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Abstract

A “double star” is a tree with two internal vertices. It is known that the Gyárfás-Sumner conjecture
holds for double stars, that is, for every double star H, there is a function fH such that if G does
not contain H as an induced subgraph then χ(G) ≤ fH(ω(G)) (where χ, ω are the chromatic number
and the clique number of G). Here we prove that fH can be chosen to be a polynomial.



1 Introduction

A class of graphs is hereditary if it is closed under isomorphism and under taking induced subgraphs.
A hereditary class of graphs C is χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for
every graph G ∈ C, where χ(G) and ω(G) denote the chromatic number and the clique number of G.
There is a large literature addressing the question of which graph classes are χ-bounded, and many
open questions (see [16] for a survey).

Hereditary classes defined by excluding some fixed graph H are of particular interest. If G,H
are graphs, we say G is H-free if no induced subgraph of G is isomorphic to H. It is easily seen
that if the class of H-free graphs is χ-bounded then H must be a forest, as Erdős [3] showed that
there are graphs with arbitrarily large girth and chromatic number. The famous Gyárfás-Sumner
conjecture [8, 20] asserts the converse:

1.1 Conjecture: For every forest H, there is a function f such that χ(G) ≤ f(ω(G)) for every

H-free graph G.

The Gyárfás-Sumner conjecture remains open in general, though it has been proved for some very
restricted families of trees (see, for example, [2, 9, 10, 11, 12, 14, 15, 16]). In particular, it was proved
by Kierstead and Penrice [11] for trees of radius two.

Louis Esperet [7] made the striking conjecture that, for every χ-bounded class C, the function f
can be chosen to be a polynomial (see the survey by Schiermeyer and Randerath [19] for results on
polynomial χ-boundedness). In particular, this would imply a strengthening of the Gyárfás-Sumner
conjecture, that the function f in 1.1 can always be chosen to be a polynomial. This is a bold
conjecture, as frequently, when classes are known to be χ-bounded, the best known function f grows
quite rapidly, often because the proofs use multiple applications of Ramsey-type results. Nevertheless,
Esperet’s strengthening has been verified for some cases of the Gyárfás-Sumner conjecture, for instance
when H is a star, or a four-vertex path, or a matching (see [19]); and recently it has been shown when
H is obtained from a star by subdividing one edge once [13], and when H is a forest of stars [18].

A double star is a tree in which at most two vertices have degree more than one. Double stars
have radius at most two, and so the result of Kierstead and Penrice [11] shows that the class of H-free
graphs is χ-bounded whenever H is a double star. In this paper, we prove a polynomial bound. Our
main result is:

1.2 For every double star H, there is a polynomial f such that χ(G) ≤ f(ω(G)) for every H-free

graph G.

This extends a theorem of Liu, Schroeder, Wang and Yu [13], who proved the same for double
stars H that have at most one vertex of degree more than two.

Our result is partially motivated by the Erdős-Hajnal conjecture. In view of the recent result [4],
the five-vertex path P5 is the smallest open case of this conjecture. It is known that P5 satisfies
the Gyárfás-Sumner conjecture (in fact the Gyárfás-Sumner conjecture holds whever H is a path),
and if P5 satisfies Esperet’s strengthening then P5 also satisfies the Erdős-Hajnal conjecture. Thus
P5 appears likely to be a sticking point. We have not settled that; but this paper proves Esperet’s
strengthening for all trees that do not contain P5.

We use standard notation throughout. When X ⊆ V (G), G[X] denotes the subgraph induced on
X. We write χ(X) for χ(G[X]), and ω for ω(G), when there is no ambiguity.
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2 A degeneracy variant of defective colouring

A graph G is d-degenerate, or has degeneracy at most d, if every non-null subgraph H has a vertex
with degree (in H) at most d. Every d-degenerate graph has chromatic number at most d+ 1.

Let us say a (k, d)-colouring of a graph is a partition (A1, . . . , Ak) of the vertex set V (G), such
that for 1 ≤ i ≤ k, the subgraph induced on Ai has degeneracy at most d; and we say that G or
V (G) is (k, d)-colourable if there is such a partition. Thus, if a graph is (k, d)-colourable, its chromatic
number is at most k(d+1). We call this “degenerate colouring”; it is a relative of “defective colouring”,
where we ask that the subgraph induced on each Ai has maximum degree at most d, but it is not
exactly the same (see [21] for a survey of defective colouring). Let us explain why we need to use
degenerate colourings.

A standard way to bound the chromatic number of a graph G is to partition V (G) into some
number of parts V1, V2, . . . , and bound the chromatic numbers of the parts separately, and add to get
a bound on χ(G). But we will be trying to prove that χ(G) is at most ω(G)d, for some appropriately
large constant d. So for this “addition” method to work when ω is large, if the best bound we know
for one of the parts is something like (ω(G) − 1)d, we would need much better bounds for all the
other parts.

Fix a double star H, and choose a large constant d; and suppose that we try to prove by induction
on ω(G) that every H-free graph G has chromatic number at most ω(G)d. The proof (by our method)
does not work. There comes a stage where V (G) is partitioned into an unbounded number of parts
V1, V2, . . .. We will know, from the induction on ω(G), that each part has chromatic number at most
something like (ω− 1)d (where ω = ω(G)), but we will not know a better bound for any of the parts.
The “addition” method given above will therefore fail miserably. But we will know something about
the edges between parts, which we might hope will save us (though in fact it will not). We will know
that for each part Vi, each of its vertices has only a small number of neighbours in the union of the
later parts Vi+1 ∪ · · · ∪Vn; say at most ωr neighbours, where r is much less than d. Of course if there
were no edges between the parts, all would be fine, and one might hope that similarly, because of
the sparseness of the edges between parts, the effect of these edges could be fitted into the difference
between ωd and (ω − 1)d. But we can’t do this (at least with no further information); the effect
is multiplicative rather than additive. Even if for each i, each vertex of Vi has only at most one
neighbour in Vi+1 ∪ · · · ∪ Vn, the chromatic number of the union of the parts might be 3/2 times the
maximum chromatic number of the individual parts, which is much too big.

Thus the inductive proof that every H-free graph G has chromatic number at most ω(G)d fails; and
for that reason we will instead prove by induction a stronger statement, about degenerate colourings.
We will prove by induction on ω that if G is H-free, then G is (ωd, ωr+1)-colourable. Then, when the
situation above arises, we will know that each part admits an ((ω − 1)d, (ω − 1)r+1)-colouring and
hence an (ωd, (ω − 1)ωr)-colouring. The union of these colourings becomes an (ωd, ωr+1)-colouring,
which is what we want, and now it all works. Induction on ω(G) will be used to prove the statement
about degenerate colouring, and then we deduce the statement about normal colouring at the end.

