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Abstract

A graph G is called 3-choice critical if G is not 2-choosable but any proper
subgraph is 2-choosable. A graph G is strongly fractional r-choosable if G is
(a, b)-choosable for all positive integers a, b for which a/b ≥ r. The strong fractional
choice number of G is chsf(G) = inf{r ∶ G is strongly fractional r-choosable}. This
paper determines the strong fractional choice number of all 3-choice critical graphs.

1 Introduction

An a-list assignment of a graph G is a mapping L which assigns to each vertex v of
G a set L(v) of a colours. A b-fold coloring of G is a mapping φ which assigns to
each vertex v of G a set φ(v) of b colors such that for every edge uv, φ(u) ∩ φ(v) = ∅.
An (L, b)-colouring of G is a b-fold coloring φ of G such that φ(v) ⊆ L(v) for each
vertex v. We say G is (a, b)-choosable if for any a-list assignment L of G, there is an
(L, b)-colouring of G, and G is (a, b)-colourable if there is a b-fold colouring φ of G such
that φ(v) ⊆ {1,2, . . . , a} for each vertex v. We say G is a-choosable (respectively, a-
colourable) if G is (a,1)-choosable (respectively, (a,1)-colourable). The choice number
ch(G) of G is the minimum integer a such that G is a-choosable, and the chromatic
number χ(G) of G is the minimum integer a such that G is a-colourable. The concept
of list colouring of graphs was introduced independently by Erdős, Rubin and Taylor [2]
and Vizing [9] in the 1970’s, and has been studied extensively in the literature.

The fractional chromatic number χf(G) of a graph G is defined as

χf(G) = inf{a
b
∶ G is (a, b)-colourable.}
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The fractional choice number chf(G) of a graph G is defined as

chf(G) = inf{a
b
∶ G is (a, b)-choosable.}

It follows from the definition that for any graph G, χ(G) ≤ ch(G) and χf(G) ≤ chf(G).
It is known that there are bipartite graph with arbitrary large choice number. On the
other hand, it was proved by Alon, Tuza and Voigt [1] that chf(G) = χf(G) for every
graph G. So chf(G) is not really a new graph parameter. In particular, chf(G) = 2 for
all bipartite graph with at least one edge.

The concept of strong fractional choice number of a graph was introduced in [12].
Given a real number r, we say a graph G is strongly fractional r-choosable if G is (a, b)-
choosable for any a, b for which a

b ≥ r. The strong fractional choice number chsf(G) of G
is defined as

chsf(G) = inf{r ∶ G is strongly fractional r-choosable}.
It follows from the definition that chsf(G) ≥ ch(G) − 1. It was proved in [11] that for
any finite graph chsf(G) is a rational number and either chsf(G) = χf(G) or the infimum
in the definition is attained and hence can be replaced by the minimum. However, the
result in this paper shows that if chsf(G) = χf(G), then the infimum in the definition
maybe not attained. The parameter chsf(G) may serve as a refinement for the choice
number of G and has been studied in a few papers [3, 4]. However, it remains an open
question whether chsf(G) ≤ ch(G) for every graph G.

For any graph G, we have chsf(G) ≥ χf(G), and chsf(G) ≥ 2 for every graph with
at least one edge. It seems to be a difficult problem to characterize all graphs G with
chsf(G) = 2.

Erdős, Rubin and Taylor [2] characterized all the 2-choosable graphs. Given a graph
G, the core of G is obtained from G by repeatedly removing degree 1 vertices. Denote by
Θk1,k2,...,kq the graph consisting of internally vertex disjoint paths of lengths k1, k2, . . . , kq
connecting two vertices u and v. Erdős, Rubin and Taylor proved that a graph G is
2-choosable if and only if the core of G is K1 or an even cycle or Θ2,2,2p for some positive
integer p.

We say a graph G is 3-choice critical if G is not 2-choosable but any proper subgraph
of G is 2-choosable. Voigt characterized all the 3-choice critical graphs.

Theorem 1.1 ( [8]) A graph is 3-choice critical if and only if it is one of the following:

1. An odd cycle.

2. Two vertex-disjoint even cycles joined by a path.

3. Two even cycles with one vertex in common.

4. Θ2r,2s,2t with r ≥ 1, and s, t > 1, or Θ2r+1,2s+1,2t+1 with r ≥ 0, s, t > 0.

5. Θ2,2,2,2t graph with t ≥ 1.
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The strong fractional choice numbers of odd cycles are easily determined.

Proposition 1.2 For odd cycle C2k+1, chsf(C2k+1) = 2 + 1
k .

Proof. It is well-known that χf(C2k+1) = 2 + 1
k . As chsf(G) ≥ χf(G) for any graph G, it

suffices to show that chsf(C2k+1) ≤ 2 + 1
k . We shall show that for any a/b ≥ 2 + 1/k, C2k+1

is (a, b)-choosable.
Assume the vertices of C2k+1 are (v0, v1, . . . , v2k) in this cyclic order, a/b ≥ 2+ 1/k and

L is an a-list assignment of C2k+1. Assume ⋃2k+1
i=1 L(vi) = {c1, c2, . . . , cp}. By permuting

colours, we may assume that ⋂2k+1
i=1 L(vi) = {c1, c2, . . . , cq}, where 0 ≤ q ≤ a ≤ p. (Note

that q = 0 when ⋂2k+1
i=1 L(vi) = ∅). For i = q + 1, q + 2, . . . , p, let si be an arbitrary index

such that ci /∈ L(vsi). We recursively assign colours c1, c2, . . . , cp to vertices of C2k+1.
Assume colours c1, c2, . . . , ci−1 have been assigned to vertices of C2k+1 already. We assign
colour ci to vertices of C2k+1 as follows:

If i ≤ q, then assign colour ci to vertices in the set {vi, vi+2, . . . , vi+2k−2}, where the
summations in the indices are modulo 2k + 1.

If i ≥ q+1, then we traverse the vertices of C2k+1 one by one in the order vsi , vsi+1, . . . , vsi+2k,
and assign colour i to vertex vj provided the following hold:

• ci ∈ L(vj) and ci is not assigned to vj−1.

• vj has received less than b colours from c1, c2, . . . , ci−1.

It follows from the construction that each colour class is an independent set and each
vertex vj is assigned at most b colours and all the colours assigned to vj are from L(vj).
Now we show that each vertex is assigned exactly b colours.

Assume to the contrary that vj is assigned at most b − 1 colours. Assume ci ∈ L(vj)
and ci is not assigned to vj. It follows from the colouring procedure that one of the
following holds:

1. ci is assigned to vj−1.

2. i ≤ q and j = i + 2k.

The first case occurs at most b times as vj−1 receives at most b colours, and the second
case occurs at most ⌈ q

2k+1⌉ ≤ ⌈ a
2k+1⌉ times. Therefore,

a = ∣L(vj)∣ ≤ b − 1 + b + ⌈ a

2k + 1
⌉ < 2b + a

2k + 1

and hence a/b < 2 + 1/k, contrary to our assumption.

The main result of this paper is that every bipartite 3-choice critical graphs has strong
fractional choice number 2. It suffices to show that every bipartite 3-choice critical graph
is (2m + 1,m)-choosable for any positive integer m.

It is known [6, 8] that for an odd integer m, a graph G is (2m,m)-choosable if and
only if G is 2-choosable. In [8], Voigt conjectured that every bipartite 3-choice critical
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graph G is (2m,m)-choosable for every even integer m. If the conjecture were true,
then all bipartite 3-choice critical graphs have strong fractional choice number 2. The
conjecture was verified for G = Θ2,2,2,2 [7]. However, Meng, Puleo and Zhu [5] proved
that if min{r, s, t} ≥ 3, r, s, t have the same parity, then Θr,s,t is not (4,2)-choosable,
and if t ≥ 2, then Θ2,2,2,2t is not (4,2)-choosable. Nevertheless, the other bipartite 3-
choice critical graphs, i.e., two vertex-disjoint even cycles joined by a path, two even
cycles with one vertex in common, Θ2,2s,2t with s, t > 1, and Θ1,2s+1,2t+1 with s, t > 0, are
(4,2)-choosable [5]. Xu and Zhu [10] strengthened these results and proved that these
graphs are also (4m,2m)-choosable for all integer m. Note that if a graph G is (4m,2m)-
choosable, then it is (4m − 1,2m − 1)-choosable: if L is a (4m − 1)-list assignment, then
let c be a new colour, and let L′(v) = L(v)∪ {c}, we obtain a 4m-list assignment. Let f
be a 2m-fold L′-colouring of G, and let g(v) = f(v)−{c} if c ∈ f(v) and g(v) = f(v)−{c′}
if c ∉ f(v), where c′ is an arbitrary colour in f(v). Then g is a (2m−1)-fold L-colouring
of G. So chsf(G) = 2 if one of the following holds:

1. G is two vertex-disjoint even cycles joined by a path, two even cycles with one
vertex in common.

2. G = Θ2,2s,2t with s, t > 1.

3. G = Θ1,2s+1,2t+1 with s, t ≥ 1.

4. G = Θ2,2,2,2.

In this paper, we prove the following result.

Theorem 1.3 If G = Θ2r,2s,2t with r, s, t > 1, or G = Θ2r+1,2s+1,2t+1 with r, s, t > 0, or
G = Θ2,2,2,2t graph with t ≥ 1, then G is (2m+1,m)-choosable for any positive integer m.

Thus if G is a bipartite 3-choice critical graph, then for any r > 2, G is strongly
fractional r-choosable. Hence we have the following corollary.

Corollary 1.4 Every bipartite 3-choice critical graph G has chsf(G) = 2.

2 Preliminaries

The proof of Theorem 1.3 uses the idea in [5, 10]: Assume G is a graph as in Theorem
1.3 and L is a (2m+ 1)-list assignment of G. Let u, v be the two vertices of G of degree
at least 3. Then G − {u, v} is the disjoint union of a family of three or four paths,
where each end vertex of these paths has exactly one neighbour in {u, v} unless the path
consists of a single vertex w, in which case w is adjacent to both u and v. Other vertices
of the paths are not adjacent to u or v.

