(kn).

The following theorem shows that the upper bound in Theorem 5 is asymptotically tight.

Theorem 8. For all integers 1 ≤ k ≤ n, there exists a biconnected graph G with n vertices such
that the diameter of Γk(G) is Ω(k(n− k)).

Proof. Let G = Cn be the cycle with n vertices (v1, . . . , vn). We construct two k-district maps, Π1

and Π2. Let Π1 consist of Vi = {vi} for i = 1, . . . , k − 1, and Vk = {vk, . . . , vn}. The partition
Π2 is the copy of Π1 rotated by bn/2c, that is, V ′i = {vi+bn/2c} for i = 1, . . . , k − 1, and V ′k =
{vk+bn/2c, . . . , vn+bn/2c}, where we use arithmetic modulo n on the indices.

Assume that a sequence of switch operations takes Π1 to Π2. Note that the cyclic order of the
district cannot change, and so there is an integer r ∈ {0, . . . , k − 1} such that Vi is transformed to
V ′i+r mod k for all i ∈ {1, . . . , k}. For any r, at least k − 2 districts are singletons in both Π1 and
Π2. The sum of the shortest distances along Cn between the initial and target positions is a lower
bound for the number of switches.

If r ≤ bk/2c, then the shortest distance between the initial and target positions is at least
bn/2c − r ∈ Ω(n − k) for the districts Vi, i = 1 . . . , k − 1 − r; which sums to Ω(k(n − k)). If
bk/2c < r < k, then shortest distance is at least bn/2c − (k − r) ∈ Ω(n− k) for Vi, i = r, . . . , k − 1;
which also sums to Ω(k(n− k)).

3.2 Algorithm for General Connected Graphs

Recall that Γ′k(G) is the subgraph of Γk(G) induced by shrinkable district maps. IfG is a biconnected
graph, then every district map is shrinkable by Lemma 3, and so Γk(G) = Γ′k(G). In this section,
we extend this result to a larger family of graphs, showing that if G is connected, then Γ′k(G) is
connected. That is, any shrinkable k-district map can be carried to any other shrinkable k-district
by a sequence of switch operations.

Theorem 9. For every connected graph G with n vertices, and for every integer 1 ≤ k ≤ n, the
switch graph Γ′k(G) over shrinkable k-district maps is connected and its diameter is O(kn).

A crucial technical step is to move a district from one block to another, through a cut vertex.
This is accomplished in the following technical lemma.
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Lemma 10. Let G be a connected graph whose block tree contains at least two blocks, W1,W2 ∈
B(G), and let P be a shortest path from a vertex in W1 to a vertex in W2 (possibly, P has a single
vertex). Let Π be a district map of G in which each vertex of P is a singleton district, but W1

contains a district of size more than one. Then there is a sequence of O(|W1| + |P |) switches that
increases the number of districts in W1 by one, and decreases the number districts in W2 by one.

Proof. Let c1 ∈W1 and c2 ∈W2 be the two endpoints of P ; possibly c1 = c2. Note that c1, c2 ∈ C(G)
since P is a shortest path between W1 and W2. We claim that after O(|W1|) switch operations in
W1, we can find a path P ∗ = (p0, p1, . . . , pm) such that {p0, p1} is a 2-vertex district in W1, all
other vertices in P ∗ are singleton districts, and P = (p`, . . . , pm) for 1 ≤ ` ≤ m (with p` = c1 and
pm = c2). Assuming that this is possible, we can then successively perform switch(pi−1, pi, pi+1) for
i = 1, . . . ,m− 1, which replaces {p0, p1} by two singleton districts, and produces a 2-vertex district
{pm−1, pm}. Finally, we shrink this district to {pm−1} by Lemma 3, thereby decreasing the number
of districts in W2 by one. Overall, we have used O(|W1|+ |P ∗|) = O(|W1|+ |P |) switches.

To prove the claim, let G1 be the biconnected subgraph of G induced by W1. Let Q = (q1, . . . , qs)
be a shortest path between qs = c1 and a vertex in a district V0 ⊆W1 of size |V0| > 1. Since Q is a
shortest path, the vertices q2, . . . , qs are singleton districts. If |V0| = 2, say V0 = {q0, q1}, then we
can take P ∗ = (q0, q1, . . . , qs)⊕ P , where ⊕ is the concatenation operation.

Assume that |V0| > 2. Since G1 is biconnected, V0 can be shrunk to {q1} by a sequence of
|V0| − 1 = O(|W1|) switches by Lemma 3. Each switch in the sequence shrinks V0 and expands
some adjacent district. Perform the switches in this sequence until either (a) |V0| = 2, or (b)
some singleton district {qi}, i = 2, . . . , s, expands. In both cases, we find a path Q′ = (qi, . . . , qs),
i ∈ {1, . . . , s}, such that qi is in some 2-vertex district {q0, qi}, all other vertices in Q′ are singletons,
and qs = c1. Consequently, we can take P ∗ = (q0, qi, . . . , qs)⊕ P , as claimed.

We can now consider the general case. Let G be a connected graph with n vertices and let
1 ≤ k ≤ n. We present an algorithm (Algorithm 2) that transforms a given shrinkable k-district
map Π into one in pseudo-canonical form (defined below), and then show that any two k-district
maps in pseudo-canonical form can be transformed to each other. Consequently, any two shrinkable
k-district maps can be transformed into each other, and Γ′k(G) is connected.

(a) (b) (c) (d)

root root root
root

1W 2W
1W 1W 1W

2W 2W 2W

Figure 2: (a) A connected graph with nine blocks. (b) A pseudo-canonical 15-district map. Five
leaf districts are red and ten nonleaf districts are blue. (c) and (d): Pseudo-canonical district maps
obtained from (b) by moving districts from W2 to W1 by successive applications of Lemma 10.

We introduce some additional terminology; see Figure 2 (a). Let T be a block tree of G. Fix
an arbitrary leaf block R ∈ B(G). We consider T as an ordered tree, rooted at R, where the
children of each node are ordered arbitrarily. For a district map Π, we define a leaf district to
be a district that contains every vertex of some nonroot leaf block W ∈ B(G), with the possible
exception of its parent cut vertex c ∈ C(G). Note that a leaf district could have vertices outside the
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leaf block. Moreover, every leaf district Vi corresponds to a unique leaf block (otherwise Π would
be unshrinkable by Lemma 2), and we denote this block by leaf(Vi). A leaf district is shrinkable
into any vertex in leaf(Vi), except for c (cf. Lemma 3). Further note that a district may become a
leaf district over the course of the algorithm, while leaf districts remain leaf districts.

For every block W ∈ B(G), except for the root, we define a set down(W ) as follows. Let
c ∈ C(G) be the parent of W in T , let Vi be the district that contains c, and let down(W ) be the set
of vertices in Vi that lie in W or its descendants. The set down(W ) is an elbow if down(W ) 6= {c},
Vi is a leaf district, and down(W ) does not contain the block leaf(Vi); see Figure 3. An elbow is
maximal if it is not contained in another elbow. A leaf district is elbow-free if it does not contain
any elbows.

c

c0

c00
c000

Figure 3: Example for the definitions of down(.) and elbow. District Vi (pink) contains a leaf block
(purple). Let W , W ′, W ′′, and W ′′′ be the blocks whose parent cut vertices are c, c′, c′′, and c′′′,
resp. The set down(W ′) = Vi is not an elbow since it contains leaf(Vi). Vertices shown as squares
(triangles) are in down(W ′′) (down(W ′′′)). The vertices in down(W ) are shown as stars, squares
and triangles. Sets down(W ), down(W ′′) and down(W ′′′) are elbows while only the first is maximal.