Let us state formally the lemma we just mentioned:

2.1 Let k, d, d′ ≥ 0 be integers. Let V (G) be partitioned into V1, V2, . . . , Vn, such that

• for 1 ≤ i ≤ n, G[Vi] admits a (k, d)-colouring; and

• for 1 ≤ i < n, every vertex of Vi has at most d′ neighbours in Vi+1 ∪ · · · ∪ Vn.
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Then G admits a (k, d+ d′)-colouring.

The proof is clear.

3 Templates

The paper by Kierstead and Penrice [11] uses the method of “templates”, an idea that was introduced
in [10] and has been applied in several papers to prove special cases of 1.1. We will use the same idea,
but substantially modified to keep the numbers polynomial. Fix an integer s. (Eventually s+ 1 will
be the maximum degree in the double star we are excluding.) We say an s-template in a graph G is
a sequence L of pairwise disjoint subsets (L0, L1, . . . , Lk), with k ≥ 0, such that:

• L0 is a clique of G (possibly empty), and every vertex in L0 is adjacent to every vertex in
L1 ∪ · · · ∪ Lk;

• ωs+5 ≤ |Li| ≤ 14ωs+6 for 1 ≤ i ≤ k; and

• for all distinct i, j ∈ {1, . . . , k}, each vertex in Li has at most ωs+3 non-neighbours in Lj.

We say that k is the length of the s-template, and define its value to be

|L1 ∪ · · · ∪ Lk|+ 7ωs+5|L0|+ kωs+5.

Let us define V (L) = L0 ∪L1 ∪ · · · ∪Lk, and N(L) to be the set of vertices in V (G) \V (L) that have
a neighbour in L1 ∪ · · · ∪ Lk. (Note that we do not consider neighbours in L0.)

The idea of the proof is as follows. Let G be an H-free graph (where H is a double star). Suppose
that G has chromatic number at least some huge (but some fixed constant) power of ω. It follows
from a theorem of an earlier paper [17] that G has a subgraph which is a complete bipartite graph,
in which both parts have cardinality 14ωs+6. Consequently G contains an s-template of length two
and value at least 28ωs+6. Thus we may choose an s-template L with maximum value, and its value
will also be at least 28ωs+6. We have tuned these values so that such s-templates have many useful
properties. The bulk of the proof is to bound the chromatic number of the set N(L) (more exactly,
to show it admits a certain degenerate colouring). Having done that, let Z consist of L0 together
with all vertices in N(L) that have at least a few neighbours that are not in N(L) (a “few” means
a constant power of ω). It is easy to show that |Z| is at most another constant power of ω, and so
every vertex of (V (L)∪N(L))\Z has only a few neighbours in the complement of this set. It remains
to bound the chromatic number of the complementary set, that is of (V (G) ∪ Z) \ (V (L) ∪ N(L));
and to do this, we choose an s-template in this graph with value as large as possible, and choose a
third with no neighbours in the first or second, and so on. This is the situation we discussed in the
previous section, which motivated us to use degenerate colouring, and this will allow us to produce a
degenerate colouring of the whole of G.

We begin in this section by proving some properties of optimal s-templates, that is, s-templates
chosen with maximum value.

3.1 Let (L0, L1, . . . , Lk) be an s-template in G. There is a clique of G with one vertex in each of

L1, . . . , Lk, and consequently k + |L0| ≤ ω.
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Proof. Choose v1 ∈ L1; and inductively for 2 ≤ i ≤ k, having chosen v1, . . . , vi−1, choose vi ∈ Li

as follows. There are at most ωs+3 vertices in Li nonadjacent to vh, for 1 ≤ h < i; and since
{v1, . . . , vi−1} is a clique and therefore i− 1 ≤ ω, it follows that ωs+3(i − 1) ≤ ωs+4 < ωs+5 ≤ |Li|.
Consequently there exists vi ∈ Li adjacent to all of v1, . . . , vi−1. This completes the inductive
definition of v1, . . . , vk. Hence L0 ∪ {v1, . . . , vk} is a clique, and so k+ |L0| ≤ ω. This proves 3.1.

3.2 Let (L0, L1, . . . , Lk) be an optimal s-template in G. If L has value at least 28ωs+6, then k ≥ 2,
and |Li| ≥ 5ωs+5 for 1 ≤ i ≤ k.

Proof. If k = 0, the s-template has value 7ωs+5|L0| ≤ 7ωs+6 < 28ωs+6, a contradiction. If k = 1,
then since |L1| ≤ 14ωs+6, and |L0|+ k ≤ ω by 3.1, the s-template has value at most

14ωs+6 + 7ωs+5|L0|+ ωs+5 ≤ 14ωs+6 + 7ωs+5(ω − 1) + ωs+5 ≤ 21ωs+6 < 28ωs+6,

a contradiction. So k ≥ 2.
By reordering L1, . . . , Lk we may assume that |L1|, . . . , |Lh| ≥ 5ωs+5 and |Lh+1|, . . . , |Lk| < 5ωs+5.

We will show that h = k. For h + 1 ≤ i ≤ k, choose vi ∈ Li such that {vh+1, . . . , vk} is a clique X
(this is possible by 3.1). For 1 ≤ i ≤ h, let L′

i be the set of all vertices in Li that are adjacent to
every vertex of X. Since each vertex of X has at most ωs+3 non-neighbours in Li, it follows that

|L′
i| ≥ |Li| − ωs+4 ≥ 5ωs+5 − ωs+5 ≥ ωs+5

for 1 ≤ i ≤ h. Consequently
(L0 ∪ {xh+1, . . . , xk}, L

′
1, . . . , L

′
h)

is an s-template in G. Its value is that of (L0, L1, . . . , Lk) plus

7ωs+5(k − h)− ωs+5(k − h)−
(

|L1 ∪ · · · ∪ Lk| − |L′
1 ∪ · · · ∪ L′

h|
)

,

and so this is at most zero, since (L0, . . . , Lk) is optimal. But

|L1 ∪ · · · ∪ Lk| − |L′
1 ∪ · · · ∪ L′

h| ≤
∑

1≤i≤h

(

|Li| − |L′
i|
)

+
∑

h+1≤i≤k

|Li| ≤ hωs+4 + (k − h)(5ωs+5 − 1),

and consequently

7ωs+5(k − h)− ωs+5(k − h) ≤ hωs+4 + (k − h)(5ωs+5 − 1),

that is,
(ωs+5 + 1)(k − h) ≤ hωs+4.