We shall find appropriate m-sets S ⊆ L(u) and T ⊆ L(v), assign S to u and T to v.
Then extend this pre-colouring of u, v to an (L,m)-colouring of the remaining vertices
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of G, that consists of three or four paths. The extension to the paths are independent
to each other. The difficulties lie in proving the existence of such m-sets S and T .

Assume P is a path with vertices v1, v2, . . . , vn in order and L is a (2m + 1)-list as-
signment on P , with v1 adjacent to u and vn adjacent to v. Assume S,T are the m-sets
of colours assigned to u, v respectively. A necessary and sufficient condition was given
in [5] under which P has an (L,m)-colouring so that v1 and vn avoid the colours from
S and T .

Definition 2.1 Assume P is an n-vertex path with vertices v1, v2, . . . , vn in order. For
a list assignment L of P , Let

X1 = L(v1),
Xi = L(vi) −Xi−1, i ∈ {2,3, . . . , n},

SL(P ) = ∑n
i=1 ∣Xi∣.

The following lemma was proved in [5] (the statement is slightly different, but it does
not affect the proof).

Lemma 2.2 Let P be an n-vertex path and let L be a list assignment on P . If ∣L(v1)∣,
∣L(vn)∣ ≥m and ∣L(vi)∣ ≥ 2m for i ∈ {2,3, . . . , n − 1}, then path P is (L,m)-colourable if
and only if SL(P ) ≥ nm.

Definition 2.3 Assume n is an odd integer, P is an n-vertex path with vertices v1, v2, . . . , vn
in order, and L is a list assignment on P . Let

Λ = ⋂
x∈V (P )

L(x),

X̂1 = {c ∈ L(v1) −Λ ∶ the smallest index i for which c ∉ L(vi) is even},
X̂n = {c ∈ L(vn) −Λ ∶ the largest index i for which c ∉ L(vi) is even}.

Definition 2.4 Assume L is a (2m + 1)-list assignment on P and S,T are two colour
sets. Let L ⊖ (S,T ) be the list assignment obtained from L by deleting all colours in
S from L(v1), all colours in T from L(vn), and leaving all other lists unchanged. The
damage of (S,T ) with respect to L and P is defined as

damL,P (S,T ) = SL(P ) − SL⊖(S,T )(P ).

The following lemma was proved in [5].

Lemma 2.5 ( [5]) Let L be a list assignment on an n-vertex path P , where n is odd.
For any sets of colours S,T ,

SL⊖(S,T )(P ) = SL(P ) − (∣(Λ ∪ X̂1) ∩ S∣ + ∣(Λ ∪ X̂n) ∩ T ∣ − ∣Λ ∩ S ∩ T ∣).

and
damL,P (S,T ) = ∣X̂1 ∩ S∣ + ∣X̂n ∩ T ∣ + ∣Λ ∩ (S ∪ T )∣.
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Lemma 2.6 Let L be a list assignment on an n-vertex path P with vertices v1, v2, . . . , vn,
where n ≥ 3 is odd, ∣L(v1)∣ = l1 and ∣L(vi)∣ = l2 for all i ≥ 2. Then

SL(P ) = l1 +
n − 3

2
l2 + ∑

k is even
k<n

∣Xk−1 −L(vk)∣ + ∣Xn∣.

Proof. We use induction on n. If n = 3, then the lemma holds trivially. Assume n ≥ 5.
Let P ′ = P − {vn−1, vn} and let L′ be the restriction of L to P ′, hence

SL(P ) = l1 +
n − 5

2
l2 + ∑

k is even
k<n−2

∣Xk−1 −L(vk)∣ + ∣Xn−2∣ + ∣Xn−1∣ + ∣Xn∣. (2.1)

Note that

∣Xn−1∣ = ∣L(vn−1) −Xn−2∣
= ∣L(vn−1)∣ − ∣Xn−2∣ + ∣Xn−2 −L(vn−1)∣
= l2 − ∣Xn−2∣ + ∣Xn−2 −L(vn−1)∣. (2.2)

Combining Equality (2.1) and Equality (2.2), we complete the proof.

Lemma 2.7 Let L be a list assignment on an n-vertex path P with vertices v1, v2, . . . , vn,
where n ≥ 3 is odd, ∣L(v1)∣ = l1 and ∣L(vi)∣ = l2 for all i ≥ 2. Then

SL(P ) ≥ l1 +
n − 3

2
l2 + ∣X̂1∣ + ∣X̂n∣ + ∣Λ∣.

Proof. By the definition of X̂1, every element of X̂1 appears in a set of the form
Xk−1 − L(vk) where k is even. By Lemma 2.6 and the fact that ∣Xn∣ = ∣X̂n∣ + ∣Λ∣, the
lemma holds.

Lemma 2.8 Let L be a list assignment on an n-vertex path P with vertices v1, v2, . . . , vn,
where n ≥ 3 is odd, ∣L(v1)∣ = l1 and ∣L(vi)∣ = l2 for all i ≥ 2, then SL(P ) ≥ l1 + n−1

2 l2.

Proof. Since ∣X1∣ = ∣L(v1)∣ = l1 and that ∣Xi∣ + ∣Xi+1∣ ≥ l2 for i ≥ 2, so by the definition
that SL(P ) = ∑n

i=1 ∣Xi∣, the lemma holds.

The following is a key lemma for the proof in this paper. It generalizes Lemma 9
in [10], which is a special case where ` and k = 2m − τ are even.

Lemma 2.9 Let ` and k be fixed integers, where k ≥ 1, ` > k, 0 ≤ τ ≤ m. Assume x, y
are non-negative integers with x + y ≤ `. Let

F (x, y) =∑(x
a
)(y
b
)(` − x − y
k − a − b),
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where the summation is over all non-negative integer pairs (a, b) for which 0 ≤ a ≤ x,
0 ≤ b ≤ y, a + b ≤ k and 2a + b ≥ max{2x + y + k + 1 − `, k + 1}. Then

F (x, y) ≤ 1

2
(`
k
),

and the equality holds if and only if ` is even and k is odd, x = `
2 and y = 0.

Note that when a > x or b > y, then (x
a
)(y

b
) = 0. Also a+b ≤ k and 2a+b ≥ 2x+y+k+1−`

implies that 2x + y ≤ ` − k − 1 + 2a + b ≤ ` + k − 1. Thus the summation can be restricted
to 0 ≤ a ≤ x,0 ≤ b ≤ y, a+ b ≤ k, 2a+ b ≥ max{2x+ y +k + 1− `, k + 1} and 2x+ y ≤ `+k − 1.
The proof of Lemma 2.9 will be given in Section 5.

Observation 2.10 If the restriction on 2a + b is replaced by 2a + b ≥ max{2x + y + k +
1 − `, k + 2} in Lemma 2.9, then we have F (x, y) < 1

2
(`
k
).

Proof. It suffice to prove the observation holds when ` is even and k is odd, x = `
2 and

y = 0. Any other case directly follows from Lemma 2.9. Let H(x,0) be the new function
which is same as F (x,0) except that 2a + b ≥ max{2x + y + k + 1 − `, k + 2} ≥ k + 2. So

H(x,0) = F (x,0) − (
`
2

k+1
2

)(
`
2

k−1
2

) < 1
2
(`
k
).

3 Proof of Theorem 1.3 for Θ2r,2s,2t and Θ2r+1,2s+1,2t+1

Let G = Θ2r,2s,2t, where r, s, t > 1. Let u, v be the two degree 3 vertices. Let P 0, P 1, P 2

be the paths in G − {u, v}, where P i = (vi1, vi2, . . . , vini
), vi1 is adjacent to u and vini

is
adjacent to v.

For the purpose of using induction, instead of proving Theorem 1.3 directly, we shall
prove a stronger result, where the list assignment L does not assign 2m + 1 colours to
every vertex. In particular, ∣L(u)∣ = ∣L(v)∣ = `, where 0 ≤ ` ≤ 2m.

Definition 3.1 For a fixed indexing of L(u) and L(v), a couple is a tuple of the form
(cj, c′j) for j ∈ {1,2, . . . , `}. When we write a couple, we suppress the parentheses and
simply write cjc′j. A pair is a tuple (S,T ) with S ⊂ L(u), T ⊂ L(v), and ∣S∣ = ∣T ∣.
We define the size of a pair as ∣S∣. A pair (S,T ) is bad with respect to (L,P ) if
damL,P (S,T ) > SL(P ) −m∣V (P )∣. A simple pair is a pair (S,T ) such that S ∩ (L(v) −
T ) ∩Λ = ∅ and T ∩ (L(u) − S) ∩Λ = ∅.

Definition 3.2 An indexing of colours in L(u) and L(v) as L(u) = {c1, c2, . . . , c`} and
L(v) = {c′1, c′2, . . . , c′`} is consistent if cj = c′j whenever cj ∈ L(u) ∩L(v). In other words,
{ci, c′i} ∩ {cj, c′j} = ∅ whenever i ≠ j.

It is easy to see that (S,T ) is a simple pair if there is a consistent indexing L(u) =
{c1, c2, . . . , c`} and L(v) = {c′1, c′2, . . . , c′`} of colours in L(u) and L(v) such that T = {c′i ∶
ci ∈ S}. For convenience, in the sequel, we shall fix a consistent indexing of colours in
L(u) and L(v).
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Observation 3.3 If S ⊆ L(u) and T = {c′j ∶ cj ∈ S}, then (S,T ) is a simple pair
(most simple pairs below are of this form). If c1c′1 and c2c′2 are two couples satisfying
{c1} ∩ {c′1} ∩ Λ = ∅ and {c2} ∩ {c′2} ∩ Λ = ∅, then both (c1, c′2) and (c2, c′1) are simple
pairs. If (S1, T1) and (S2, T2) are two simple pairs, where S1 ∩ S2 = ∅ and T1 ∩ T2 = ∅,
then (S1 ∪ S2, T1 ∪ T2) is also a simple pair.

The following lemma follows directly from Lemma 2.5.

Lemma 3.4 If (S1, T1) and (S2, T2) are two pairs such that S1 ∩ (S2 ∪ T2) = ∅ and
T1 ∩ (S2 ∪ T2) = ∅, then

damL,P (S1 ∪ S2, T1 ∪ T2) = damL,P (S1, T1) + damL,P (S2, T2).