A district map of G is in pseudo-canonical form if every block W ∈ B(G) satisfies one of the
following three mutually exclusive conditions (see Figure 2 for examples):

(i) all vertices in W are in singleton nonleaf districts;

(ii) all vertices of W , with the possible exception of the parent cut-vertex of W , are in the same leaf
district. Moreover, if W is not a leaf block, then this district contains the leftmost grandchild
block of W .

(iii) all vertices of W are in nonleaf districts, whose vertices are all contained in W , but not all are
singletons, and all ancestor (resp., descendant) blocks of W are of type (i) (resp., type (ii));

We refer to the condition that a block satisfies as its type. Notice that (iii) implies that blocks
of type (i) (or blocks of types (i) and (iii)) induce a connected subtree of T containing the root.
The proof of Theorem 9 is the combination of Lemmas 11 and 12.

Lemma 11. Let G be a connected graph with n vertices and let 1 ≤ k ≤ n. Every shrinkable
k-district map can be taken into pseudo-canonical form by a sequence of O(kn) switches.

Proof. Let Π be a shrinkable k-district map. Algorithm 2 (below) transforms Π into pseudo-
canonical form in three phases; refer to Figure 4. Each phase processes all blocks in B(G) in
DFS order of the block tree T . Phase 1 eliminates elbows. Phase 2 shrinks leaf districts such that
they are each confined to their leaf blocks. Phase 3 shrinks all nonleaf districts to singletons (or
possibly turns some nonleaf districts into leaf districts). We continue with the details.

In lines 3 and 7, Algorithm 2 shrinks down(W ) and W ∩ Vi, resp., into a singleton {c}. We
describe these subroutines here. In both cases, we invoke Lemma 3 for a district map Π′ on a
subgraph G′ of G; where Π′ is the restriction of Π to G′. In the first case, G′ is induced by c and
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its descendants. Note that down(W ) is a district in Π′, and it is shrinkable by Lemma 3 since
down(W ) is an elbow in G and contains no leaf districts. In the second case, G′ is obtained from
G by deleting all descendants of c. Now W ∩ Vi is a district in Π′ since Vi is a leaf district in Π,
W is the highest nonleaf block (in DFS order) that intersects Vi, and Vi does not contain elbows
by invariant (I1) below. By Lemma 3, W ∩ Vi is shrinkable as it lies in a single block W . In both
cases, Lemma 3 yields a sequence of switches that shrink down(W ) and W ∩ Vi, resp., to {c}.

In lines 13 and 16, Algorithm 2 shrinks a district Vi with c′ ∈ Vi to {c′}. In both cases, Vi is
shrinkable to c′ by Lemma 3, and the proof of Lemma 3 provides an algorithm that successively
switches vertices in Vi \ {c′} to other districts arbitrarily. However, this process might introduce
a new elbow. Here, we specify a particular a sequence of switches to ensure that no new elbows
are created. While Vi is not a singleton, identify a noncut-vertex v of Vi adjacent to a vertex w
in a nonleaf district Vj . (For example, see Figure 5(c)-(d) where W1 has the role of W ′.) If no
such vertex exists, choose v adjacent to a vertex w in a leaf district Vj that intersects the leftmost
grandchild block of W ′. (For example, see Figure 5(e)-(f) where W1 has the role of W ′.) Let u be
a neighbor of v in Vi, and apply switch(u, v, w).

Algorithm 2 Pseudo-Canonical Algorithm for Connected Graphs

1: procedure Pseudo-Canonical(G, k,Π)
2: for every nonroot block W ∈ B(G) in DFS order of T do
3: if down(W ) is an elbow then let c ∈ C(G) be W ’s parent, shrink down(W ) to {c}.
4: for every nonleaf block W ∈ B(G) in DFS order of T do
5: if W intersects a leaf district, then
6: for each leaf district Vi that intersects W do
7: shrink W ∩ Vi onto the cut-vertex c of W in the descending path of T to leaf(Vi);
8: apply an additional switch to contract Vi out of the block W .

9: for every block W ∈ B(G) in DFS order of T do
10: while W satisfies neither (i) nor (ii), and a grandchild W ′ of W is not of type (ii) do
11: if W is the root of T and W is contained in a single district, then
12: Let c′ be a noncut-vertex of W , and let Vi be the district containing c′;
13: Shrink Vi to {c′}.
14: else
15: Let c′ be the parent cut-vertex of W ′, and let Vi be the district containing c′;
16: Shrink Vi to {c′}.
17: if W ′ is still not of type (ii) and W is not of type (i), then
18: Use Lemma 10 with P = (c′) to move a district from W ′ to W .

19: if W still satisfies neither (i) nor (ii), then
20: Shrink the district containing the parent cut-vertex c of W to {c}.

Analysis of Algorithm 2. Note that maximal elbows are pairwise disjoint, and every block
intersects at most one maximal elbow (by the definition of down(W )).

Phase 1 (lines 2-3) iterates over all nonroot blocks. In the course of Phase 1, we maintain the
invariant that if W has been processed, then down(W ) is not an elbow. When the for-loop reaches
a block W where down(W ) is an elbow, then it is a maximal elbow due to the DFS traversal of T ,
and down(W ) is shrunk to a cut vertex c, and produces down(W ) = {c}, which is not an elbow.
We also show that this does not create any new elbows. Indeed, if a switch shrinks down(W ) out
of a cut vertex c′, then c′ is a descendant of c, and some district Vj that intersects a child block W ′

of c′ expands into c′. At this time, c′ becomes the highest vertex of Vj , and so down(W ′) contains
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leaf(Vj) if Vj is a leaf district (hence down(W ′) cannot be an elbow). Thus, we conclude that Phase 1
successively eliminates all elbows and does not create any new elbow. Since the maximal elbows
are pairwise disjoint, the sum of their cardinalities is at most n, and they can be shrunk with O(n)
switches. In Phases 2-3, we maintain invariant (I1): There are no elbows in the district map.

Phase 2 (lines 4-8) is a for-loop over all nonleaf blocks. In the course of Phase 2, we maintain
the invariant that if W has been processed, then W is disjoint from leaf districts. When the for-
loop reaches a block W that intersects a leaf district Vi, then Vi has no elbows by invariant (I1),
and the ancestors of W are disjoint from Vi (because we visit blocks in DFS order). Consequently
Vi ∩W is shrinkable to the child of W that leads to the leaf block leaf(Vi). For each leaf district
Vi, Phase 2 uses O(n) switches to shrink Vi, and O(kn) switches overall. No elbows are created
since leaf districts are never expanded to a block they do not already intersect (with the possible
exception of the parent cut vertex of a block). In Phase 3, we maintain invariant (I2): If a leaf
district intersects a block, then such block is of type (ii).