But ωs+5 ≥ hωs+4, and so (ωs+5 + 1)(k − h) ≤ omegas+5, which implies that h = k. This proves
3.2.
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3.3 Let (L0, L1, . . . , Lk) be an optimal s-template in G. If its value is at least 28ωs+6, then for

1 ≤ i ≤ k, every vertex in Li has at least 4ωs+5 non-neighbours in Li.

Proof. Let i = 1 say, and let v ∈ L1. Let L′
1 be the set of neighbours of v in L1, and M =

L1 \ (L′
1 ∪ {v}). We will show that |M | ≥ 4ωs+5. If |L′

1| < ωs+5, then v has at least |L1| − ωs+5

non-neighbours in L1; and since |L1| ≥ 5ωs+5 by 3.2, it follows that |M | ≥ 4ωs+5 as required. Thus
we may assume that |L′

1| ≥ ωs+5. For 2 ≤ i ≤ k let L′
i be the set of vertices in Li adjacent to v; thus

by 3.2,
|L′

i| ≥ |Li| − ωs+3 ≥ 5ωs+5 − ωs+3 ≥ ωs+5

for 2 ≤ i ≤ k. Consequently
(L0 ∪ {v}, L′

1, L
′
2, . . . , L

′
k)

is an s-template. From the optimality of (L0, . . . , Lk), it follows that 7ωs+5−(|M |+1)−(k−1)ωs+3 ≤
0, and so

|M | ≥ 7ωs+5 − 1− (k − 1)ωs+3 ≥ 4ωs+5.

This proves 3.3.

3.4 Let (L0, L1, . . . , Lk) be an optimal s-template in G. Suppose that ω ≥ 4, and A,B are disjoint

subsets of L1, with |L1\(A∪B)| ≤ ωs+3, such that every vertex in A has fewer than ωs non-neighbours

in B. Then either |B| < 14ωs+1 or A = ∅.

Proof. Suppose that |B| ≥ 14ωs+1.

(1) |B| ≥ 2ωs+5.

Suppose that |B| < 2ωs+5. Each vertex in B has at least 4ωs+5 non-neighbours in L1, by 3.3,
and only at most 2ωs+5 + ωs+3 of them do not belong to A; and since 2ωs+5 − ωs+3 ≥ ωs+5, there
are at least ωs+5|B| ≥ 14ω2s+6 nonedges between B and A. Since |A| ≤ |L1| ≤ 14ωs+6, some vertex
in A has at least ωs non-neighbours in B, a contradiction. This proves (1).

(2) |A| < ωs+5.

Suppose that |A| ≥ ωs+5. Let B′ be the set of all vertices in B with at most ωs+3 non-neighbours
in A. Since there are only at most ωs|A| nonedges between A,B, there are at most |A|/ω3 vertices
in B that have more than ωs+3 non-neighbours in A; and so |B′| ≥ |B| − |A|/ω3 ≥ ωs+5, by (1) and
since |A|/ω3 ≤ 14ωs+3 < ωs+5 (the last because ω ≥ 4). Hence

(L0, A,B
′, L2, . . . , Lk)

is an s-template, and the optimality of (L0, . . . , Lk) implies that

|A|+ |B′|+ ωs+5 ≤ |L1| ≤ |A|+ |B′|+ ωs+3 + |A|/ω3,

and so ωs+5 ≤ ωs+3 + 14ωs+3, a contradiction. This proves (2).

Suppose that A 6= ∅, and choose v ∈ A. Since v has at least 4ωs+5 non-neighbours in L1 by 3.3,
and at most ωs+5 of them belong to A by (2), and at most ωs+3 are not in A ∪ B, it follows that
v has at least 3ωs+5 − ωs+3 ≥ ωs non-neighbours in B, a contradiction. Thus A = ∅. This proves
3.4.
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3.5 Let L = (L0, L1, . . . , Lk) be an optimal s-template in G. There are fewer than 14ωs+6 vertices

v ∈ N(L) such that for 1 ≤ i ≤ k, v has at most ωs+2/4 non-neighbours in Li.

Proof. Suppose that there is a set M ⊆ N(L) with |M | = 14ωs+6, such that for each v ∈ M
and for 1 ≤ i ≤ k, v has at most ωs+2/4 non-neighbours in Li. For 1 ≤ i ≤ k, there are at most
|M |ωs+2/4 = 7ω2s+8/2 nonedges between M and Li; and so there are at most 7ωs+5/2 vertices in Li

with at least ωs+3 non-neighbours in M . Let L′
i be the set of vertices in Li that have fewer than ωs+3

non-neighbours in M . Hence |L′
i| ≥ |Li| − (7ωs+5/2) ≥ ωs+5, since |Li| ≥ 5ωs+5 by 3.2. It follows

that
(∅, L′

1, . . . , L
′
k,M)

is an s-template. Its value is

|L′
1 ∪ · · · ∪ L′

k|+ |M |+ (k + 1)ωs+5 ≥ |L1 ∪ · · · ∪ Lk| − k(7ωs+5/2) + 14ωs+6 + (k + 1)ωs+5

and the optimality of (L0, . . . , Lk) implies that

|L1 ∪ · · · ∪ Lk| − k(7ωs+5/2) + 14ωs+6 + (k + 1)ωs+5 ≤ |L1 ∪ · · · ∪ Lk|+ 7ωs+5|L0|+ kωs+5,

that is,
2ω + 1/7 ≤ |L0|+ k/2,

contrary to 3.1. This proves 3.5.

4 Using the double star

We are concerned with graphs that do not contain some fixed double star, but so far we have not
used that fact. For s ≥ 1, let Hs be the double star with 2s + 2 vertices, with two internal vertices
both of degree s + 1. Every double star is an induced subgraph of Hs for some s, so it suffices to
prove the result for Hs-free graphs.

We will need the following result of [17]:

4.1 Let H be a forest. Then there exists c > 0 such that for every H-free graph G and every integer

t ≥ 0, either G contains the complete bipartite graph Kt,t as a subgraph, or G has degeneracy less

than tc, and hence has chromatic number at most tc.

We will also need the following version of Ramsey’s theorem (well-known, but proved for instance
in [18]):

4.2 If s ≥ 0 is an integer, then every graph G with no stable set of cardinality s has at most

ωs−1 + ωs−2 + · · · + ω

vertices, and hence fewer than ωs vertices if ω > 1.