In particular, if (S,T ) is a simple pair,

damL,P (S,T ) = ∑
cj∈S

damL,P ({cj},{c′j}). (3.1)

In the following, we may write damL,P (c, c′) for damL,P ({c},{c′}). The following
observation follows from Lemma 2.5.

Observation 3.5 For any couple cc′ and P = (v1, v2, . . . , vn), the following hold:

1. damL,P (c, c′) = 2 if c ∈ X̂1 ∪Λ and c′ ∈ X̂n ∪Λ, and moreover if c = c′, then c ∉ Λ;

2. damL,P (c, c′) = 1 if c ∈ X̂1 ∪Λ or c′ ∈ X̂n ∪Λ but not both unless c = c′ ∈ Λ;

3. damL,P (c, c′) = 0 if c ∉ X̂1 ∪Λ and c′ ∉ X̂n ∪Λ.

In particular, if damL,P (c, c′) = 2 and ∣P ∣ = 1, then c ≠ c′.

Definition 3.6 Assume cjc′j is a couple.

• cjc′j is heavy for the internal path P if damL,P (cj, c′j) = 2;

• cjc′j is light for the internal path P if damL,P (cj, c′j) = 1;

• cjc′j is safe for the internal path P if damL,P (cj, c′j) = 0.

For each path P i, let x(i), y(i), z(i) denote the number of heavy, light and safe couples
for P i, respectively. Then for i = 0,1,2,

x(i) + y(i) + z(i) = `, and damL,P i(L(u), L(v)) = 2x(i) + y(i).

Assume m ≥ τ are non-negative integers and (S,T ) is a simple pair of size m− τ . Let
a(i)(S,T ), b(i)(S,T ), c(i)(S,T ) denote the number of heavy, light and safe couples for P i

in (S,T ), respectively. Then for i = 0,1,2,

a(i)(S,T ) + b(i)(S,T ) + c(i)(S,T ) =m − τ and damL,P (S,T ) = 2a(i)(S,T ) + b(i)(S,T ).

Let β(P i) denote the number of bad simple pairs of size m−τ with respect to (L,P i).
We write X̂ i

1, X̂
i
ni

and Λi for the sets X̂1, X̂n,Λ calculated for P = P i.
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Theorem 3.7 Assume ` and τ are non-negative even integers, L is a list assignment
for G satisfying the following:

(C1) τ ≤ 2⌊m2 ⌋ and ` + τ ≥ 2⌈m2 ⌉.

(C2) ∣L(u)∣ = ∣L(v)∣ = `.

(C3) For each i ∈ {0,1,2}, ∣L(vi1)∣ ≥ 2m − τ and ∣L(vini
)∣ ≥ 2m + 1 − τ .

(C4) ∣L(w)∣ ≥ 2m + 1 for w ≠ u, v, vi1, vini
.

(C5) For i = 0,1,2,

SL(P i) − nim ≥ max{m + ni − 3

2
+ damL,P i(L(u), L(v)) − ` − τ,m + ni − 1

2
− τ}.

Then there exists a set S ⊂ L(u) and a set T ⊂ L(v) satisfying ∣S∣ = ∣T ∣ =m− τ such that
for each i,

damL,P i(S,T ) ≤ SL(P i) − nim.

Proof. We prove the lemma by induction on 2` + τ . First assume that 2` + τ = 2⌈m2 ⌉.
Since ` and τ are non-negative, and ` + τ ≥ 2⌈m2 ⌉, we have ` = 0 and τ = 2⌈m2 ⌉. Note
that by (C1), τ ≤ 2⌊m2 ⌋, so m is even and τ = m. By (C5), for each i ∈ {0,1,2},
SL(P i) − nim ≥ ni−1

2 +m − τ >m − τ = 0. Let S = T = ∅, we are done.
Thus we assume that 2` + τ > 2⌈m2 ⌉ in the sequel. Assume to the contrary, Theorem

3.7 is not true for L.
The following claim gives a necessary condition for a simple pair of size m − τ being

bad with respect to (L,P i). Recall that damL,P i(L(u), L(v)) = 2x(i) + y(i). Claim 3.1
follows from (C5) and the definition of bad pair directly.

Claim 3.1 If (S,T ) is a bad simple pair of size m − τ with respect to (L,P i), then

damL,P i(S,T ) = 2a(i)(S,T ) + b(i)(S,T )

≥ max{2x(i) + y(i) +m + ni − 1

2
− ` − τ,m + ni + 1

2
− τ}

≥ max{2x(i) + y(i) +m + 1 − ` − τ,m + 2 − τ}.

The last inequality holds as ni ≥ 3.
The following claim gives an upper bound and a lower bound of the number of bad

simple pairs of size m − τ with respect to (L,P i).

Claim 3.2 For each i ∈ {0,1,2}, 0 < β(P i) < 1
2
( `
m−τ).
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Proof. If a simple pair (S,T ) of size m−τ is bad with respect to (L,P i), then by Claim
3.1, damL,P i(S,T ) ≥ max{2x(i) + y(i) +m + 1 − ` − τ,m + 2 − τ}. Note that a(i)(S,T ) +
b(i)(S,T ) + c(i)(S,T ) =m − τ , so by Claim 3.1 and Observation 2.10 (setting m − τ = k),
we have that β(P i) < 1

2
( `
m−τ).

If β(P i) = 0 for some i, then β(P 0)+β(P 1)+β(P 2) ≤ ( `
m−τ)−1. So there exists a simple

pair (S,T ) of size m − τ which is not bad with respect to any (L,P i), a contradiction
to the assumption.

Claim 3.3 For each i ∈ {0,1,2}, 2x(i) + y(i) ≤ ` +m − τ − ni−1
2 , and x(i) ≥ 2 and z(i) ≥ 1.

Proof. If SL(P i) − nim ≥ 2m − 2τ , then for any simple pair (S,T ) of size m − τ ,
SL(P i) − damL,P i(S,T ) ≥ nim (as damL,P i(S,T ) ≤ 2m − 2τ), hence (S,T ) is not bad
with respect to (L,P i), which means that β(P i) = 0, a contradiction to Claim 3.2. Thus
we may assume that SL(P i) − nim ≤ 2m − 2τ − 1. It follows from (C5) that

2x(i) + y(i) = damL,P i(L(u), L(v)) ≤ 2m − 2τ − 1 −m − ni − 3

2
+ ` + τ = ` +m − τ − ni − 1

2
.

Thus we proved the first part.
Assume x(i) ≤ 1 for some i ∈ {0,1,2}, then for every simple pair (S,T ) of size m − τ ,

damL,P i(S,T ) ≤ 2 × 1 + (m − τ − 1) =m − τ + 1, contrary to Claim 3.1. Thus x(i) ≥ 2.
Assume z(i) = 0, then x(i) + y(i) = ` and for any simple pair (S,T ) of size m − τ ,

a(i)(S,T ) + b(i)(S,T ) =m − τ . By Claim 3.1, we have

a(i)(S,T ) +m − τ = 2a(i)(S,T ) + b(i)(S,T )
≥ 2x(i) + y(i) +m + 1 − ` − τ
= x(i) + 1 +m − τ.

This implies that a(i)(S,T ) ≥ x(i) + 1, in contrary to the fact that a(i)(S,T ) ≤ x(i).

Claim 3.4 ` + τ ≥m + 1 and τ ≤ 2⌊m2 ⌋ − 2 ≤m − 2.

Proof. Suppose to the contrary, `+τ <m+1. By (C1), we have `+τ =m. Let S = L(u),
T = L(v). By (C5), for i = 0,1,2,

damL,P i(S,T ) = 2x(i) + y(i) ≤ SL(P i) − nim,

contrary to the assumption. This proves the first inequality.
Assume to the contrary that τ > 2⌊m2 ⌋ − 2. As τ is even and τ ≤ 2⌊m2 ⌋, we have

τ = 2⌊m2 ⌋. If m is even, then τ =m and we take S = T = ∅. By (C5), damL,P i(S,T ) = 0 <
SL(P i) − nim for i = 0,1,2, a contradiction.

Assume m is odd, then we have τ = m − 1. By (C5), SL(P i) − nim ≥ m + 1 − τ ≥ 2.
Let S = {c} and T = {c′} for any couple cc′. Then damL,P i(S,T ) ≤ 2 ≤ SL(P i) − nim for
i = 0,1,2, a contradiction.
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Claim 3.5 There does not exist a simple pair (Du,Dv) such that ∣Du∣ = ∣Dv ∣ = d ≤
` −m + τ is even, and damL,P i(Du,Dv) ≥ d for each i ∈ {0,1,2}.

Proof. Assume (Du,Dv) is such a simple pair. Let L′ be a new list assignment for G
with L′(u) = L(u) −Du, L′(v) = L(v) −Dv, L′(w) = L(w) for w ∈ V (G) ∖ {u, v}.

(C1)-(C4) of Theorem 3.7 are easily seen to be satisfied by L′, with `′ = ` − d and
τ ′ = τ .

As L′(w) = L(w) for w ∈ V (G)∖{u, v}, so for each i ∈ {0,1,2}, damL′,P i(L′(u), L′(v)) =
damL,P i(L′(u), L′(v)) and SL(P i) = SL′(P i). Therefore, by Lemma 3.4,

damL,P i(L(u), L(v)) = damL′,P i(L′(u), L′(v))+damL,P i(Du,Dv) ≥ damL′,P i(L′(u), L′(v))+d,

and

SL′(P i) − nim = SL(P i) − nim

≥ max{m + ni − 3

2
+ damL,P i(L(u), L(v)) − ` − τ,m + ni − 1

2
− τ}

≥ max{m + ni − 3

2
+ damL′,P i(L′(u), L′(v)) − `′ − τ,m + ni − 1

2
− τ}.

I.e., (C5) is also satisfied by L′. By induction hypothesis, there exists a pair (S,T ), with
∣S∣ = ∣T ∣ = m − τ , S ⊆ L′(u) ⊆ L(u), T ⊆ L′(v) ⊆ L(v), such that for each i ∈ {0,1,2},
damL,P i(S,T ) = damL′,P i(S,T ) ≤ SL(P i) − nim.

This completes the proof of this claim.