Phase 3 (lines 9-20) is a for-loop over all blocks W ∈ B(G); see Figure 5 for an example of
the execution of this phase. In the course of Phase 3, we maintain the invariant that if W has
been processed, it satisfies condition (i), (ii), or (iii) in the definition of pseudo-canonical forms.
Indeed, for every block W , the switch operations modify only W or its descendants. The fact
that we are processing W means that its grandparent is of type (i) when we begin processing
W . Then, W intersects more than one district and we can shrink Vi to {c′} in line 16 without
expanding any districts not contained in W and in ancestors of W . This already implies that (I1)
is maintained. Furthermore, if W satisfies conditions (i) or (ii), then the districts in W remain
unchanged. Otherwise, the while-loop (lines 10-18) ensures that every district that intersects W
is contained in W . In each iteration of the while-loop, Vi is a nonleaf district by (I2), and Vi is
contained in the union of W and its descendants. The switches in lines 13 and 16 do not decrease
the number of districts in W . The preference of expansions to shrink Vi to {c′} ensures that (I2)
is maintained for leaf districts. Indeed, such a switch may expand a leaf district if there is no
other option: in this case Vi contains an entire block W ∗, which is a descendant of W and whose
grandchildren are of type (ii); after shrinking Vi to the parent cut-vertex of W ∗ expanding a leaf
district, W ∗ becomes of type (ii). Using Lemma 10 in line 18 ensures that, eventually, W is of
type (i) or (ii), or all its grandchildren are of type (ii). Finally, when the while loop terminates,
lines 19-20 ensure that the parent cut vertex of W is a singleton, and so all ancestors of W comprise
singletons. In Phase 3, O(n) switches shrink each district, amounting to O(kn) switches overall.

We have shown that Algorithm 2 takes any input district map Π into pseudo-canonical form.
The three phases jointly use O(kn) switches, as claimed.

We now introduce a method to transform a pseudo-canonical k-district map into another.

Lemma 12. Let G be a connected graph with n vertices and let k ≤ n be a positive integer. For
any two pseudo-canonical k-district maps, Π1 and Π2, there is a sequence of O(kn) switches that
take Π1 to Π2.

Proof. Our proof is constructive: for a given district map Π in pseudo-canonical form, we assign
every leaf district to the unique leaf block it intersects, and assign every nonleaf district to the
highest (closest to the root) block in T it is contained in. For every block W ∈ B(G), let dΠ(W )
be the number of districts assigned to W in Π. Notice that

∑
W∈B(G) dΠ(W ) = k.

First, we explain how to transform Π1 into an intermediate pseudo-canonical district map Πm

so that dΠm(W ) = dΠ2(W ) for every block W ∈ B(G).
Suppose that dΠ1(W ) 6= dΠ2(W ) for some block W ∈ B(G) (otherwise, we can trivially set

Πm = Π1). Since
∑

W∈B(G) dΠ1(W ) =
∑

W∈B(G) dΠ2(W ) = k, there exist blocks W1,W2 ∈ B(G)
such that dΠ1(W1) < dΠ2(W1) and dΠ1(W2) > dΠ2(W2).
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root

(a)

root

(b)

root

(c)

root

(d)

c c

Figure 4: (a) A 12-district map of a graph. The four leaf districts are red, eight nonleaf districts
are blue; c is the highest cut vertex in an elbow whose vertices are shown as stars. (b), (c), and (d)
show the result of Phases 1, 2, and 3 of Algorithm 2, respectively. In Phase 3, a nonleaf district
becomes a leaf district (shaded purple).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5: Breakdown of the example of Phase 3 from Figure 4(c) to Figure 4(d). The condition in
line 10 is satisfied in (a) and (b) where W is the root block, (c), (e), (f), (h) and (j) where W is
the grandchild of the root block. Only in (a) the conditions in line 11 are satisfied. Lemma 10 (line
18) is applied in (d), (g), and (i). While shrinking a district Vi in Figure 5(j), a nonleaf district
becomes a leaf district in Figure 5(k). Continuing the shrinking, causes W2 to become type (ii) in
Figure 5(l).
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Claim 13. Let W1 (resp., W2) be a highest (resp., lowest) block such that dΠ1(W1) < dΠ2(W1)
(resp., dΠ1(W2) > dΠ2(W2)), then all ancestor blocks of W1 and W2 are of type (i) in Π1, and all
descendant blocks of W1 and W2 are of type (ii) in Π1.

Proof. Notice that if a block is of type (i) (resp., type (ii)) then it has been assigned with the
maximum (resp., minimum) number of districts that it can possibly be assigned to. Then, W1

cannot be of type (i) in Π1 and it cannot be of type (ii) in Π2. By the definition of pseudo-canonical
forms, all descendant (resp., ancestor) blocks of W1 are of type (ii) (resp., type (i)) in Π1 (resp.,
Π2). By the choice of W1, all ancestor blocks of W1 are of type (i) in Π1. An analogous argument
proves the claim for W2.

Next, we construct an intermediate district map Πm by successively reducing the difference in
the d functions. While dΠ1 6= dΠ2 , we transform Π1 into another district map Π′1 in pseudo-canonical
form such that ∑

W∈B(G)

|dΠ′
1
(W )− dΠ2(W )| <

∑
W∈B(G)

|dΠ1(W )− dΠ2(W )|. (1)

Let W1 and W2 be blocks chosen as in Claim 13, let c1 and c2 be their respective parent cut-vertices,
and let P be a shortest path between c1 and c2. By Claim 13, all blocks along P are of type (i) in
Π1, and so every vertex in P is in a singleton district. Applying Lemma 10 to Π1, we can move a
district from W2 to W1 using O(|W1|+ |P |) ≤ O(n) switches. We need to make sure that the new
map is also in pseudo- canonical form. If dΠ1(W1) = 0 (i.e., W1 is of type (ii), but not a leaf block)
shrink the leaf district out of W1 by expanding the new nonleaf district that has moved into W1.
If W2 consists of a single (nonleaf) district, shrink it onto {c2} while expanding the leaf district of
its leftmost grandchild W ′2. The number of districts assigned to a block changes only in W1, W2,
and (possibly) W ′2. The procedure described above increases d(W1) by one, and decreases d(W2)
(and possibly d(W ′2)) by one, making the difference smaller as claimed. The type of W1 (resp., W2)
becomes (i) or (iii) (resp., (iii) or (ii)) and, by Claim 13, Π′1 is in pseudo-canonical form.

In summary: while dΠ1 6= dΠ2 , we repeat the above procedure. When the while loop ends, we
find a pseudo-canonical district map Πm such that

∑
W∈B(G) |dΠm(W ) − dΠ2(W )| = 0 (and thus

dΠm = dΠ2). Initially
∑

W∈B(G) |dΠ1(W )− dΠ2(W )| ≤ 2k and each step decreases the difference by
at least one, and so at most 2k iterations will be needed. Since each iteration takes O(n) switches,
this process uses O(nk) switches overall.

In order to complete the proof of Lemma 12, we need to show how to reconfigure Πm to Π2.
Recall that both district maps are in pseudo-canonical form and they satisfy dΠm = dΠ2 . Further, if
a district map is in pseudo-canonical form, each block is of one of three possible types. We claim that
every block of G is of the same type in both Πm and Π2. For ease of notation, we assume Π1 = Πm.
If W is the root and dΠi(W ) = |W |, i ∈ {1, 2}, or W is a nonroot block and dΠi(W ) = |W | − 1,
then W is of type (i). If W is a leaf block and dΠi(W ) = 1, or W is a nonleaf block and dΠi(W ) = 0
then W is of type (ii). Else, W is of type (iii). This implies that every block of type (i) consists of
singletons; and the union of blocks of type (ii) are partitioned identically into leaf districts in both
Π1 and Π2 since, by definition of type (ii), the leaf district that intersects the block must contain
the leftmost grandchild block, and by the fact that there are no elbows. Thus, no switches are
required in these blocks. Blocks of type (iii) each contain the same number of districts in both Π1

and Π2. These blocks are pairwise disjoint by definition and all districts that intersect such a block
is entirely contained in that block. Applying Algorithm 1 to each block W of type (iii), both Π1

and Π2 transform to the same district map in O(k|W |) switches s by Theorem 5. Overall, this takes
O(kn) switches, completing the proof of Lemma 12.
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3.3 Characterization of Connected Switch Graphs

Using Lemmas 2–4 and Theorem 9, we can characterize the pairs (G, k), of a connected graph G
and a positive integer k, for which the switch graph Γk(G) is connected (cf. Theorem 17 below).