Let L = (L0, . . . , Lk) be an optimal s-template in G. With respect to this template, we say a
vertex v ∈ N(L) is

6



• pendant if there exist distinct i, j ∈ {1, . . . , k}, and a vertex u ∈ Lj, and a stable set S of
s + 1 vertices in Li, all adjacent to u, such that v is not adjacent to u, and v has exactly one
neighbour in S;

• dense if there exists j ∈ {1, . . . , k}, and u ∈ Lj, such that for all i ∈ {1, . . . , k} \ {j}, there are
fewer than ωs+2/14 vertices in Li that are adjacent to u and not to v;

• pure if there are least two values of i ∈ {1, . . . , k} such that v has no neighbour in Li, and for
1 ≤ i ≤ k, either v has no neighbour in Li or v has at most ωs+2/7 non-neighbours in Li.

4.3 Let s ≥ 1 be an integer, and let G be Hs-free, with ω ≥ 200. Let L = (L0, . . . , Lk) be an optimal

s-template in G. Then every vertex in N(L) is either pendant or dense or pure with respect to L.

Proof. Let v ∈ N(L), and suppose that v is neither dense nor pendant with respect to L. We will
prove that v is pure.

(1) For all distinct i, j ∈ {1, . . . , k}, if u ∈ Lj is nonadjacent to v, then either u, v have no com-

mon neighbour in Li, or fewer than ωs+2/14 neighbours of u in Li are nonadjacent to v.

Let A be the set of all vertices in Li adjacent to both u, v, and let B be the set of vertices in
Li adjacent to u and not to v. Suppose that A 6= ∅, and |B| ≥ ωs+2/14. Since |Li \ (A ∪B)| ≤ ωs+3

(because u has at most ωs+3 non-neighbours in Li), and |B| ≥ ωs+2/14 ≥ 14ωs+1 (because ω ≥ 200),
3.4 implies that some vertex w ∈ A has at least ωs non-neighbours in B. By 4.2, this set of non-
neighbours includes a stable set of size s, contradicting that v is not pendant. Thus either A = ∅ or
|B| < ωs+2/14. This proves (1).

(2) For all j ∈ {1, . . . , k}, if v has a non-neighbour in Lj, there exists i ∈ {1, . . . , k} with i 6= j
such that v has at most ωs+3 neighbours in Li.

Choose u ∈ Lj nonadjacent to v. Since v is not dense, there exists i ∈ {1, . . . , k} with i 6= j
such that there are at least ωs+2/14 vertices in Li adjacent to u and not to v. By (1), u, v have no
common neighbour in Li, and hence v has at most ωs+3 neighbours in Li. This proves (2).

(3) For 1 ≤ j ≤ k, if v has at most ωs+3 neighbours in Lj , then v has no neighbours in Lj.

By (2), there exists i ∈ {1, . . . , k} different from j, such that v has at most ωs+3 neighbours in
Li. Suppose that v has a neighbour w ∈ Lj. Since w has at most ωs+3 non-neighbours in Li, and
v has at most ωs+3 neighbours in Li, and |Li| ≥ ωs+5 > 2ωs+3, there exists x ∈ Li adjacent to w
and not to v. Now w has at least 4ωs+5 non-neighbours in Lj , by 3.3; at most ωs+3 of them are
nonadjacent to x, and at most ωs+3 of them are adjacent to v, and so at least 4ωs+5 − 2ωs+3 ≥ ωs

of them are nonadjacent to v and adjacent to x. By 4.2, this set includes a stable set of size s, and
so v is pendant, a contradiction. Thus v has no neighbour in Lj. This proves (3).

(4) For 1 ≤ i ≤ k, either v has at most ωs+2/7 non-neighbours in Li, or v has no neighbours in

Li.
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Let Ai, Bi be the sets of neighbours and non-neighbours respectively of v in Li, and suppose that
Ai 6= ∅, and |Bi| > ωs+2/7. By (2) and (3), there exists j ∈ {1, . . . , k} with j 6= i such that v has no
neighbours in Lj. By (1), for each u ∈ Lj, either u has no neighbours in Ai, or u has at most ωs+2/14
neighbours in Bi. Let X be the set of vertices in Lj with no neighbour in Ai, and Y = Lj \ X.
Since Ai 6= ∅, and a vertex in Ai has at most ωs+3 non-neighbours in Lj, it follows that |X| ≤ ωs+3,
and so |Y | ≥ |Lj | − ωs+3. Every vertex in Y is adjacent to at most half the vertices in Bi (since
|Bi| ≥ ωs+2/7), and so some vertex b ∈ Bi is adjacent to at most half the vertices in Y . Since b has at
most ωs+3 non-neighbours in Lj, it follows that |Y |/2 ≤ ωs+3; but |X| ≤ ωs+3, and so |Lj| ≤ 3ωs+3,
a contradiction. This proves (4).

Since v is not dense, it has a non-neighbour in one of L1, . . . , Lk; and so by (2) and (3), it has no
neighbours in some Lj. By (2), v has at most ωs+3 neighbours in Li for some i 6= j; and so has no
neighbours in Li by (3). From (4) it follows that v is pure. This proves 4.3.

4.4 Let s ≥ 1 be an integer, and let G be Hs-free. Let (L0, . . . , Lk) be an optimal s-template in G.

There are at most 14s+2ωs2+9s+14 pendant vertices.

Proof. Let i, j ∈ {1, . . . , k} be distinct, let u ∈ Lj, let S ⊆ Li be a stable set of s+ 1 neighbours of
u, and let w ∈ S. Let X(i, j, u, S,w) be the set of all v ∈ V (G)\(L0∪· · ·∪Lk) such that v is adjacent
to w and is nonadjacent to all other vertices in S ∪{u}. If X(i, j, u, S,w) includes a stable set of size
s, say T , then the subgraph induces on S ∪ T ∪ {u} is isomorphic to Hs, a contradiction. Thus, 4.2
implies that |X(i, j, u, S,w)| ≤ ωs. Since there are only k2(14ωs+6)s+2 choices for i, j, u, S,w, and
every pendant vertex belongs to X(i, j, u, S,w) for some choice of i, j, u, S,w, it follows that there are
at most k2(14ωs+6)s+2ωs pendant vertices. Since k ≤ ω by 3.1, this proves 4.4.