Claim 3.6 There does not exist a simple pair (Du,Dv) such that 0 < ∣Du∣ = ∣Dv ∣ = d ≤
m − τ is even, and damL,P i(Du,Dv) ≤ d for each i ∈ {0,1,2}.

Proof. Assume (Du,Dv) is such a simple pair. Let L′ be a new list assignment forG with
L′(u) = L(u)−Du, L′(v) = L(v)−Dv, for each i, L′(vi1) = L(vi1)−Du, L′(vini

) = L(vini
)−Dv,

L′(vij) = L(vij) where 1 < j < ni.
Observe that (C1)-(C4) of Theorem 3.7 are satisfied by L′, with `′ = ` − d and τ ′ =

τ + d. Note that SL′(P i) = SL(P i) − damL,P i(Du,Dv) ≥ SL(P i) − d. As SL(P i) −
nim ≥ m + ni−1

2 − τ , we have SL′(P i) − nim ≥ m + ni−1
2 − τ ′. On the other hand, as

damL′,P i(L′(u), L′(v)) = damL,P i(L′(u), L′(v)), by Lemma 3.4, damL′,P i(L′(u), L′(v)) =
damL,P i(L(u), L(v)) − damL,P i(Du,Dv). So

SL′(P i) − nim = SL(P i) − nim − damL,P i(Du,Dv)

≥m + ni − 3

2
+ damL,P i(L(u), L(v)) − damL,P i(Du,Dv) − ` − τ,

=m + ni − 3

2
+ damL′,P i(L′(u), L′(v)) − `′ − τ.

Therefore, (C5) is also satisfied by L′.
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By induction, there exists a pair (S′, T ′), where ∣S′∣ = ∣T ′∣ = m − τ ′ = m − τ − d such
that for every i,

damL′,P i(S′, T ′) ≤ SL′(P i) − nim.
Let S = S′ ∪Du and T = T ′ ∪Dv. As S′ ∩Du = ∅ and T ′ ∩Dv = ∅, damL′,P i(S′, T ′)) =
damL,P i(S′, T ′). Thus we have ∣S∣ = ∣T ∣ =m − τ and

damL,P i(S,T ) ≤ damL,P i(Du,Dv) + damL,P i(S′, T ′)
≤ damL,P i(Du,Dv) + SL′(P i) − nim
= SL(P i) − nim.

This completes the proof of Claim 3.6.

Observe that it follows from Claim 3.4 that m−τ ≥ 2. So there does not exist (Du,Dv)
such that ∣Du∣ = ∣Dv ∣ = 2 and damL,P i(Du,Dv) ≤ 2 for each i ∈ {0,1,2}.

Claim 3.7 If ` + τ = m + 1, then there does not exist a pair (c, c′) (not necessarily a
simple pair) such that damL,P i(L(u)∖c,L(v)∖c′) ≤ damL,P i(L(u), L(v))−1 for i = 0,1,2.
Consequently, we have the following.

(1) There is no couple (c, c′) satisfying damL,P i(c, c′) ≥ 1 for all i.

(2) Every couple is heavy for at most one internal path.

Proof. If this is not true, then let S = L(u) ∖ c and T = L(v) ∖ c′ (and hence m − τ =
∣S∣ = ` − 1). By (C5) and the assumption, for i ∈ {0,1,2},

SL(P i) − nim ≥m + ni − 3

2
+ 2x(i) + y(i) − ` − τ

≥ 2x(i) + y(i) − 1

= damL,P i(L(u), L(v)) − 1

≥ damL,P i(S,T ).

Hence, (S,T ) is a pair satisfying Theorem 3.7, a contradiction.
(1) follows from Equality (3.1), as if (c, c′) is a couple, i.e., a simple pair of size 1,

then damL,P i(L(u), L(v)) = damL,P i(L(u) ∖ c,L(v) ∖ c′) + damL,P i(c, c′).
For (2), suppose to the contrary, c0c′0 is heavy for P 0 and P 1. By (1), c0c′0 is safe for

P 2. As x(2) ≥ 2, there exists a couple c1c′1 which is heavy for P 2. We claim that for
i = 0,1,2,

damL,P i({c0, c1},{c′0, c′1}) − damL,P i(c0, c′1) ≥ 1. (3.2)

If i = 2, then damL,P i({c0, c1},{c′0, c′1} = 2 and damL,P i(c0, c′1) = 1, which implies that In-
equality (3.2) holds. For i = 0 or 1, if c1c′1 is not safe for P i, then damL,P i({c0, c1},{c′0, c′1} ≥
3 and damL,P i(c0, c′1) ≤ 2, hence Inequality (3.2) holds. If c1c′1 is safe for P i, then
damL,P i({c0, c1},{c′0, c′1} = 2 and damL,P i(c0, c′1) = 1, so Inequality (3.2) also holds.

12



Let S = L(u)∖c1, and T = L(v)∖c′0. By Lemma 3.4 and Inequality (3.2), for i = 0,1,2,

damL,P i(S,T ) = damL,P i(L(u) ∖ {c0, c1}, L(v) ∖ {c′0, c′1}) + damL,P i(c0, c′1)
= damL,P i(L(u), L(v)) − damL,P i({c0, c1},{c′0, c′1}) + damL,P i(c0, c′1)
≤ damL,P i(L(u), L(v)) − 1,

a contradiction.

Claim 3.8 The following hold:

(1) Every couple is safe (respectively, heavy) for at most one internal path.

(2) If ` + τ ≥ m + 2, then no couple is light for exactly two internal paths. Moreover,
there is at most one couple which is light for all internal paths.

(3) If ` + τ ≤m + 1, then every couple is light for at most one internal path.

Proof. (1). Assume to the contrary, cjc′j is safe for two paths, say for both P 0 and P 1.
If cjc′j is also safe for P 2, then for any other couple ckc′k, we know that ({cj, ck},{c′j, c′k})
is a simple pair of size 2 contradicting Claim 3.6 (Recall that m − τ ≥ 2 by Claim 3.4).
Thus cjc′j is not safe for P 2. As z(2) ≥ 1, there exists a couple ckc′k which is safe for P 2.
It follows that ({cj, ck},{c′j, c′k}) is a simple pair of size 2 contradicting Claim 3.6.

Next, we shall prove that every couple is heavy for at most one path. It is true if
`+ τ =m+ 1 by Claim 3.7(2). Assume `+ τ ≥m+ 2. Assume there is a couple cjc′j which
is heavy for at least two internal paths, say P 0 and P 1. If cjc′j is also heavy for P 2, then
for any other couple ckc′k, ({cj, ck},{c′j, c′k}) is a simple pair of size 2 contradicting Claim
3.5 (we need the assumption ` + τ ≥m + 2 so that we can use Claim 3.5 with d = 2). So
cjc′j is not heavy for P 2. As x(2) ≥ 2, there exists a couple ckc′k which is heavy for P 2,
Then ({cj, ck},{c′j, c′k}) is also a simple pair of size 2 contradicting Claim 3.5.

(2). Assume to the contrary that there is a couple cjc′j which is light for exactly two
internal paths, say P 0 and P 1, and cjc′j is either heavy or safe for P 2.

First assume that cjc′j is heavy for P 2. Note that by Claim 3.3, z(2) ≥ 1, then there
exists a distinct couple ckc′k which is safe for P 2. By the fact that no couple is safe
for two internal paths (by (1) of this claim), ckc′k is safe for neither P 0 nor P 1. Then
({cj, ck},{c′j, c′k}) is a simple pair of size 2 contradicting Claim 3.5.

So cjc′j is safe for P 2. As x(2) ≥ 2 (by Claim 3.3), there exists a distinct couple ckc′k
which is heavy for P 2. By the fact that no couple is heavy for two internal paths,
ckc′k is heavy for neither P 0 nor P 1. Then ({cj, ck},{c′j, c′k}) is a simple pair of size 2
contradicting Claim 3.6.

For the “moreover” part, if there are two couples which are light for all internal paths,
then two such couples comprise a simple pair of size 2 which contradicts Claim 3.6. This
completes the proof of (2).

(3). Assume to the contrary, cic′i is light for at two paths, say P 0 and P 1. It follows
from Claim 3.7(1) that cic′i is safe for P 2. By Claim 3.3, x(2) ≥ 1, so assume that
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cjc′j is heavy for P 2. By (1) of this claim, cjc′j is not heavy for both P 0 and P 1, so
({ci, cj},{c′i, c′j}) is a simple pair of size 2 contradicting Claim 3.6

This completes the proof of Claim 3.8.

Since x(i) ≥ 2 for i = 0,1,2 (by Claim 3.3) and no couple is heavy for two internal
paths (by Claim 3.8(1) ), there exist distinct couples cic′i for i = 0,1, . . . ,5 such that

• c0c′0 and c1c′1 are heavy for P 0.

• c2c′2 and c3c′3 are heavy for P 1.

• c4c′4 and c5c′5 are heavy for P 2.

Without loss of generality, we may assume that c0c′0 is light for P 1 and safe for P 2 (by
Claim 3.8(2) and Claim 3.8(3), c0c′0 cannot be light for both P 1 and P 2, and by Claim
3.8(1), c0c′0 cannot be safe for both P 1 and P 2). Then both c4c′4 and c5c′5 are light for
P 0, for otherwise, ({c0, c4},{c′0, c′4}) or ({c0, c5},{c′0, c′5}) is a simple pair of size 2 which
contradicts Claim 3.6. Consequently, by Claim 3.8, both c4c′4 and c5c′5 are safe for P 1.

Similarly, both c2c′2 and c3c′3 are light for P 2, and safe for P 0, since otherwise,
({c2, c4},{c′2, c′4}) or ({c3, c4},{c′3, c′4}) is a simple pair of size 2 which contradicts Claim
3.6.

Also c1c′1 is light for P 1, safe for P 2, for otherwise, ({c1, c2},{c′1, c′2}) is a simple pair
of size 2 which contradicts Claim 3.6. See Table 1.