Lemma 14. For a connected graph G with n vertices and an integer 1 ≤ k ≤ n, the switch graph
Γk(G) is connected if and only if k = 1 or every k-district map is shrinkable (i.e., Γk(G) = Γ′k(G)).

Proof. The case that k = 1 is trivial, as Γk(G) is a singleton. Assume k ≥ 2 for the remainder
of the proof. If every k-district map is shrinkable (i.e., Γk(G) = Γ′k(G)), then Γ′k(G) is connected
by Theorem 9, and so Γk(G) is connected. If some k-district maps are shrinkable and some are
unshrinkable, then Γk(G) is disconnected, since there is no edge between the set of shrinkable and
unshrinkable district maps by Lemma 4.

Finally, assume that every k-district map is unshrinkable in G. We show that Γk(G) is discon-
nected. Let Π1 be an arbitrary k-district map. By Lemmas 2–3, some district Vi ∈ Π1 contains two
leaf blocks of the block graph, say Wa,Wb ∈ B(G), with parent cut vertices ca, cb ∈ C(G) (possibly
ca = cb). Since G is connected and k ≥ 2, there exists a district Vj adjacent to Vi. We construct a
k-district map Π2 from Π1 by replacing Vi and Vj with V ′i := Wa \ {ca} and V ′j := (Vi ∪ Vj) \ V ′i .
Importantly, none of the districts in Π2 contain both Wa and Wb; and by Lemma 2, every sequence
of switch operations transforms Vi to a district that contains both Wa and Wb. Thus Γk(G) does
not contain any path between Π1 and Π2, as required.

Lemma 2 allows us to efficiently check whether a connected graph G admits an unshrinkable
k-district map. Let G be connected but not biconnected. For two leaf blocks W1,W2 ∈ B(G), let
P (W1,W2) denote the union of W1, W2, and the set of vertices along a shortest path in G between
W1 and W2. Let M = min{|P (W1,W2)| : W1,W2 ∈ B(G) leaf blocks}.

Lemma 15. Let G be a connected graph with n vertices that is connected but not biconnected, and
let k ≤ n be a positive integer. Every k-district map in G is shrinkable if and only if n− k ≤M .

Proof. If n−k ≤M , then every district in a k-district map contains fewer than M vertices. By the
definition of M , none of these districts can contain two leaf blocks, and, therefore, are shrinkable.

If M > n−k, then we construct a k-district map for G in which one of the districts is unshrink-
able. Let V̂ ⊂ V (G) be a vertex set of minimum cardinality that contains two leaf blocks in B(G)
and a shortest path between them. By definition, we have |V̂ | = M . By partitioning V (G) \ V̂ into
singletons, we obtain a k̂-district map Π̂, where k̂ = n −M + 1, and V̂ ∈ Π̂. Successively merge
pairs of adjacent districts until the number of districts drops to k (recall that G is connected, so
some pair of districts are always adjacent). We obtain a k-district map Π, where one of the districts
contains V̂ , and is unshrinkable by Lemma 2, as required.

Lemma 16. We can compute the value M in O(n+m) time, where n = |V (G)| and m = |E(G)|.

Proof. Given a connected graph G = (V,E), first compute the block tree, and modify G as follows:
replace each leaf block by a path with the same number of vertices, such that one endpoint is the
original cut vertex (and hence the other endpoint is a leaf), and denote by G′ the resulting graph.
Then we run a modified multi-source BFS on G′, starting from the leaves. The algorithm assigns
two labels to every vertex v ∈ V (G′), the level `(v) and a cluster c(v). Initially, each leaf v ∈ V (G′)
is assigned level `(v) = 0 and clusters c(v) = v. When the BFS visits a new vertex v along an edge
uv, it sets `(v) := `(u)+1 and c(v) := c(u). Clearly, `(v) is the distance from v to the closest leaf in
G′, and c(v) is one such leaf. After the BFS termination, our algorithm finds an edge uv ∈ E(G′)
such that c(u) 6= c(v) and `(u) + `(v) is minimal, and returns `(u) + `(v) + 2.
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The modified BFS runs in O(n+m) time, and a desired edge uv can be found in O(m) additional
time, so the overall running time is O(n+m). It remains to prove that M = `(u) + `(v) + 2. Note
that u and v are at distance `(u) and `(v), resp., from the leaves c(u) and c(v). The cluster of c(u)
(resp., c(v)) contains a shortest path from u to c(u) (resp., from v to c(v)), and so these shortest
paths are disjoint. The concatenation of the two shortest paths is a shortest path P ′ between the
leaves c(u) and c(v), and it has `(u) + `(v) + 2 vertices. The path P ′ contains the chains incident
to u and v in G′. By the definition of G′, these chains correspond to leaf blocks W1 and W2 of the
same size in G. Consequently, `(u) + `(v) + 2 = P (W1,W2) Therefore, M ≤ `(u) + `(v) + 2.

Conversely, assume that M = P (W1,W2) for some leaf blocks W1,W2 ∈ B(G). These leaf
blocks correspond to chains ending in two leaves, say W ′1 and W ′2, in G′. By construction, the
distance between W ′1 and W ′2 is dG′(W ′1,W

′
2) = M − 1. Let P ′ be a shortest path between W ′1

and W ′2. We claim that for every vertex v′ in P ′, `(v′) is the minimum distance to {W ′1,W ′2}, i.e.,
`(v′) = min{dG′(v,W1), dG′(v,W2)}. Suppose, to the contrary, that there is a vertex v′ in P ′ for
which `(v) 6= min{dG′(v′,W ′1), dG′(v′,W ′2)}. Since `(v′) is the minimum distance to some leaf in G′,
we have `(v′) = dG′(v,W ′3) for a leaf W ′3, and `(v′) < min{dG′(v′,W ′1), dG′(v′,W ′2)}. As v′ is in the
path P ′, dG′(v′,W ′1) +dG′(v′,W ′2) = dG′(W ′1,W

′
2) = M − 1. By the triangle inequality, dG′(W ′1,W

′
3)

or dG′(W ′2,W
′
3) is less than dG′(W ′1,W

′
2), contradicting the minimality of P (W1,W2). Now P ′

contains two consecutive vertices, say u∗ and v∗, such that `(u∗) = dG′(u∗,W ′1), `(v∗) = dG′(v∗,W ′2),
and c(u∗) 6= c(v∗). The sum of their distances to the two endpoints of P ′ is `(u∗) + `(v∗) =
(M − 1)− 1 = M − 2, hence M = `(u∗) + `(v∗) + 2. Then, `(u) + `(v) + 2 ≤M , as required.

The combination of Theorem 5 and Lemmas 14–16 yields the following result.

Theorem 17. For a connected graph G with n vertices and a positive integer k ≤ n, the switch
graph Γk(G) is connected if and only if G is biconnected or k + M ≥ n, which can be tested in
O(n+m) time, where m = |E(G)|.