4.5 Let s ≥ 1 be an integer, and let G be Hs-free. Let L = (L0, . . . , Lk) be an optimal s-template in

G. Let c satisfy 4.1 when H = Hs. The chromatic number of the set of all dense vertices is at most

(14ωs+6)c+1ω.

Proof. Let 1 ≤ j ≤ k, let u ∈ Lj, and let X(j, u) be the set of all v ∈ N(L) such that for all
i ∈ {1, . . . , k} \ {j}, there are fewer than ωs+2/14 vertices in Li that are adjacent to u and not to v.

Suppose that χ(X(k, u)) > (14ωs+6)c for some u ∈ Lk. Then by 4.1, G[X(k, u)] contains a copy
of K14ωs+6,14ωs+6 as a subgraph; let M1,M2 be disjoint subsets of X(k, u), both of cardinality 14ωs+6,
such that every vertex of M1 is adjacent to every vertex of M2. For 1 ≤ i ≤ k− 1, let L′

i be the set of
vertices in Li∩N(u) that have at most ωs+3 non-neighbours in M1 and at most ωs+3 non-neighbours
in M2. There are at most (ωs+2/14)14ωs+6 nonedges between M1 and Li ∩N(u), and it follows that
at most ωs+5 vertices in Li ∩ N(u) have more than ωs+3 non-neighbours in M1; and the same for
M2. Consequently

|L′
i| ≥ |Li ∩N(u)| − 2ωs+5 ≥ 5ωs+5 − ωs+3 − 2ωs+5 ≥ ωs+5,

and so
(∅, L′

1, . . . , L
′
k−1,M1,M2)
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is an s-template. Moreover, |L′
i| ≥ |Li| − ωs+3 − 2ωs+5, since u has at most ωs+3 non-neighbours in

Li. From the optimality of L, it follows that

28ωs+6 ≤ |Lk|+ (ωs+3 + 2ωs+5)(k − 1) + 7ωs+5|L0| ≤ 14ωs+6 + 7ωs+6,

a contradiction. Consequently χ(X(k, u)) ≤ (14ωs+6)c. The union of the sets X(k, u) over all u ∈ Lk

thus has chromatic number at most (14ωs+6)c+1; and from the symmetry between L1, . . . , Lk, the
set of all dense vertices has chromatic number at most k(14ωs+6)c+1 ≤ (14ωs+6)c+1ω. This proves
4.5.

5 Pure vertices

In view of 4.3, 4.4 and 4.5, in order to bound the chromatic number of N(L) it remains to bound
the chromatic number of the set of pure vertices, and that is the topic of this section. But here we
will need to use induction on ω, and so as we discussed earlier, we will in fact work with degenerate
colouring.

Throughout this section, let s ≥ 1 be an integer, let G be Hs-free, let L = (L0, . . . , Lk) be an
optimal s-template in G. Let M denote the set of all vertices that are pure with respect to this
template. For each v ∈ M , let Iv be the set of all i ∈ {1, . . . , k} such that v has a neighbour in Li

(and hence has at most ωs+2/14 non-neighbours in Li). For each I ⊆ {1, . . . , k}, let MI be the set of
all v ∈ M with Iv = I.

We wish to find a degenerate colouring of the union of all the sets MI . One problem is that the
number of sets I with MI nonempty may be superpolynomial; but we will show that there are only
a linear number of sets MI of large cardinality, and we can colour all the small ones simultaneously.

5.1 Let I ⊆ {1, . . . , k} and u ∈ MI and j ∈ {1, . . . , k} \ I. For each i ∈ I, there are fewer than ωs

vertices v adjacent to u such that v ∈ MJ for some J ⊆ {1, . . . , k} \ {i, j}. Hence there are fewer

than ωs+1 vertices v adjacent to u such that v ∈ MJ for some J ⊆ {1, . . . , k} \ {j} with I 6⊆ J .

Proof. Let i ∈ I, and let Ai be the set of all J ⊆ {1, . . . , k} \ {i, j}. Let Vi be the union of all the
sets MJ for J ∈ Ai. Suppose that u has ωs neighbours in Vi. By 4.2, there is a stable set S ⊆ Vi of
neighbours of u with |S| = s. Choose x ∈ Li adjacent to u. Thus x has no neighbour in S since for
each J ∈ Ai, no vertex in MJ has a neighbour in Li. Since x has at most ωs+3 non-neighbours in Lj ,
and |Lj| ≥ ωs+5 ≥ ωs+3 + ωs, it follows that x has at least ωs neighbours in Lj, and hence by 4.2
there is a stable set T ⊆ Lj of neighbours of x with |T | = s. Since j /∈ I ∪ J for J ∈ Ai, no vertex in
S ∪ {u} has a neighbour in T ; and so the subgraph induced on S ∪ T ∪ {u, x} is isomorphic to Hs, a
contradiction.

Hence u has fewer than ωs neighbours in Vi for each choice of i. Since there are only at most
|I| ≤ ω choices of i, this proves 5.1.

For m ≥ 0, we say I ⊆ {1, . . . , k} is m-small if |MI | ≤ m, and m-large if it is not m-small.

5.2 For each m ≥ 0, the union of the sets MI over all m-small I ⊆ {1, . . . , k} has chromatic number

at most 2ω(m+ ωs+1).
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Proof. For all j ∈ {1, . . . , k}, let Aj be the set of all m-small I ⊆ {1, . . . , k} \ {j}, and let Vj be the
union of the sets MI for all I ∈ Aj. If u, v ∈ Vj are adjacent, we will direct the edge uv as follows.
Let u ∈ MI and v ∈ MJ where I, J ∈ Aj. If |I| > |J | we direct the edge uv from u to v. If |I| = |J |
(and in particular, if I = J) we direct uv arbitrarily. We claim every vertex u ∈ Vj has outdegree
less than m+ ωs+1. Let u ∈ MI . Certainly u has at most m out-neighbours in MI since |MI | ≤ m.
If v is an out-neighbour of u and v ∈ J ∈ Aj where J 6= I, then |J | ≤ |I|, and it follows that I 6⊆ J ,
and I ∪ J 6= {1, . . . , k} since j /∈ I ∪ J ; and so there are fewer than ωs+1 such vertices v by 5.1. This
proves that every vertex u ∈ Vj has outdegree less than m + ωs+1. Hence every subgraph of G[Vj ]
with n vertices has at most n(m+ ωs+1 − 1) edges, and so (if n > 0) has a vertex of degree at most
2(m + ωs+1 − 1); and hence G[Vj ] has degeneracy at most 2(m + ωs+1 − 1), and so has chromatic
number less than 2(m+ ωs+1). Since there are at most ω choices of j, this proves 5.2.