L(u) c0 c1 c2 c3 c4 c5 ⋯
P 0 heavy heavy safe safe light light ⋯
P 1 light light heavy heavy safe safe ⋯
P 2 safe safe light light heavy heavy ⋯
L(v) c′0 c′1 c′2 c′3 c′4 c′5 ⋯

Table 1: damL,P i(ci, c′i)

If τ ≤ 2⌊m2 ⌋ − 6, then ({c0, c1, . . . , c5},{c′0, c′1, . . . , c′5}) is a simple pair of size 6 which
contradicts Claim 3.6.

Assume τ = 2⌊m2 ⌋−4. If m is even, then m−τ = 4. By (C5), SL(P i)−nim ≥ ni−1
2 +m−τ ≥

m − τ + 1 = 5. Let S = {c0, c1, c2, c4} and T = {c′0, c′1, c′2, c′4}. Then damL,P i(S,T ) ≤ 5, we
are done. If m is odd, then m − τ = 5 and SL(P i) − nim ≥ 6. Let S = {c0, c1, c2, c3, c4}
and T = {c′0, c′1, c′2, c′3, c′4}, and we have damL,P i(S,T ) ≤ 6, we are also done.

Assume τ = 2⌊m2 ⌋ − 2. If m is even, then m − τ = 2, and SL(P i) − nim ≥ 3. Let
S = {c0, c2} and T = {c′0, c′2}. Then damL,P i(S,T ) ≤ 3 for each i, so we are done. If m
is odd, m − τ = 3, and SL(P i) − nim ≥ 4. Let S = {c0, c2, c4} and T = {c′0, c′2, c′4}. Then
damL,P i(S,T ) ≤ 3 for each i, and we are also done.

This completes the proof of Theorem 3.7.
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Corollary 3.8 Suppose G = Θ2r,2s,2t with r, s, t ≥ 2, u, v are the two vertices of degree 3,
L is a list assignment of G with ∣L(x)∣ = 2m if x ∈ {u, v} ∪NG(u) and ∣L(x)∣ ≥ 2m + 1
for the other vertices. Then G is (L,m)-colourable.

Proof. Let ` = 2m and τ = 0. By Lemma 2.5, ∣X̂ i
1∣+ ∣X̂ i

n∣+ ∣Λi∣ ≥ ∣X̂ i
1∩L(u)∣+ ∣X̂ i

n∩L(v)∣+
∣Λi ∩ (L(u) ∪L(v))∣ = damL,P i(L(u), L(v)). Setting l1 = 2m, l2 = 2m + 1, by Lemma 2.7,

SL(P ) − nim ≥ ni−3
2 −m + ∣X̂ i

1∣ + ∣X̂ i
n∣ + ∣Λi∣ ≥ ni−3

2 +m − ` − τ + damL,P i(L(u), L(v)). On
the other hand, by Lemma 2.8, SL(P i) ≥ l1 + ni−1

2 l2 = nim +m + ni−1
2 − τ . So (C5) holds.

Observe that L, `, τ also satisfies (C1)-(C4). By Theorem 3.7, there exist S ⊂ L(u),
T ⊂ L(v) such that ∣S∣ = ∣T ∣ = m and damL,P i(S,T ) ≤ SL(P i) − nim, which implies that
G is (L,m)-colourable.

Corollary 3.9 Suppose G = Θ2r+1,2s+1,2t+1 with r, s, t ≥ 1, u, v are the two vertices of
degree 3, L is a list assignment of G with ∣L(x)∣ = 2m if x ∈ {u, v} and ∣L(x)∣ ≥ 2m + 1
for the other vertices. Then G is (L,m)-colourable.

Proof. Let G′ = Θ2r+2,2s+2,2t+2 be obtained from G by splitting u into three vertices
u1, u2, u3 of degree 1 (each adjacent to one neighbor of u), adding a vertex u′ adjacent
to u1, u2, u3. Let L′ be a list assignment of G′ with L′(x) = L(u) if x ∈ {u′, u1, u2, u3},
and L′(x) = L(x) for other vertices. By Corollary 3.8, G′ is (L′,m)-colourable and
assume φ′ is such an (L′,m)-colouring of G′. Observe that for each x ∈ {u1, u2, u3},
φ′(x) = L′(u′) − φ′(u). Now let φ be a (L,m)-colouring of G as follows: φ(u) = φ′(u1),
and φ(x) = φ′(x) for x ∈ V (G) − {u}. It is clear that φ is a proper (L,m)-colouring of
G.

4 Proof of Theorem 1.3 for Θ2,2,2,2p

In this section, G = Θ2,2,2,2p with p ≥ 1, u, v are the two vertices of degree 4, and
P 0, P 1, P 2, P 3 are the four paths of G − {u, v}. Similarly, assume P i = (vi1, vi2, . . . , vini

),
vi1 is adjacent to u and vini

is adjacent to v, where n0 = n1 = n2 = 1 and n3 ≥ 1. We shall
use the notation introduced in Section 3.

Similarly, instead of proving directly that G is (2m + 1,m)-choosable, we prove the
following stronger and more technical result.

Theorem 4.1 Assume ` and τ are non-negative integer, L is a list assignment for G
satisfying the following:

(T1) τ ≤m and ` + τ ≥m.

(T2) ∣L(u)∣ = ∣L(v)∣ = ` ≥ 0.

(T3) For each i ∈ {0,1,2,3}, ∣L(vi1)∣ ≥ 2m + 1 − τ . If n3 ≥ 3, then ∣L(v3n3
)∣ ≥ 2m + 1 − τ .
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(T4) ∣L(w)∣ ≥ 2m + 1 for w ≠ u, v, vi1, vini
.

(T5) For i = 0,1,2,3,

SL(P i) − nim ≥ max{ni + 1

2
+m − ` − τ + damL,P i(L(u), L(v)), ni + 1

2
+m − τ}.

Then there exists a set S ⊂ L(u) and a set T ⊂ L(v) satisfying ∣S∣ = ∣T ∣ =m− τ such that
for each i,

damL,P i(S,T ) ≤ SL(P i) − nim.

Proof. Before the proof, we observe that Theorem 4.1 is similar to Theorem 3.7.
However, besides these two theorems refer to different graphs, there is another subtle
difference: ` and τ are allowed to be odd in Theorem 4.1.

The proof is by induction on 2`+ τ . First assume that 2`+ τ =m. Since `+ τ ≥m and
`, τ are non-negative, we have that ` = 0 and τ = m. By (T5), for each i ∈ {0,1,2,3},
SL(P i) − nim ≥ ni+1

2 +m − τ ≥ 1. Let S = L(u) = ∅, T = L(v) = ∅, and we are done.
Assume that 2` + τ ≥m + 1. If ` + τ =m, then let S = L(u), T = L(v). If ` + τ =m + 1,

then we let (S,T ) be arbitrary simple pair of size (`− 1). In either case, for i = 0,1,2,3,

damL,P i(S,T ) ≤ damL,P i(L(u), L(v))

≤ SL(P i) − nim − ni + 1

2
−m + ` + τ

≤ SL(P i) − nim − ni + 1

2
−m + (m + 1)

= SL(P i) − nim − ni − 1

2
≤ SL(P i) − nim.

So we are done. Thus we assume that ` + τ ≥m + 2.
If τ = m, then let S = T = ∅ and we are done. If τ = m − 1, then let (S,T ) be any

simple pair of size 1, we have damL,P i(S,T ) ≤ 2 ≤ SL(P i) − nim by (T5).
In the sequel, we assume τ ≤m − 2. Assume to the contrary that Theorem 4.1 is not

true for L.

Claim 4.1 There is no simple pair (Du,Dv) such that ∣Du∣ = ∣Dv ∣ = d ≤ ` −m + τ , and
for each i ∈ {0,1,2,3}, x(i) = 0 or damL,P i(Du,Dv) ≥ d.

Proof. Assume (Du,Dv) is such a pair. Let L′ be a new list assignment for G with
L′(u) = L(u) −Du, L′(v) = L(v) −Dv, L′(w) = L(w) for w ∈ V (G) ∖ {u, v}.

(T1)-(T4) of Theorem 4.1 are easily seen to be satisfied by L′, with `′ = `−d and τ ′ = τ .
Note that SL′(P i)−nim = SL(P i)−nim ≥m+ ni+1

2 −τ =m+ ni+1
2 −τ ′. On the other hand,

note that damL′,P i(L′(u), L′(v)) = damL,P i(L′(u), L′(v)). So if damL,P i(Du,Dv) ≥ d,
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then by Lemma 3.4, damL,P i(L(u), L(v)) = damL′,P i(L′(u), L′(v)) + damL,P i(Du,Dv) ≥
damL′,P i(L′(u), L′(v)) + d. So

SL′(P i) − nim = SL(P i) − nim

≥ m + ni + 1

2
+ damL,P i(L(u), L(v)) − ` − τ,

≥ m + ni + 1

2
+ damL′,P i(L′(u), L′(v)) − `′ − τ.

If x(i) = 0, then for every couple cc′, damL,P i(c, c′) ≤ 1, so

damL′,P i(L′(u), L′(v)) ≤ ` − d = `′ ≤ `′ + (SL′(P i) − njm − ni + 1

2
−m + τ ′),

which implies that

SL′(P i) − nim ≥ ni + 1

2
+m + damL′,P i(L′(u), L′(v)) − `′ − τ ′.

Hence, (T5) is satisfied by L′. By induction hypothesis, there exists a pair (S,T ), where
∣S∣ = ∣T ∣ = m − τ such that for each i ∈ {0,1,2,3}, damL,P i(S,T ) ≤ SL(P i) − nim. This
completes the proof of this claim.

Claim 4.2 There does not exist simple pair (Du,Dv) such that ∣Du∣ = ∣Dv ∣ = d ≤m − τ ,
and for each i ∈ {0,1,2,3}, z(i) = 0 or damL,P i(Du,Dv) ≤ d.