4 PSPACE-Completeness for Connectedness

In the connectedness problem, we are given a graph G, and two k-district maps, ΠA and ΠB, for
some integer 1 ≤ k ≤ n, and ask whether ΠA and ΠB are in the same component of the switch graph
Γk(G). In this section, we show that this problem is PSPACE-complete. Further, we show that
the problem remains PSPACE-complete even if (i) we restrict G to be a planar graph of maximum
degree 6, or (ii) we restrict the number of districts to k = 2. As an immediate consequence, we show
that the diameter of a connected component of Γk(G) may be as large as 2Ω(n) where n = |V (G)|.
Membership in PSPACE is justified by the fact that a nondeterministic machine can explore Γk(G)
storing one district map at a time, so we focus now on proving hardness.

4.1 PSPACE-Hardness for General Graphs with Many Districts

We prove PSPACE-hardness by a reduction from the reconfiguration problem for Nondeterministic
Constraint Logic (abbreviated NCL), which is known to be PSPACE-complete [20]. In this problem,
we are given an NCL graph, which is a planar cubic graph where each edge is colored either blue or
red, and each vertex is either an OR vertex incident on 3 blue edges, or an AND vertex incident on
2 red edges and 1 blue edge. An NCL graph with an orientation assigned to its edges is considered
satisfied if all of its vertices are satisfied; an OR vertex is satisfied when at least one edge is
oriented towards it, and an AND vertex is satisfied when both of its red edges are oriented towards
it or its blue edge is oriented towards it. In the NCL reconfiguration problem, we are given an
initial and a final orientation that both satisfy an NCL graph, and must decide whether one can
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be reconfigured into the other by flipping the orientation of one edge at a time in such a way that
after each flip the NCL graph is satisfied.

Given an NCL graph GNCL, we create a graph G as follows. First create OR and AND gadgets
of 7 and 9 vertices, respectively. The adjacencies between the vertices are shown in Figure 6. Given
a vertex v ∈ GNCL, we denote the corresponding gadget F (v). For each gadget, the labelled vertices
in Figure 6 are terminals, and the unlabelled vertices that are adjacent to the leaves are called
anchors.

�

�

�

�

��

�

��

�

��

Figure 6: Gadgets for OR and AND vertices (left and right, respectively)

For the AND gadget, we call the two degree-two terminals (a and b) red terminals, and the
degree-three terminal (c) a blue terminal. Each edge of GNCL corresponds to a terminal in two
gadgets, one for each vertex that edge is incident to (as shown by the labels in Figure 6), and
thus we identify terminals of different gadgets that correspond to the same edge (Figure 7). This
concludes the construction of G.

a=c'

c

b a'

b'

Figure 7: Two gadgets glued together along a shared terminal.

It remains to construct an initial and a final district map for G to simulate the initial and
final orientations in GNCL. Given an orientation O on GNCL, construct a district map ΠO for G
as follows: for every vertex v ∈ GNCL, we construct a district that will contain most vertices of
the gadget F (v). This district always contains all anchors and leaves of that gadget. In addition,
it contains the terminal corresponding to every edge e orientated towards v in O (see Figure 8).
Note that every district in the initial or the final configuration contains at least two leaves. By
Lemma 2, these leaves and their anchors cannot be moved to another district by any sequence of
switch operations. Thus each district is tied to its respective gadget, that is,

(?) there is a one-to-one correspondence between the districts and the gadgets that remains in-
variant under 1-switch operations.
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Figure 8: An orientation of an OR vertex and its associated district map

Lemma 18. The district map ΠO over G is well defined if and only if the orientation O on GNCL
is satisfying.

Proof. Consider an AND vertex and its associated gadget. We know by property (?), that the
district corresponding to this gadget must contain three anchor vertices and three leaves. In order
for the district to be connected it must contain (i) either the terminal associated with the blue
edge (c in Figure 6), or (ii) both terminals associated with red edges (a and b in Figure 6). This is
equivalent to saying that the AND vertex is satisfied by O.

Similarly, for the gadget associated to an OR vertex, its corresponding district has two anchors
and two unlabelled leaves. In order for these vertices to remain connected within the district, the
district must contain any of the three terminals of the gadget. This is equivalent to saying that O
satisfies the OR vertex.

Lemma 19 (Flip-Switch Equivalence). For every district map ΠO1 on G obtained from an orien-
tation O1 on GNCL, every 1-switch operation on ΠO1 yields a map Π such that Π = ΠO2 where O2

is an orientation on GNCL that differs from O1 by the orientation of a single edge. Similarly, for
an orientation O3 on GNCL obtained from O1 by flipping the orientation of a single edge, there is
a 1-switch operation that takes ΠO1 to ΠO3.

Proof. Consider an edge e in G whose endpoints are in different districts in ΠO1 . By construction of
our gadgets and Lemma 2, e = rt for an anchor r and a terminal t. Further, note that the district
ΠO1(t) containing t cannot absorb r since the leaf adjacent to r would disconnect from the rest of
its district, violating the requirement that districts stay connected. Thus, the only 1-switch we can
perform along e is one in which the district ΠO1(r) containing r expands to t. This is precisely
the district map ΠO2 where O2 is the orientation we get by flipping the orientation of the edge
associated with t in O1.

Conversely, let e′ be the only edge in GNCL whose orientation differs in O1 and O3. By con-
struction, e′ corresponds to a terminal ve′ , which is adjacent to anchors in two distinct districts, and
ΠO1 and ΠO3 differ only by the membership of ve′ . Hence ΠO3 is obtained from ΠO3 by performing
a single 1-switch operation that moves ve′ from one district to the other.

Lemma 19 implies the following theorem:

Theorem 20. Given a graph G, and two k-district maps ΠA and ΠB on G, it is PSPACE-complete
to determine whether ΠA and ΠB are in the same connected component of Γk(G).
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4.2 PSPACE-Hardness for Planar Graphs

We now modify the reduction described in Section 4.1 so that it creates a planar graph G for a given
NCL graph GNCL. Recall that the NCL graph GNCL is a planar cubic graph. Thus, to ensure that
G is planar, it suffices that each gadget admits a planar drawing with terminals in the outer face.

The gadget associated with an AND vertex already satisfies this condition. In this section, we
construct a slightly more complicated gadget which behaves like an OR vertex and admits a planar
drawing with all of its terminals on the outer face. Refer to Figure 9. As before, the labeled vertices
are the terminals for this gadget, and each terminal must be identified with the terminal of the
neighboring gadget as previously described. Apart from terminals, there are three leafs and three
anchors and an copy of K3 (i.e., a 3-cycle) in the middle of the gadget. The three anchors are
adjacent to distinct vertices of the 3-cylce.

a

bc

b

a

c

Figure 9: Modified planar OR gadget

Unlike the previous gadgets, this gadget comes equipped with two districts: one called the
guard that interacts with other gadgets (shown in thin red in Figure 9), defined as the district
that contains all three leafs and anchors of the gadget, and one called the prisoner that is trapped
inside of this gadget (shown in bold green in Figure 9), defined as a district that is not the guard
and that consists of some vertices of the 3-cycle. The correspondence between valid orientations of
GNCL, and district maps containing a guard and a unique prisoner district is defined as follows. At
least one vertex in the 3-cycle in the gadget is in the prisoner district. We define only the prisoner
district and let the guard district contain all remaining vertices of the gadget, except the terminals
associated with edges of GNCL oriented away from the corresponding vertex (see Figure 9). If the
indegee of the OR vertex in GNCL is 2 or 3, the prisoner district can be any nonempty set of vertices
in the 3-cycle. Otherwise, the indegree of the OR vertex is exactly one, and the guard district will
contain exactly one of the three terminals. In that case, the prisoner district contains either of the
two vertices of the 3-cylce that are within distance 2 from the terminal vertex within the guard
district. We now prove that, after any sequence of 1-switches, these properties of the guard and
prisoner districts continue to hold, and they each induce a connected subgraph in G if and only if
they correspond to a satisfying orientation of GNCL.