It remains to handle the m-large sets. For t ≥ 1, let us say two disjoint subsets A,B of V (G) are
s-crowded if there is no stable set X with |X ∩A| = |X ∩B| = s.

5.3 Let m ≥ (s + 1)ωs, and let I, J ⊆ {1, . . . , k} be m-large, with I 6= J . If ω3 > ω + s/7, then

either:

• J ⊆ I and every vertex in MI has fewer than ωs neighbours in MJ ; or

• I ⊆ J and every vertex in MJ has fewer than ωs neighbours in MI ; or

• I ∪ J = {1, . . . , k} and MI ,MJ are s-crowded.

Consequently there are at most k − 1 m-large sets.

Proof. If J ⊆ I then the first bullet holds by 5.1; so we may assume that J 6⊆ I and similarly I 6⊆ J .
Choose i ∈ I \ J and j ∈ J \ I. Suppose that MI ,MJ are not s-crowded, and choose S ⊆ MI and
T ⊆ MJ with |S| = |T | = s such that S ∪ T is stable. Since each vertex in S has at most ωs+2/7
non-neighbours in i, and sωs+2/7 < ωs+5, there exists u ∈ Li adjacent to every vertex in S. Since u
has at most ωs+3 non-neighbours in Lj, and each vertex in T has at most ωs+2/7 non-neighbours in
Lj, and ωs+3 + sωs+2/7 < ωs+5, there exists v ∈ Lj adjacent to u and to each vertex in T . But then
the subgraph induced on S ∪T ∪{u, v} is isomorphic to Hs. This proves that MI ,MJ are s-crowded.

Let S ⊆ MI be stable with |S| = s. (This is possible by 4.2 since m ≥ ωs.) Since MI ,MJ are
s-crowded, 4.2 implies that there are fewer than ωs vertices in MJ with no neighbour in S; and so
some vertex in S has at least

(|MJ | − ωs)/s > (m− ωs)/s ≥ ωs

neighbours in MJ . By 5.1 it follows that I ∪J = {1, . . . , k} and so the third bullet holds. This proves
the first assertion of 5.3.

To show that there are at most k − 1 m-large sets, for each X ⊆ {1, . . . , k} with |X| ≤ k − 1,
let n(X) be the number of m-large sets that include X. We prove by induction on k − |X| that
n(X) ≤ k−|X|−1. If |X| = k−1 then n(X) = 0 and the claim holds, so we assume that |X| ≤ k−2
and the result holds for all larger subsets of {1, . . . , k}. Since k − |X| − 1 ≥ 1, we may assume that
at least two m-large sets include X, and so at least one properly includes X. Choose an m-large set
J minimal such that X ⊆ J and X 6= J . If I is an m-large set including X, then by 5.1 and the
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minimality of J , either I = X, or J ⊆ I, or I ∪ J = {1, . . . , k}. Moreover, if I ∪ J = {1, . . . , k}, then
I includes K, where K = {1, . . . , k} \ (J \X). Consequently n(X) ≤ n(J) + n(K) + 1. Since J,K
are both proper supersets of X, and not equal to {1, . . . , k}, the inductive hypothesis implies that
n(J) ≤ k − |J | − 1 and n(K) ≤ k − |K| − 1, and so

n(X) ≤ (k − |J | − 1) + (k − |K| − 1) + 1 = k − |X| − 1.

This completes the proof that n(X) ≤ k− |X| − 1 for each X ⊆ {1, . . . , k} with |X| ≤ k− 1. Setting
X = ∅, it follows that there are only k − 1 m-large sets. This proves 5.3.

5.4 Suppose that d ≥ 1 and D ≥ 0 have the property that every Hs-free graph G′ with ω(G′) < ω(G)
is (ω(G′)d,D)-colourable, and let m = (s+ 1)ωs. Assume that ω3 > ω + s/7 and ω ≥ 200. Then the

union of the sets MI over all m-large I is (K,D)-colourable where

K = (ω − 1)d + ωs2+4s+2 + ωs+3 + 1.

Proof. Let M∗ be the union of the sets MI for all m-large I. We may assume that M∗ 6= ∅.

(1) There is a partition A,B of the set of m-large sets, such that

• MI ,MJ are s-crowded for each I ∈ A and J ∈ B; and

• all the sets in A have an element in common, and so do all the sets in B.

There is an m-large set J since M∗ 6= ∅; choose J minimal. Let A be the set of all m-large sets
that include J , and let B be the set of m-large sets that do not include J . Choose j ∈ J and
j′ ∈ {1, . . . , k} \ J . (J is nonempty since every pure vertex has a neighbour in L1 ∪ · · · ∪ Lk, and
J 6= {1, . . . , k} from the definition of pure.) Every set in A includes J , and so contains j. We claim
that every set in B includes {1, . . . , k} \ J and so contains j′. To see this, let I ′ ∈ B. Since I ′ ∈ B,
I ′ does not include J . Also J 6⊇ I ′ from the minimality of J , and so from 5.3, I ′ ∪ J = {1, . . . , k}.
This proves that every set in B includes {1, . . . , k} \J and so contains j′. Finally, we must show that
MI ,MI′ are s-crowded for all I ∈ A and I ′ ∈ B. Since J ⊆ I and J 6⊆ I ′, it follows that I 6⊆ I ′; and
since {1, . . . , k}\J ⊆ I ′ and {1, . . . , k}\J 6⊆ I, it follows that I ′ 6⊆ I. By 5.3, MI ,MI′ are s-crowded.
This proves (1).

Choose A,B as in (1). Let A be the union of all the sets MI for I ∈ A, and define B similarly.
Thus M∗ = A ∪B.

(2) Every clique included in A has cardinality at most ω − 1, and the same for B.

Suppose that there is a clique X ⊆ A with |X| = ω. Let j ∈ {1, . . . , k} belong to all the sets
in A. Since (ωs+2/7)ω < ωs+5 ≤ |Lj |, there exists v ∈ Lj adjacent to every vertex of X, con-
tradicting that X is a clique of G of maximum cardinality. The same holds for B. This proves
(2).

Let n = ωs+2. If |A| ≤ nω, then by (2) it follows that G[M∗] admits an (nω + (ω − 1)d,D)-
colouring and the theorem holds. Thus we may assume that |A| > nω. Let X1 be the largest clique
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contained in A, and inductively for i ≥ 2 let Xi be the largest clique contained in A\(X1∪· · ·∪Xi−1).
Let |Xn| = t. Since |A| > nω it follows that t > 0. Let X = X1 ∪ · · · ∪ Xn. Thus |X| ≤ nω, and
ω(G[A \X]) ≤ t.