Proof. Assume (Du,Dv) is such a simple pair. Let L′ be a new list assignment for G
with L′(u) = L(u)−Du, L′(v) = L(v)−Dv, L′(vi1) = L(vi1)−Du∪Dv for i = 0,1,2. If n3 = 1,
then L′(v31) = L(v31) −Du ∪Dv. Otherwise, L′(v31) = L(v31) −Du, L′(v3n3

) = L(v3n3
) −Dv,

L′(v3j ) = L(v3j ) where 1 < j < n3.
(T1)-(T2) and (T4) of Theorem 4.1 are easily seen to be satisfied by L′, with `′ = `−d

and τ ′ = τ + d.
It is obvious that (T3) is satisfied by (L′, P i) when ni ≥ 3. Now we show that (T3)

is also satisfied when ni = 1. Assume i ∈ {0,1,2,3} and ni = 1. If damL,P i(Du,Dv) ≤
d, then ∣L(vi1) − Du ∪ Dv ∣ ≥ ∣L(vi1)∣ − d, so (T3) is satisfied by L′. Assume z(i) = 0.
Then for any couple cc′, damL,P i(c, c′) ≥ 1, which implies that damL,P i(L(u), L(v)) ≥
damL,P i(Du,Dv) + ` − d (using Lemma 3.4). By (T5),

SL(P i) ≥ ni + 1

2
+m − ` − τ + damL,P i(L(u), L(v)) + nim

≥ 2m + 1 − (τ + d) + damL,P i(Du,Dv)
= 2m + 1 − τ ′ + damL,P i(Du,Dv).

As ni = 1 implies that ∣L(vi1)∣ = SL(P i), ∣L(vi1) −Du ∪Dv ∣ = ∣L(vi1)∣ − damL,P i(Du,Dv) =
SL(P i) − damL,P i(Du,Dv) ≥ 2m + 1 − τ ′. So (T3) is also satisfied by L′ in this case.
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Next, we show that (T5) is satisfied by L′. By Lemma 3.4, damL,P i(L(u), L(v)) =
damL′,P i(L′(u), L′(v)) + damL,P i(Du,Dv), so

SL′(P i) − nim = SL(P i) − nim − damL,P i(Du,Dv) (4.1)

≥m + ni + 1

2
+ damL,P i(L(u), L(v)) − ` − τ − damL,P i(Du,Dv)

=m + ni + 1

2
+ damL′,P i(L′(u), L′(v)) − `′ − τ ′. (4.2)

Now it suffices to prove that SL′(P i)−nim ≥m+ ni+1
2 −τ ′. Indeed, if z(i) = 0, then for each

couple cc′, damL′,P i(c, c′) ≥ 1. By Lemma 3.4, damL′,P i(L′(u), L′(v)) ≥ ` − d = `′. By
Inequality (4.2), we are done. By (T5), SL(P i)−nim ≥ ni+1

2 +m−τ . If damL,P i(Du,Dv) ≤
d, then by Equality (4.1),

SL′(P i) − nim ≥ ni + 1

2
+m − τ − d = ni + 1

2
+m − τ ′.

Therefore, (T5) is satisfied by L′.
By induction, there exists a pair (S′, T ′), where ∣S′∣ = ∣T ′∣ = m − τ ′ = m − τ − d such

that for every i,
damL′,P i(S′, T ′) ≤ SL′(P i) − nim.

Let S = S′ ∪Du and T = T ′ ∪Dv. As S′ ∩Du = ∅ and T ′ ∩Dv = ∅, damL′,P i(S′, T ′)) =
damL,P i(S′, T ′). So we have ∣S∣ = ∣T ∣ =m − τ and

damL,P i(S,T ) ≤ damL,P i(Du,Dv) + damL,P i(S′, T ′)
≤ damL,P i(Du,Dv) + SL′(P i) − nim
= SL(P i) − nim.

This completes the proof of Claim 4.2.

Claim 4.3 follows directly from the definitions and (T5).

Claim 4.3 If (S,T ) is a bad simple pair of size m − τ with respect to (L,P i), then
damL,P i(S,T ) = 2a(i)(S,T )+ b(i)(S,T ) ≥ max{2x(i) + y(i) +m+ ni+3

2 − `− τ,m+ ni+3
2 − τ}.

Claim 4.4 There is no simple pair (S0, T0) of size 3 such that damL,P i(S0, T0) ≤ 3 for
each i ∈ {0,1,2,3}.

Proof. Assume the claim is not true, and assume S0 = {c1, c2, c3}, T0 = {c′p, c′q, c′r}. If
m−τ ≥ 3, then by Claim 4.2, this is a contradiction. Thus assume that m−τ ≤ 2. Recall
that in the beginning of the proof of Theorem 4.1, we argued that m−τ ≥ 2, so m−τ = 2.
By (T5), SL(P i)−nim ≥ ni+1

2 +m− τ ≥m− τ + 1 ≥ 3. Then any simple pair (S,T ) of size
2 with S ⊆ S0, T ⊆ T0 satisfies the theorem, a contradiction.
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Claim 4.5 For each i ∈ {0,1,2,3}, x(i) = 0 or z(i) = 0 implies that β(P i) = 0.

Proof. If x(i) = 0, then damL,P i(S,T ) ≤ m − τ for any simple pair (S,T ) of size m − τ .
By (T5), SL(P i) − nim ≥ ni+1

2 +m − τ ≥ m − τ + 1. So (S,T ) is not bad with respect to
(L,P i), hence β(P i) = 0.

If z(i) = 0, then x(i) + y(i) = ` and for any simple pair (S,T ) of size m − τ , a(i)(S,T ) +
b(i)(S,T ) =m − τ . If (S,T ) is bad with respect to (L,P i), then by Claim 4.3, we have

a(i)(S,T ) +m − τ = 2a(i)(S,T ) + b(i)(S,T )

≥ 2x(i) + y(i) +m + ni + 3

2
− ` − τ

≥ x(i) + ` +m + ni + 3

2
− ` − τ

= x(i) +m − τ + ni + 3

2
.

This implies that a(i)(S,T ) ≥ x(i) +2, in contrary to that a(i)(S,T ) ≤ x(i). So any simple
pair (S,T ) of size m − τ is not bad with respect to (L,P i), hence β(P i) = 0.

Claim 4.6 For each j ∈ {0,1,2,3}, x(j), z(j) ≥ 1.

Proof. Assume to the contrary, x(j) = 0 or z(j) = 0 for some j. Then β(P j) = 0 By
Claim 4.5. For conveniece, we let j = 0 below, but do not use the fact that n1 = 0 so
that the argument also works for j = 3.

We first show that x(i), z(i) ≥ 1 for i ≠ 0. Indeed, if this fails for some i, then by
Claim 4.5, β(P i) = 0. Thus by Claim 4.3 and Observation 2.10 (setting m − τ = k),

∑3
i=0 β(P i) < ( `

m−τ). So there exists a simple pair of size m − τ which is not bad with
respect to any (L,P i), a contradiction.

Next we show that every couple is heavy (respectively, safe, light) for at most one of
P 1, P 2, P 3.

Assume to the contrary, cjc′j is heavy for two paths, say for both P 1 and P 2. By

Claim 4.1, cjc′j is safe for P 3. As x(3) ≥ 1, there exists a couple ckc′k which is heavy for
P 3. Then for Du = {cj, ck},Dv = {c′j, c′k}), we have damL,P (i)(Du,Dv) ≥ 2 for i = 1,2,3,

and for i = 0, either x(0) = 0, or z(0) = 0 which means that damL,P (0)(Du,Dv) ≥ 2. In
either case, it contradicts Claim 4.1.

Similarly, if cjc′j is safe for P 1 and P 2, then by Claim 4.2, cjc′j is not safe for P 3. As

z(3) ≥ 1, so there exists a couple ckc′k which is safe for P 3. Then for Du = {cj, ck},Dv =
{c′j, c′k}, we have damL,P (i)(Du,Dv) ≤ 2 for i = 1,2,3, and for i = 0, either z(0) = 0, or

x(0) = 0 which means that damL,P (0)(Du,Dv) ≤ 2. In either case, it contradicts Claim
4.2.

Assume cjc′j is light for P 1 and P 2. If cjc′j is safe for P 3, then cjc′j is a simple pair
contradicting Claim 4.2. Otherwise, cjc′j is a simple pair contradicting Claim 4.1.
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Without loss of generality, assume c1c′1 is heavy for P 1, light for P 2 and safe for P 3.
Assume that c2c′2 is heavy for P 2, c3c′3 is heavy for P 3. Then c3c′3 is light for P 1 and safe
for P 2, for otherwise, ({c1, c3},{c′1, c′3}) is a simple pair of size 2 contradicting Claim
4.2. Similarly, c2c′2 is light for P 3 and safe for P 1, for otherwise, ({c2, c3},{c′2, c′3}) is a
simple pair of size 2 contradicting Claim 4.2.

If x(0) = 0, then ({c1, c2, c3},{c′1, c′2, c′3}) is a simple pair of size 3 contradicting Claim
4.4.

Assume that x(0) ≥ 1 and z(0) = 0. If m−τ ≥ 3, then ({c1, c2, c3},{c′1, c′2, c′3}) is a simple
pair of size 3 contradicting Claim 4.2. Assume m − τ = 2. By (T5),

SL(P i) − nim ≥ max{damL,P i(L(u), L(v)) − ` + 3,3} ≥ 3.

Note that x(0) ≥ 1 and z(0) = 0 implies that damL,P 0(L(u), L(v)) ≥ 2 + (` − 1) = ` + 1.
Therefore, SL(P 0) − n0m ≥ 4. Let S = {c1, c2}, T = {c′1, c′2}. Then (S,T ) is a pair of size
m − τ = 2 satisfying Theorem 4.1.

This completes the proof of this claim.

Claim 4.7 Every couple is heavy (respectively, light, safe) for at most two internal
paths.

Proof. If there exists a couple cjc′j which is light for at least three couples, then cjc′j is
counterexample with d = 1 to either Claim 4.1 or Claim 4.2.

By Claim 4.1, every couple is heavy for at most three internal paths. If there exists a
couple, say cjc′j which is heavy for all the internal paths except P i for some i ∈ {0,1,2,3}.

By Claim 4.6, x(i) ≥ 1, there exists a heavy couple ckc′k for P i. Then ({cj, ck},{c′j, c′k}) is
a simple pair of size 2 contradicting Claim 4.1. Thus every couple is heavy for at most
two internal paths. Similarly, we can prove that every couple is safe for at most two
internal paths.

Claim 4.8 If a couple is heavy for exactly two internal paths, then it is safe for the
other two paths.