Lemma 21. The modified OR gadget behaves as the original OR gadget.

Proof. As was the case for the original OR gadget, we can see that a satisfying orientation of the
NCL graph will create a connected district map for this new gadget and vice versa (the guard
district will be connected if and only if it contains at least one terminal, and the prisoner district is
always connected because it consists of a subgraph of the complete graph K3).
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Once again, Lemma 2 guarantees that the three leaves and the adjacent anchors of a guard
district remain in the same district under any sequence of switch operations. Further, since the
prisoner is on a 3-cycle which is only adjacent to cut vertices (anchors) in the guard district, which
remain in the same district by Lemma 2, the prisoner can never escape from this 3-cycle and the
number of prisoners cannot change in a gadget. Thus, similarly to property (?) in Section 4.1, we
can uniquely identify an OR gadget with the two districts it must always contain.

Figure 10: Transitioning from owning only the bottom left terminal to owning only the top terminal

We have seen that the modified OR gadget is satisfied in a static state by the same conditions
as the original OR gadget; it remains to show that there is a valid transition between any two states
corresponding to valid orientations of edges in GNCL that differ by a flip.

As noted above, a guard district always contains all of its initial three anchors, and every
terminal in its OR gadget is either in the guard district or adjacent to an anchor in the guard
district. Therefore, a sequence of 1-switch operations can always transition to a state where the
guards district contains two or more terminals (two or more incoming blue edges). If the guard
gadget contains two or three terminals, the prisoner district can move freely within the central
triangle. It follows that, from a state where the guard district contains two terminals (two incoming
blue edges), the modified OR gadget can transition to a state where it contains only one of the
original two (a single incoming blue edge). As an illustration, Figure 10 shows how the gadget can
transition between states where the guard district contains any one single terminal (a single blue
edge directed inwards) through intermediate states where it contains two (two blue edges oriented
inwards). Note that there are two different district maps that correspond to the same orientation
when there is a single blue edge is oriented towards an OR vertex.

Conversely, since the three terminals of a modified OR gadget are incident to distinct other
gadgets (as GNCL is a simple graph), a single switch can only add or remove one terminal to a
guard district, hence only states that represent orientations differing by a single flip are adjacent in
Γk(G).

Theorem 22. Given a planar graph G of maximum degree 6, and two k-district maps ΠA and ΠB

over G, it is PSPACE-complete to determine if ΠA and ΠB are in the same connected component
of Γk(G).
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4.3 PSPACE-Hardness for Two-District Maps

In order to prove hardness in presence of only two districts, we modify the reduction described in
Section 4.1 as follows. We start by subdividing every edge in the NCL graph GNCL and creating
degree-two vertices which are satisfied so long as they have in-degree at least one. The addition
of these vertices has no effect on the reconfiguration space; these extra vertices simply propagate
signals from one vertex to another. We can then assume that GNCL is bipartite: one partite set
containing only degree-2 vertices, and the other partite set containing the original AND and OR
vertices.

To build a gadget that simulates degree-two NCL vertices, simply take the original nonplanar OR
gadget and delete one of its terminals. The resulting gadget has two terminals, both of which provide
independent paths between the two anchor/leaf pairs in the gadget, so the district corresponding
to this gadget will be connected if and only if it owns at least one of its terminals. An example of
this gadget appears in the center of Figure 11.

Figure 11: Transforming orientation on subdivided GNCL to 2-district map over G.

Now, construct G from this subdivided version of GNCL similar to Section 4.1 (using the original
nonplanar OR gadget). The subdivided version of GNCL has three types of vertices: OR, AND,
and subdivision vertices. Each vertex is replaced by a gadget for the corresponding type. Next,
create a vertex x with one leaf x` attached to it, and an edge connecting x to one anchor in every
degree-two vertex gadget (either anchor is fine). Then create a vertex y with one leaf y` attached
to it, and add an edge connecting y to one anchor in every OR and AND gadget (again any anchor
is fine).

Finally, given an orientation on GNCL, we start by building a district map on G in the same way
as before, but after we have built this map, we merge all the districts on degree-two gadgets into a
single district also containing x and x`, and then merge all the districts on AND and OR vertices
into another single district also containing y and y`. This construction is shown in Figure 11.

Theorem 23. Given a graph G and two 2-district maps ΠA and ΠB over G, it is PSPACE-complete
to determine if ΠA and ΠB are in the same connected component of Γ2(G).

Proof. Since the leaves x` and y`, and the leaves in every gadget must remain in their respective
districts, and x and y are only adjacent to one anchor in each gadget, the connectivity requirements
within each gadget remain, and thus every argument in Lemma 18 still applies. The two partite sets
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of GNCL form the basis of the two districts in our map. Thus, every adjacency between two gadgets
in G is between gadgets in different districts, and conversely adjacency between the two districts is
always between two neighboring gadgets. So all of the arguments in Lemma 19 still apply, yielding
the stated result.

4.4 Exponential Diameter

The following theorem is implicit in the reduction from QSAT to NCL in [20].

Theorem 24. For every n ∈ N there exist a planar NCL graph GNCL on n vertices and initial and
final orientations A,B on GNCL such that 2Θ(n) edge flips are necessary and sufficient to reconfigure
A into B.

Proof. First, take the construction in Figure 4 of [20] showing an NCL graph which simulates
a quantified formula evaluator. Now modify all n quantifier blocks in this construction to be
universally quantified. Next, build any tautological boolean formula on n variables which can be
expressed using a linear number of NCL gates; in particular the disjunction x1 ∨ x1 ∨ . . . ∨ xn ∨ xn
suffices. The resulting NCL graph thus has a total number of vertices and edges linear in the number
of quantifiers. By Lemma 3 of the same paper we see that the ith universal quantifier cannot have
its satisfied-out edge flipped until the remainder of the quantified formula is evaluated under both
variable assignments of xi, so if a reconfiguration exists it requires at least 2Ω(n) edge flips; and
in this case a reconfiguration is possible with 2O(n) edge flips since all quantifiers are existential
and the formula is a tautology. Since the original QSAT reduction contains some edge crossings,
one might worry that in deploying crossover gadgets that ensure planarity we may see a quadratic
blow-up in the size of the graph, weakening our bound to 2Ω(

√
n) in the planar case. However, by

inspection we see that each universal quantifier gadget contains only three edge crossings, and the
formula x1 ∨ x1 ∨ . . .∨ xn ∨ xn can be constructed as a perfect binary tree with no crossings, so our
lower bound holds in the planar case, as well.

Corollary 25. The diameter of a connected component of Γk(G) can be as large as 2Ω(n) where
n = |V (G)|, even if G is a planar graph of maximum degree 6, or if k = 2.

Proof. Since our reduction creates a redistricting instance over a graph linear in the size of the
original NCL graph, this result follows from the reductions in Sections 4.1–4.3 and Theorem 24.