Let C be the set of all vertices v ∈ B such that for some I ∈ A, v has at least ωs non-neighbours
in MI ∩X.

(3) |C| ≤ nsω2s+2.

For each v ∈ C, there exists I ∈ A and a stable set S ⊆ MI ∩ X with |S| = s such that v has
no neighbour in S, by 4.2. For each such I and S, and each I ′ ∈ B, there are at most ωs vertices
in MI′ that have no neighbours in S, by 4.2 and since MI ,MI′ are s-crowded (because I 6⊆ I ′ and
I ′ 6⊆ I by (1), and by 5.3). Consequently for each choice of I, S there are at most kωs vertices in C
with no neighbour in S, since |B| ≤ k by 5.3. For each choice of I there are only |X|s ≤ nsωs choices
of S, since |X| ≤ nω; and there are only k choices of I by 5.3. Thus |C| ≤ (kωs)(nsωs)k ≤ nsω2s+2.
This proves (3).

(4) Every clique in B \ C has cardinality at most ω − t.

Let Y ⊆ B \ C be a clique. Since Y ∩ C = ∅, every vertex in Y has at most kωs non-neighbours
in X, since it has at most ωs in each X ∩MI and there are only k choices of MI . Consequently at
most kωs|Y | vertices in X have a non-neighbour in Y . Since n > kωs|Y | (since n = ωs+2, and k ≤ ω
and |Y | < ω by (2)) it follows that there exists i ∈ {1, . . . , n} such that every vertex in Y has no
non-neighbour in Xi, and so Xi ∪ Y is a clique. But |X| ≥ t from the choice of t, and |X ∪ Y | ≤ ω,
and so |Y | ≤ ω − t. This proves (4).

Now χ(M∗) ≤ |X|+ χ(A \X) + |C|+ χ(B \C). But |X| ≤ nω; A \X is (td,D)-colourable, since
ω(G[A \X]) ≤ t and t < ω (by (2)); |C| ≤ nsω2s+2 by (3); and B \ C is ((ω − t)d,D)-colourable by
(4) and since ω − t < ω (because t > 0). Thus M∗ is (K1,D)-colourable where

K1 = nω + td + nsω2s+2 + (ω − t)d.

Since 1 ≤ t ≤ ω − 1, it follows that td + (ω − t)d ≤ (ω − 1)d + 1 (since d ≥ 1), and so

K1 = nω+ td + nsω2s+2 + (ω− t)d ≤ nω+ nsω2s+2 + (ω − 1)d +1 = ωs+3 + ωs2+4s+2 + (ω− 1)d +1.

Hence M∗ is (K,D)-colourable where

K = ωs+3 + ωs2+4s+2 + (ω − 1)d + 1.

This proves 5.4.

From 5.2 and 5.4, with m = (s+ 1)ωs, we deduce:

5.5 Suppose that d ≥ 1 and D ≥ 0 have the property that every Hs-free graph G′ with ω(G′) < ω(G)
is (ω(G′)d,D)-colourable; and c ≥ 2s satisfies 4.1 when H = Hs. Assume that ω3 > ω + s/7 and

ω ≥ 200. Then V (L) ∪N(L) is (K,D)-colourable where

K = (ω − 1)d + ω(c+1)(s+7).
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Proof. V (L) has cardinality at most 14ωs+7 from the definition of an s-template and since k+ |L0| ≤
ω by 3.1. Every vertex in N(L) is pendant or dense or pure with respect to L, by 4.3. At most
14s+2ωs2+9s+14 are pendant, by 4.4, and the chromatic number of the set of all dense vertices is
at most (14ωs+6)c+1ω by 4.5. By 5.2 with m = (s + 1)ωs, and 5.4, the set of all pure vertices is
(K1,D)-colourable where

K1 = (ω − 1)d + ωs2+4s+2 + ωs+3 + 1 + (2s+ 2)ωs+1 + 2ωs+2.

Adding, we deduce that V (L) ∪N(L) is (K,D)-colourable where

K = 14ωs+7+14s+2ωs2+9s+14+(14ωs+6)c+1ω+(ω−1)d+ωs2+4s+2+ωs+3+1+(2s+2)ωs+1+2ωs+2.

Since K ≤ (ω − 1)d + ω(c+1)(s+7), this proves 5.5.

6 Proof of the main theorem

In this section we prove 1.2. If L = (L0, . . . , Lk) is an optimal s-template in G, we define Z(L) to be
the union of L0 and the set of all vertices v ∈ N(L) such that for 1 ≤ i ≤ k, v has at most ωs+2/4
non-neighbours in Li. Let Y (L) = (V (L) ∪N(L)) \ Z(L). First we need:

6.1 Let s ≥ 1 be an integer, and let G be Hs-free, with ω(G) ≥ 15 and ω2 > s + 1. Let L be an

optimal s-template in G. Then every vertex in Y (L) has at most ωs+7 neighbours in V (G) \ Y (L).

Proof. Let v ∈ Y (L), and suppose that v has more than ωs+7 neighbours in V (G) \ Y (L). By 3.1
and 3.5, |Z(L)| ≤ ω + 14ωs+6, and so v has at least ωs neighbours in V (G) \ (V (L) ∪N(L)), since

ω + 14ωs+6 + ωs < ωs+7

(because ω ≥ 15). By 4.2, there is a stable set S ⊆ V (G) \ (V (L) ∪ N(L)) of neighbours of v,
with |S| = s. Since v /∈ Z(L), it follows that v ∈ N(L) and there exists i ∈ {1, . . . , k} such that
v has more than ωs+2/4 non-neighbours in Li. Since k ≥ 2 by 3.2, and v has a neighbour in at
least one of L1, . . . , Lk because v ∈ N(L), and each |Lj | ≥ ωs+5 ≥ ωs+2/4, we may choose distinct
i, j ∈ {1, . . . , k} such that v has a neighbour in Lj and v has at least ωs+2/4 non-neighbours in Li,
and choose such a pair i, j such that v has as many non-neighbours in Li as possible. Let B be the
set of non-neighbours of v in Li. Thus |B| ≥ ωs+2/4.

(1) v has at most ωs + ωs+3 non-neighbours in Lj .