Proof. Assume the claim is not true and c0c′0 is heavy for two internal paths, and light
for at least one internal path. If c0c′0 is light for two internal paths, then c0c′0 is a simple
pair that contradicts Claim 4.1. So c0c′0 is light for one internal path P i and safe for one

internal path P j. Without loss of generality, assume c0 ∈ X̂ i
1 ∪Λi.

As x(j) ≥ 1, there is a couple c1c′1 which is heavy for P j. Note that c0c′0 is heavy for at
least one internal path with only one vertex. So c0 ≠ c′0. If c1 ≠ c′1, then by Observation
3.3, (c0, c′1) is a simple pair. But damL,P i(c0, c′1) ≥ 1 for each i ∈ {0,1,2,3}, contrary to
Claim 4.1. Thus c1 = c′1. By Observation 3.5, c1c′1 can not be heavy for an internal path
with only one vertex. So j = 3 and n3 ≥ 3. Thus we may assume that c0c′0 is heavy for
P 0 and P 1, light for P 2 and safe for P 3, i.e., i = 2.

20



Then c1c′1 is safe for P 2, for otherwise ({c0, c1},{c′0, c′1}) is a simple pair of size 2
contradicting Claim 4.1.

By Claim 4.7, we may assume that c1c′1 is light for P 0, and is either light for P 1 or
safe for P 1.

By Claim 4.6, x(2) ≥ 1. Let c2c′2 be a couple which is heavy for P 2. Then c2 ≠ c′2.
We claim that c2c′2 is safe for P 3. Otherwise c2c′2 is heavy or light for P 3. Without

loss of generality, assume that c2 ∈ X̂3
1 ∪ Λ3. By Observation 3.3, (c2, c′0) is a simple of

size 1 and damL,P i(c2, c′0) ≥ 1, a contradiction to Claim 4.1.

Recall that we assumed that c0 ∈ X̂2
1 ∪ Λ2. Hence damL,P i(c0, c′2) ≥ 1 for i = 0,1,

damL,P 2(c0, c′2) = 2 and damL,P 3(c0, c′2) = 0. So if c1c′1 is light for P 1, then ({c0, c1},{c′1, c′2})
is a simple pair (by Observation 3.3) of size 2 contradicting Claim 4.1. Therefore, c1c′1
is safe for P 1.

Then c2c′2 must be heavy for P 0, for otherwise ({c1, c2},{c′1, c′2}) is a simple pair of
size 2 contradicting Claim 4.2.

Thus c2c′2 is either light for P 1 or safe for P 1.
By Claim 4.6, z(0) ≥ 1. Let c3c′3 be a couple which is safe for P 0.
We claim that c3c′3 is heavy for at least one of P 1 and P 2. Otherwise c3c′3 is heavy for

P 3 by Claim 4.2. If c3c′3 is safe for P 2, then ({c2, c3},{c′2, c′3}) is a simple pair of size 2
contradicting Claim 4.2.

If c3c′3 is safe for P 1, then ({c0, c3},{c′0, c′3}) is a simple pair which contradicts Claim
4.2. So c3c′3 is light for P 1 and P 2.

Recall that (c0, c′2) is a simple pair satisfying that damL,P i(c0, c′2) = 2 for i ∈ {0,2},
damL,P 1(c0, c′2) ≥ 1 and damL,P 3(c0, c′2) = 0. Thus ({c0, c3},{c′2, c′3}) is a simple pair of
size 2 contradicting Claim 4.1.

This completes the proof of the claim that c3c′3 is heavy for at least one of P 1 and
P 2. Hence c3 ≠ c′3. If c3c′3 is safe for P 3, then ({c1, c3},{c′1, c′3}) is a simple pair of size 2

contradicting Claim 4.2. So c3c′3 is not safe for P 3. Thus c3 ∈ X̂3
1 ∪ Λ3 or c′3 ∈ X̂3

n3
∪ Λ3

(or both). If c′3 ∈ X̂3
n3
∪ Λ3, then (c0, c′3) is a simple pair of size 1 contradicting Claim

4.1. So c3c′3 is light for P 3 and c3 ∈ X̂3
1 ∪Λ3.

If c3c′3 is heavy for P 1, then (c3, c′2) is a simple pair of size 1 contradicting Claim 4.1.
If c3c′3 is heavy for P 2, then (c3, c′0) is a simple pair of size 1 contradicting Claim 4.1.

This completes the proof of Claim 4.8.

Claim 4.9 No couple is heavy for two internal paths with one being P 3.

Proof. Assume to the contrary that c0c′0 is heavy for P 0 and P 3. As n0 = 1, by
Observation 3.5, c0 ≠ c′0. By Claim 4.8, c0c′0 is safe for P 1 and P 2.

By Claim 4.6, x(1) ≥ 1. Let c1c′1 be a couple which is heavy for P 1. Then c1 ≠ c′1.
Observe that c1c′1 is safe for P 2, for otherwise, we may assume c1 ∈ X̂2

1 ∪Λ2, and hence
(c1, c′0) is a simple pair (by Observation 3.3) of size 1 contradicting Claim 4.1. Similarly,
there exists a couple c2c′2, which is heavy for P 2 and safe for P 1, and c2 ≠ c′2.
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At least one of c1c′1 and c2c′2 is heavy for P 0 or P 3, for otherwise, ({c2, c3},{c′2, c′3}) is
a simple pair of size 2 contradicting Claim 4.2. Without loss of generality, assume that
c1c′1 is heavy for P 0 or P 3. For convenience, assume that c1c′1 is heavy for P 0, and we
will not use the fact that n1 = 1. By Claim 4.8, c1c′1 is safe for P 3.

As c2 ≠ c′2, c2c′2 is safe for P 3, since otherwise, without loss of generality, we assume

c2 ∈ X̂3
1 ∪Λ3. Then (c2, c′1) is a simple pair (by Observation 3.3) of size 1 contradicting

Claim 4.1. Similarly, we have (c2, c′2) is heavy for P 0, for otherwise, without loss of

generality, we assume c2 ∉ X̂0
1 ∪ Λ0. Then (c2, c′1) is a simple pair (by Observation 3.3)

of size 1 contradicting Claim 4.2.
By Claim 4.6, z(0) ≥ 1. Let c3c′3 be a couple which is safe for P 0. Note that (c1, c′2)

is a simple pair of size 1 which is heavy for P 0, light for P 1 and P 2, and safe for P 3.
Therefore, if c3c′3 is neither heavy for P 1 nor for P 2, then ({c1, c3},{c′2, c′3}) is a simple
pair of size 2 contradicting Claim 4.2. Thus without loss of generality, assume that c3c′3
is heavy for P 1. If c3c′3 is also heavy for P 2, then by Claim 4.8, c3c′3 is safe for P 3. But
then ({c0, c3},{c′0, c′3}) is a simple pair of size 2 contradicting Claim 4.1. So c3c′3 is not
heavy for P 2. If c3c′3 is safe for P 2, then ({c2, c3},{c′2, c′3}) is a simple pair of size 2
contradicting Claim 4.2. Thus c3c′3 is light for P 2. Without loss of generality, assume

that c3 ∉ X̂2
1 ∪Λ2. But then (c3, c′2) is a simple pair of size 1 contradicting Claim 4.2.

This completes the proof of Claim 4.9.

Claim 4.10 Every couple is heavy for exactly one internal path.

Proof. By Claim 4.2, every couple is heavy for at least one internal path. Suppose to
the contrary, c0c′0 is heavy for two internal paths. By Claim 4.9, we may assume that
c0c′0 is heavy for P 0 and P 1. By Claim 4.8, c0c′0 is safe for both P 2 and P 3.

By Claim 4.6, x(2) ≥ 1. Let c1c′1 be a couple which is heavy for P 2. Then c1 ≠ c′1. Note

that c1c′1 must be safe for P 3, for otherwise, we assume that c1 ∈ X̂3
1 ∪Λ3. Then (c1, c′0)

is a simple pair (By Observation 3.3) of size 1 contradicting Claim 4.1.
As x(3) ≥ 1, there exists a couple c2c′2 which is heavy for P 3. By Claim 4.9, we know

that c2c′2 is not heavy for any of P 0, P 1 and P 2.
We first claim that c1c′1 is heavy for exactly one of P 0 and P 1. Suppose this is not

true. By Claim 4.7, c1c′1 can not be safe for three paths, so c1c′1 is light for at least one

of P 0 and P 1, without loss of generality, say P 0, and assume that c1 ∉ X̂0
1 ∪Λ0. If c1c′1 is

safe for P 1, then (c1, c′0) is a simple pair of size 1 contradicting Claim 4.2. Thus c1c′1 is
also light for P 1. Recall that c2c′2 is heavy for none of P 0, P 1 and P 2. If c2c′2 is safe for
P 2, then ({c1, c2},{c′1, c′2}) is a simple pair of size 2 contradicting Claim 4.2. So c2c′2 is
light for P 2. By Claim 4.1, c2c′2 is safe for at least one of P 0, P 1. Assume that it is safe
for P 1. Then c2c′2 is light for P 0, for otherwise ({c0, c2},{c′0, c′2}) is a simple pair of size

2 contradicting Claim 4.2. Recall that c1 ≠ c′1, and we assumed that c1 ∉ X̂0
1 ∪ Λ0. So

(c1, c′0) is a simple pair of size 1 such that it is light for P 0 and P 2, safe for P 3. Hence
({c1, c2},{c′0, c′2}) is a simple pair of size 2 contradicting Claim 4.2.
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Without loss of generality, we assume that c1c′1 is heavy for P 0, by Claim 4.8, c1c′1
is safe for P 1. Note that (c0, c′1) is a simple pair of size 1 which is heavy for P 0, light
for P 1 and P 2, and safe for P 3. If c2c′2 is safe for P 0, then ({c0, c2},{c′1, c′2}) is a simple
pair of size 2 contradicting Claim 4.2. Hence c2c′2 is light for P 0. On the other hand, by
Claim 4.1, c2c′2 is safe for some P i. Without loss of generality, we assume that c2c′2 is
safe for P 1.