5 Hardness for Shortest Paths

In the previous section we showed that it is PSPACE-complete to decide whether two district maps
on G are in the same component of Γk(G). Hardness here crucially relied on the fact that Γk(G)
can have many connected components, each with potentially exponential diameter. In this section,
we show that even if we constrain G to be biconnected, and thus Γk(G) to be connected with
polynomially bounded diameter (cf. Theorem 5), the problem of finding a shortest path from one
district map to another in Γk(G) is NP-hard. We start by showing NP-hardness for arbitrary graphs
(Lemma 28) and then strengthen it to biconnected graphs (Theorem 29). The decision problem
can be formally stated as follows: we are given a graph G, two k-district maps, ΠA and ΠB, and an
integer L ≥ 0, and ask whether a sequence of at most L switches can take ΠA to ΠB. Let us denote
this problem by R(G,ΠA,ΠB, L).

We present a polynomial-time reduction from 3SAT. An instance of 3SAT consists of a boolean
formula ϕ in 3CNF. Let m and n be the number of clauses and the number of variables, respectively,
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in ϕ. We construct, for a given 3SAT instance ϕ, a graph G(ϕ), two district maps ΠA(ϕ) and ΠB(ϕ),
and a nonnegative integer L(ϕ). We then show that ϕ is satisfiable if and only if the instance
R(G(ϕ),ΠA(ϕ),ΠB(ϕ), L(ϕ)) of the redistricting problem is positive.

O

I

d(ϕ)

`i,2

`i,3

`i,1

`i,4

`i,5

di,1

di,2

ri,2

ri,3

ri,4

ri,5

ri,1

ui,2

ui,1

Gi ri,5

Figure 12: A variable gadget (left) and a districting pipe (right)

We construct the graph G(ϕ) as follows:

1. For every variable xi, construct a variable gadget Gi, shown in Figure 12 (left).

2. For every clause cj , a clause gadget Hj consists of two adjacent vertices, cj,1 and cj,2. See
Figure 13 (top).

3. For every variable xi appearing in a clause cj , if xi is nonnegated (negated) in cj , insert an
edge between cj,2 and `i,1 (ri,1).

4. Next, we add a subgraph, called a districting pipe d(ϕ), that consists of m+n+ 1 vertices.
The districting pipe is a complete bipartite graph between a 2-element partite set {O, I} and
a (m+n−1)-element partite set. Figure 12 (right) depicts and example where m+n−1 = 5.

5. Lastly, for each variable gadget Gi, insert the edges O`i,1 and Ori,1.

We now define two (2m+ 5n+ 1)-district maps on G(ϕ). Refer to Figure 13. First, let ΠA(ϕ)
consist of the following districts. For each variable gadget Gi, we create four districts: `i = {`i,j :
j = 1, . . . , 5}, ri = {ri,j : j = 1, . . . , 5}, {di,1, di,2}, and {ui,1, ui,2}. For each clause gadget Hj ,
we create a 2-element district {cj,1, cj,2}. In the districting pipe, every vertex is in a singleton
district, which yields m + n + 1 singletons. Next, we define the target district map, ΠB(ϕ). For
every variable gadget Gi, we create similar districts to ΠA(ϕ), the only difference is that the district
{ui,1, ui,2} is now split into two singletons: {ui,1} and {ui,2}. In each clause gadget Hj , the two
vertices form singleton districts. Lastly, the district pipe now consists of one (m + n + 1)-vertex
district. Finally, we set L(ϕ) := 4m + 7n − 1. This completes the description of the instance
R(G(ϕ),ΠA(ϕ),ΠB(ϕ), L(ϕ)).

Lemma 26. If there exists a satisfying truth assignment for ϕ, then R(G(ϕ),ΠA(ϕ),ΠB(ϕ), L(ϕ))
is a positive instance.

Proof. Let τ be a satisfying truth assignment for ϕ. We show that ΠA(ϕ) can be transformed into
ΠB(ϕ) using L(ϕ) switches. We define an open gate of Gi to be either `i,1 if district `i contains
the vertex di,2, or ri,1 if district ri contains di,2. This implies that the open gate is a vertex in the
variable gadget that can be taken by external districts. Note that `i (resp., ri) cannot leave vertices
`i,2, `i,3, `i,4, and `i,5 (resp., ri,2, ri,3, ri,4, and ri,5) by Lemma 1. So then both `i,1 and ri,1 cannot
be taken by external districts, or else `i or ri would be disconnected.
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d(ϕ)

H1

H2

G1 G2 G3
G4

Figure 13: The graph G(ϕ) for the formula ϕ = (x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x4). The red and
purple regions represent the districts in ΠA(ϕ). The blue and purple regions represent the districts
in ΠB(ϕ). In particular, the purple regions represent districts that are present in both ΠA(ϕ) and
ΠB(ϕ).

1. For each variable xi, if τ(xi) = true (false), then expand `i (ri) into di,2 (thereby opening
one of the two gates for each variable) in a total of n switches.

2. For every variable xi, we transform the district containing O into a district containing only
ui,2 and the open gate of Gi by expanding twice (for τ(xi) = true, switch(`i,3, `i,1, O) and
switch(ui,1, ui,2, `i,1)) and shrinking it out of O using either one, for x1, or two switches, for
remaining variables (for τ(xi) = true, switch(O, pi, I) and switch(`i,1, O, pi+1) where pi and
pi+1 are vertices in the districting pipe). We can perform this step in 3n + (n − 1) switches
by, for the previously mentioned shrinks, expanding a singleton containing a degree-2 vertex
of d(ϕ) whenever possible, or expanding the district containing I.

3. For each clause cj , choose any variable xi that appears in a true literal in cj (guaranteed to
exist by the definition of τ). Transform the district containing O into a district containing
only cj,2 and the open gate of xi, similar to the last step. Using the same strategy, this step
can be accomplished with 4m switches. After this step m + n districts were moved out of
d(ϕ), and now a single district contains all its vertices (the district initially containing I).

4. Finally, for every variable xi we close its gate by first expanding either `i or ri into the open
gate and then expanding the singleton district at di,1 into di,2. This takes 2n switches.

Overall, we have performed n+ 3n+ (n− 1) + 4m+ 2n = 4m+ 7n− 1 = L(ϕ) switches. These
L(ϕ) switches transformed ΠA(ϕ) to ΠB(ϕ), and so the instance R(G(ϕ),ΠA(ϕ),ΠB(ϕ), L(ϕ)) is
positive.

Lemma 27. If R(G(ϕ),ΠA(ϕ),ΠB(ϕ), L(ϕ)) is a positive instance of the redistricting problem for
a boolean formula ϕ, then there exists a satisfying truth assignment for ϕ.
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Proof. We derive lower bounds on the number of switches in any sequence of switches from ΠA(ϕ)
to ΠB(ϕ) by making inferences from the initial and target district maps. Notice that if a district
contains a leaf, then the leaf remains in the same district by Lemma 1. We call a district mobile
if it does not contain any leaf in ΠA(ϕ). By construction, only the m + n + 1 districts initially in
the districting pipe are mobile.

(A) Since ui,1 and ui,2 are in distinct districts in ΠB(ϕ), we must have a mobile district that travels
to ui,2. In order to accomplish this, we must first open one of the two gates of the variable
gadget Gi. Opening n gates, one in each variable gadget, requires at least n switches.

(B) As noted above, a mobile district must travel to ui,2 for i = 1, . . . , n. Moving n mobile districts
from O to ui,2, i = 1, . . . , n, requires at least 2n switches, and an additional 2(n− 1) switches
for n − 1 mobile districts to reach O: one switch expanding the district containing I and
one expanding the desired mobile district to O. Overall, this requires at least 2n + 2(n − 1)
switches.