Let u ∈ Lj be adjacent to v. If u has at least ωs neighbours in B, there is a stable set T of
such neighbours with |T | = s, by 4.2, and then the subgraph induced on S ∪ T ∪ {u, v} is isomorphic
to Hs, a contradiction. Thus u has fewer than ωs neighbours in B; but it has at most ωs+3 non-
neighbours in Li, and hence at most that many in B, and so |B| ≤ ωs + ωs+3. Since |Li| ≥ ωs+5, v
has a neighbour in Li; and so from the choice of the pair i, j, v has at most ωs+ωs+3 non-neighbours
in Lj . This proves (1).
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Since |B| ≥ ωs+2/4 ≥ ωs, it includes a stable set T of cardinality s, by 4.2. Each vertex in S has
at most ωs+3 non-neighbours in Lj, and v has at most ωs + ωs+3 non-neighbours in Lj by (1), and
since

sωs+3 + ωs + ωs+3 < ωs+5 ≤ |Lj |,

(because ω2 > s + 1), it follows that some vertex u ∈ Lj is adjacent to every vertex in T ∪ {v}.
But then the subgraph induced on S ∪ T ∪ {u, v} is isomorphic to Hs, a contradiction. This proves
6.1.

Let A ⊆ V (G), and let L = (L0, . . . , Lk) be an s-template of G with V (L) ⊆ A. We make the
following definitions:

• ZA(L) is the union of L0 and the set of vertices in A \ V (L) that have at most ωs+2/4 non-
neighbours in Li for each i ∈ {1, . . . , k};

• NA(L) is the set of vertices in A \ V (L) with a neighbour in L1 ∪ · · · ∪ Lk; and

• YA(L) = (V (L) ∪NA(L)) \ ZA(L).

6.2 Let s ≥ 1 be an integer, and let G be Hs-free. Let ω = ω(G), and let A ⊆ V (G), such that there

is an s-template L of G with V (L) ⊆ A and with value at least 28ωs+6. Let L = (L0, . . . , Lk) be such

an s-template with maximum value.

• Suppose that d ≥ 1 and D ≥ 0 have the property that every Hs-free graph G′ with ω(G′) < ω is

(ω(G′)d,D)-colourable; and c ≥ 2s satisfies 4.1 when H = Hs; and ω3 > ω+ s/7; and ω ≥ 200.
Then V (L) ∪NA(L) is ((ω − 1)d + ω(c+1)(s+7),D)-colourable.

• If ω ≥ 15 and ω2 > s+1, then every vertex in YA(L) has at most ωs+7 neighbours in A\YA(L).

Proof. L is not necessarily an optimal s-template of G, since it is constrained to have vertex set
included in A; and it is not necessarily an optimal s-template of G[A], since perhaps ω(G[A]) < ω(G)
and then the conditions that define an s-template of G are different from those that define an s-
template of G[A]. Nevertheless, we can apply 5.5 and 6.1 to L by the following trick. Let G′ be the
disjoint union of G[A] and a complete graph Kω(G) with vertex set B say. Then ω(G′) = ω(G), and
since every optimal s-template of G′ induces a connected subgraph with more than ω(G) vertices
(because its value is at least 28ω(G)6), it contains no vertex of B and so is an s-template of G[A].
This proves that L is an optimal s-template of G′. The claims of the theorem follow by applying 5.5
and 6.1 to L and G′. This proves 6.2.

Now we prove 1.2, which we restate in a strengthened form:

6.3 For every integer s ≥ 1, there exists d ≥ 0 such that if G is Hs-free, then G is (ωd, ωs+8)-
colourable, and hence has chromatic number at most ωd(ωs+8 + 1).

Proof. Choose c ≥ 2s satisfying 4.1 with H = Hs. It follows from the main theorem of [11] that
there is a function f such that χ(G) ≤ f(ω(G)) for every Hs-free graph G; and so by choosing
d sufficiently large we may arrange that χ(G) ≤ ω(G)d for every Hs-graph G with ω(G) at most
max(200, (s + 1)1/2). Let us also choose d so large that d ≥ (c + 1)(s + 7) + 1. We claim that d
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satisfies 6.3. The proof is by induction on ω = ω(G). If ω ≤ max(200, (s + 1)1/2) the claim is true,
so we may assume that ω > max(200, (s + 1)1/2). Consequently ω3 > ω + s/7 and ω2 > s + 1, and
we can apply 6.2.

Let V0 = V (G), and choose n maximum such that there is a sequence Li (1 ≤ i ≤ n) of s-
templates of G and a sequence V0 ⊇ V1 ⊇ · · · ⊇ Vn of subsets of V (G), with the following property.
For 1 ≤ i ≤ n, Li is an s-template of G with value at least 28ωs+6, with V (Li) ⊆ Vi−1, chosen with
maximum value among all such s-templates; and Vi = Vi−1 \ YVi−1

(Li), in the notation of 6.2. For
1 ≤ i ≤ n, let Yi = YVi−1

(Li), and let Yn+1 = Vn. We observe:

• The sets Y1, . . . , Yn+1 are pairwise disjoint and have union V (G).

• For 1 ≤ i ≤ n, G[Yi] is (ωd, ωs+7(ω − 1))-colourable. To see this, observe that from the
inductive hypothesis, every Hs-free graph G′ with ω(G′) < ω is (ω(G′)d, ω(G′)s+8)-colourable,
and hence (ω(G′)d,D)-colourable where D = ωs+7(ω − 1), since ω(G′) < ω. From the first
statement of 6.2, for 1 ≤ i ≤ n, Yi is ((ω− 1)d + ω(c+1)(s+7), ωs+7(ω − 1))-colourable and hence
(ωd, ωs+7(ω− 1))-colourable, since (ω− 1)d +ω(c+1)(s+7) ≤ ωd (because d ≥ (c+1)(s+7)+1).

• G[Yn+1] is (ωd, ωs+7(ω − 1))-colourable. To see this, observe that the maximality of n implies
that there is no s-template L of G of value at least 28ωs+6 and with V (L) ⊆ Vn, and so
χ(Vn) ≤ (14ωs+6)c by 4.1. Consequently Vn = Yn+1 is (ωd, ωs+7(ω − 1))-colourable, since
(14ωs+6)c ≤ ωd.

• For 1 ≤ i ≤ n, every vertex in Yi has at most ωs+7 neighbours in Yi+1∪ · · · ∪Yn+1. This follows
from the second statement of 6.2.

By 2.1, G is (ωd, ωs+7(ω − 1) + ωs+7)-colourable. This proves 6.3.
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