(C) Since each clause gadget Hj consists of two districts in ΠB(ϕ), a mobile district from the
districting pipe must travel to cj,2, for j = 1, . . . ,m, which requires 4m switches.

(D) Because one mobile district must expand to the entire district pipe d(ϕ), either one mobile
district expands into I, or the district that contains I expands into O. In either case, this
takes one additional move that has not been counted so far.

(E) Note that the gate of Gi is closed and {di,1, di,2} is a 2-vertex district in ΠB(ϕ), for i = 1, . . . n.
So the district of the open gate must expand to consume its gate, and the singleton district
at the leaf di,1 must expand into di,2. Together this requires a total of 2n switches.

Therefore, we need at least n+ 2n+ 2(n− 1) + 4m+ 1 + 2n = 7n+ 4m− 1 = L(ϕ) switches to
solve the redistricting problem. Since we executed exactly L(ϕ) switches, no other move is allowed.

Due to the fact that after opening a gate, opening the opposite gate would require additional
switches, we conclude that precisely one gate opens in each variable gadget. We construct a truth
assignment as follows: For every i = 1, . . . , n, let τ(xi) = true if the left gate of the variable gadget
Gi opens, and τ(xi) = false otherwise. Since the only way to get a district to cj,2 was through an
open gate of one of the three literal in the clause cj , then every clause is incident to an open gate
of a variable gadget. Since every open gate corresponds to a true literal, at least one of the three
literals is true in each clause. Henceforth, τ is a satisfying truth assignment for ϕ.

The following Lemma is the direct consequence of Lemmas 26 and 27.

Lemma 28. Given an graph G with n vertices and an integer 1 ≤ k ≤ n, it is NP-complete to
decide whether the length of a shortest path in Γk(G) between two given district maps is below a
given threshold.

The unshrinkable districts in the previous reduction are not essential for NP-hardness. We can
modify the reduction to produce a biconnected graph G as follows.

Theorem 29. It is NP-hard to decide whether the length of a shortest path in Γk(G) between two
given shrinkable district maps is below a given threshold even when G is biconnected.

Proof. In the reduction above, for a boolean formula ϕ in 3CNF, we constructed an instance
R(G(ϕ),ΠA(ϕ),ΠB(ϕ), L(ϕ)) of the redistricting problem. We modify the reduction by subdi-
viding the edge connected to every leaf creating a path of length L(ϕ). Now connect every leaf to
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the vertex I in d(ϕ). The resulting graph is biconnected because the only cut vertices produced in
the previous reductions were either O in d(ϕ) or adjacent to leaves. The modification guarantees
that they are no longer cut vertices. We make the following modifications to the district maps
ΠA(ϕ) and ΠB(ϕ): If both endpoints of a subdivided edge belonged to the same district, add the
new vertex created by the subdivision to this district; Extend the singleton districts that previously
contained a leaf in B(ϕ) to contain all new vertices on its path. The districts that contain long
paths (of length L(ϕ)) cannot leave such paths completely since we are only allowed L(ϕ) switches.
Then, the only way to obtain ΠB(ϕ) from ΠA(ϕ) is to move the singleton districts in d(ϕ) through
the variable gadgets. The rest of the proof is analogous to the proof of Lemmas 26 and 27.

6 Conclusion

This paper provides the theoretical foundation for using elementary switch operations to explore the
configuration space Γk(G) of all partitions of a given graph into k nonempty subgraphs, each of which
is connected. We gave a polynomial-time testable combinatorial characterization for connected
configurations spaces (Theorem 17).

Our PSPACE-hardness proof with few (two) districts produces a nonplanar graph. The com-
plexity of deciding whether two k-district maps (with k = O(1)) on a planar graph G are in the
same component of Γk(G) remains open. Our NP-hardness reduction for the shortest path problem
produces a nonplanar (biconnected) graph. It is an open problem to determine the computational
complexity of computing shortest paths in Γk(G) when G is biconnected and planar, or in Γ′k(G)
when G is planar.

A crucial concept in both the combinatorial characterization and the reconfiguration algorithms
(Algorithms 1 and 2) was shrinkability: A district is shrinkable if it can be reduced to a single
vertex (while all k districts remain connected). In applications to electoral maps, all districts have
roughly average size, say between n

2k and 2n
k , and a singleton district is impractical. In a sense, we

establish that there is a path between any two shrinkable district maps with average-size districts
by passing through “impractical” district maps with singleton districts. We do not know whether
singleton districts are necessary: for a constant c ≥ 1, we can define Γk,c(G) as the graph of k-
district maps in which the size of every district lies in the interval [ nck ,

cn
k ]. It is easy to construct

examples where Γk,1(G) has isolated vertices. Is there a constant c > 1 such that the connectedness
of Γk(G) implies that Γk,c(G) is also connected?

In our model, a district map is a partition of the vertex set into k unlabeled nonempty subsets.
One could consider the labeled variant, and define a switch graph ΓLk (G) on labeled k-district
maps. Our results do not carry over to this variant: in particular, the labeled switch graph ΓLk (G)
need not be connected if G is biconnected. For example, if G = Cn (i.e., a cycle of n ≥ 3 vertices)
and k ≥ 3, then the cyclic order of the districts along the cycle cannot change. In the special case
that k = 2 and G is biconnected, ΓL2 (G) is connected since we can shrink a district to a singleton
(cf. Lemma 3) and move it to any vertex while the complement remains connected. When we move
a singleton district from one vertex to another, it temporarily occupies both vertices, which should
not form a 2-cut. Shrinking a district to a singleton is sometimes necessary in this case (one such
example is G = K2,m, m ≥ 3, where the 2-element partite set is split between the two districts).
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[7] Janka Chleb́ıková. Approximating the maximally balanced connected partition problem in
graphs. Inf. Process. Lett., 60(5):223–230, 1996. doi:10.1016/S0020-0190(96)00175-5.

[8] Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro Ito, Hirotaka
Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada. Linear-time algorithm for sliding
tokens on trees. Theor. Comput. Sci., 600:132–142, 2015. doi:10.1016/j.tcs.2015.07.037.

[9] Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM J. Comput.,
25(5):956–997, 1996. doi:10.1137/S0097539794280736.

[10] Moon Duchin. Gerrymandering metrics: How to measure? What’s the baseline? Bulletin of
the American Academy for Arts and Sciences, 72(2):54–58, 2018. URL: https://arxiv.org/
abs/1801.02064.

[11] Moon Duchin and Bridget Eileen Tenner. Discrete geometry for electoral geography. Preprint,
arXiv:1808.05860, 2018. URL: https://arxiv.org/abs/1808.05860.

[12] Adrian Dumitrescu and János Pach. Pushing squares around. Graphs and Combinatorics,
22(1):37–50, 2006. doi:10.1007/s00373-005-0640-1.

[13] Martin E. Dyer and Alan M. Frieze. On the complexity of partitioning graphs into connected
subgraphs. Discrete Appl. Math., 10(2):139–153, 1985. doi:10.1016/0166-218X(85)90008-3.

[14] Benjamin Fifield, Michael Higgins, Kosuke Imai, and Alexander Tarr. Automated redistrict-
ing simulation using Markov chain Monte Carlo. Journal of Computational and Graphical
Statistics, 29(4):715–728, 2020. doi:10.1080/10618600.2020.1739532.

[15] Balázs Fleiner, Balázs Nagy, and Attila Tasnádi. Optimal partisan districting on planar ge-
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