By Claim 4.6, z(0) ≥ 1, we may assume that c3c′3 is safe for P 0. Note that c3c′3 is heavy
for at least one of P 1 or P 2, for otherwise, ({c0, c3},{c′1, c′3}) is a simple pair of size 2
contradicting Claim 4.2 . So c3 ≠ c′3, and by Claim 4.9, c3c′3 is not heavy for P 3.

First assume that c3c′3 is heavy for P 1. If c3c′3 is also heavy for P 2, then by Claim 4.8,
c3c′3 is safe for P 3. But then ({c0, c2},{c′2, c′3}) is a simple pair of size 2 contradicting
Claim 4.2 (recall that by Claim 4.9, c2c′2 is not heavy for P 2 as it is already heavy for
P 3 ). So c3c′3 is not heavy for P 2. Thus without loss of generality, we may assume that

c3 ∉ X̂2
1 ∪Λ2. Then (c3, c′1) is a simple pair of size 1 contradicting Claim 4.2. So c3c′3 is

not heavy for P 1.
Therefore, c3c′3 is heavy for P 2 but not heavy for P 1. Thus without loss of generality,

assume that c3 ∉ X̂1
1 ∪Λ1. But then we have that (c3, c′0) is a simple pair of size 1 which

is not heavy for any internal paths, a contradiction to Claim 4.2.
This completes the proof of Claim 4.10.

Claim 4.11 Every couple is safe for exactly one internal path.

Proof. By Claim 4.1, we know that every couple is safe for at least one internal path.
Assume to the contrary that c0c′0 is safe for P 2 and P 3. As every couple is heavy for

exactly one internal path, we may assume that c0c′0 is heavy for P 0, light for P 1. Note
that path P 3 is different from the other paths, as ni = 1 for i = 0,1,2 and n3 can be
greater than 1. However, the argument below does not use this difference.

By Claim 4.6, x(2) ≥ 1, x(3) ≥ 1, and by Claim 4.10, every couple is heavy for exactly
one path, thus we assume that c1c′1 is heavy for P 2 and c2c′2 is heavy for P 3.

If c1c′1 is safe for P 3 and c2c′2 is safe for P 2, then ({c1, c2},{c′1, c′2}) is a simple pair
of size 2 contradicting Claim 4.2. So without loss of generality, we assume that c1c′1 is
light for P 3.

By Claim 4.2, both c1c′1 and c2c′2 are light for P 0 by considering ({c0, c1},{c′0, c′1}) and
({c0, c2},{c′0, c′2}), respectively. Consequently, c1c′1 is safe for P 1 since otherwise c1c′1 is
not safe for any internal path, a contradiction.

By Claim 4.6, x(1) ≥ 1, there exists a couple, say c3c′3, which is heavy for P 1. By Claim
4.10, c3c′3 is not heavy for any other paths. Thus c3c′3 is light for P 2, for otherwise,
({c1, c3},{c′1, c′3}) is a simple pair of size 2 contradicting Claim 4.2.

If c3c′3 is safe for P 0, then ({c0, c1, c3},{c′0, c′1, c′3}) is a simple pair of size 3 which
contradicts Claim 4.4. So c3c′3 is light for P 0, which implies that c3c′3 is safe for P 3.
Similarly, c2c′2 is light for P 2, as otherwise ({c1, c2, c3},{c′1, c′2, c′3}) is a simple pair of
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size 3 which contradicts Claim 4.4. This implies that c2c′2 is safe for P 1. But then
({c2, c3},{c′2, c′3}) is a simple pair of size 2 which contradicts Claim 4.2.

This completes the proof of Claim 4.11.

By Claim 4.6, x(i) ≥ 1 for each i ∈ {0,1,2,3}. Without loss of generality, assume that
c0c′0 is heavy for P 3, light for P 1 and P 2, safe for P 0. Also, we assume that c1c′1 is
heavy for P 0, c2c′2 is heavy for P 2, c3c′3 is heavy for P 1. Observe that c1c′1 must be
light for P 3, since otherwise, c0c′0 and c1c′1 comprise a simple pair of size 2 contradicting
Claim 4.2. By Claim 4.11, c1c′1 must be safe for exactly one of P 1 and P 2, say P 2, and
then it is light for P 1. This implies that c2c′2 is light for P 0, for otherwise c1c′1 and c2c′2
comprise a simple pair of size 2 contradicting Claim 4.2. Similarly, c2c′2 is light for P 3

by considering Claim 4.4 and the three couples c0c′0, c1c
′
1 and c2c′2. Consequently, c2c′2

is safe for P 1. Again by these techniques, c3c′3 is light for P 2 by considering Claim 4.2
and the two couples c2c′2, c3c

′
3, and light for P 0 by considering Claim 4.4 and the three

couples c1c′1, c2c
′
2 and c3c′3. So c3c′3 is safe for P 3. See Table 2.

L(u) c0 c1 c2 c3 ⋯
P 0 safe heavy light light ⋯
P 1 light light safe heavy ⋯
P 2 light safe heavy light ⋯
P 3 heavy light light safe ⋯
L(v) c′0 c′1 c′2 c′3 ⋯

Table 2: damL,P i(ci, c′i)

If m− τ ≥ 4, then ({c0, c1, c2, c3},{c′0, c′1, c′2, c′3}) is a simple pair of size 4 contradicting
Claim 4.2. So m − τ ≤ 3. Recall that m − τ ≥ 2, so m − τ = 2 or m − τ = 3.

By (T5), SL(P i)−nim ≥ ni+1
2 +m−τ ≥m−τ +1. If m−τ = 2, then SL(P i)−nim ≥ 3, we

let S = {c0, c1} and T = {c′0, c′1}; If m−τ = 3, then SL(P i)−nim ≥ 4, we let S = {c0, c1, c2}
and T = {c′0, c′1, c′2}. In either case, we find a simple pair of size m− τ which satisfies the
theorem, a contradiction.

This finishes the proof of the Theorem 4.1.

Corollary 4.2 Θ2,2,2,2p is (2m + 1,m)-choosable

Proof. By setting ` = 2m + 1 and τ = 0 in Theorem 4.1, we know that Θ2,2,2,2p is
(2m + 1,m)-choosable. Indeed, assume L is a (2m + 1)-list assignment of G = Θ2,2,2,2p.
By Lemma 2.8, SL(P i) ≥ ni+1

2 (2m+1), namely, SL(P i)−nim ≥ ni+1
2 +m = ni+1

2 +m−τ . By

Lemma 2.7, SL(P i)− ni+1
2 (2m+1)+(2m+1) ≥ ∣X̂ i

1∣+ ∣X̂ i
n∣+ ∣Λi∣ ≥ damL,P i(L(u), L(v)), so

SL(P i)−nim ≥ ni+1
2 +m+damL,P i(L(u), L(v))−(2m+1) = ni+1

2 +m+damL,P i(L(u), L(v))−
`− τ . So (T5) holds. Observe that L, `, τ also satisfies (T1)-(T4). Therefore there exist
two sets S ⊂ L(u), T ⊂ L(v) such that ∣S∣ = ∣T ∣ = m and damL,P i(S,T ) ≤ SL(P i) − nim
for i = 0,1,2,3. Hence G is (2m + 1,m)-choosable.
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5 Proof of Lemma 2.9

This section proves Lemma 2.9. I.e.,

F (x, y) =∑(x
a
)(y
b
)(` − x − y
k − a − b) ≤

1

2
(`
k
), (5.1)

where x + y ≤ `,2x + y ≤ ` + k − 1, k ≥ 1, ` ≥ k + 1, and the summation is over non-
negative integer pairs (a, b) for which 0 ≤ a ≤ x, 0 ≤ b ≤ y, a + b ≤ k and 2a + b ≥
max{2x+ y + k + 1− `, k + 1}. Moreover, we will show that the equality holds if and only
if ` is even, k is odd, and x = `

2 , y = 0.
Note that a + b ≤ k and 2a + b ≥ k + 1 implies that a ≥ 1.
In the sequel, we define

(p
q
)
+
=
⎧⎪⎪⎨⎪⎪⎩

(p
q
) if p ≥ q ≥ 0,

0 if q < 0 or p < q.
(5.2)

For convenience, we allow p < q or q < 0 in the binormial coefficient in the summations
below. It is easy to check that in these cases, either the pair (a, b) does not lie in the
range of the summation, and hence contributes 0 to the summations, or by extending
the equality (p+1

q
) = (p

q
) + ( p

q−1) to q = 0. For the readability, we suppress the index ‘+’.
The following lemma is proved in [10] (Lemma 18 in [10], where the parameter 2k is

changed to k, but the proof still works).

Lemma 5.1 Assume x = x0 is fixed.

(1) If y ≥ ` − 2x0, then F (x0, y + 1) ≤ F (x0, y).

(2) If y < ` − 2x0, then F (x0, y) ≤ F (x0, y + 1).

We consider two cases.

Case 1. x ≤ ⌊ `2⌋.
By Lemma 5.1, F (x, y) ≤ F (x, ` − 2x). So it suffices to show that F (x, ` − 2x) ≤ 1

2
(`
k
).

Recall that (by Equality (5.1))

F (x, ` − 2x) =
2k

∑
t=k+1

∑
2a+b=t

(x
a
)(` − 2x

b
)( x

k − a − b) =
2k

∑
t=k+1

C(t, x),

where

C(t, x) = ∑
2a+b=t

(x
a
)(` − 2x

b
)( x

k − a − b) = ∑2a≤t
(x
a
)(` − 2x

t − 2a
)( x

k + a − t).

Note that for any 0 ≤ x ≤ `
2 , ∑2k

t=0C(t, x) = (`
k
).
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For 0 ≤ t ≤ k,

C(t, x) = ∑
2a≤t

(x
a
)(` − 2x

t − 2a
)( x

k + a − t) = ∑
2a′≤2k−t

(x
a′
)( ` − 2x

2k − t − 2a′
)( x

a′ + t − k) = C(2k − t, x),

where a′ = k + a − t.
When 1 ≤ x ≤ ⌊ `2⌋,

F (x, ` − 2x) =
2k

∑
t=k+1

C(t, x) =
( `
2k
) −C(k, x)

2
. (5.3)

Lemma 5.2 C(k, x) ≥ 0 when 1 ≤ x ≤ ⌊ `2⌋ and the equality holds if and only if ` = 2x
and k is odd.

Proof. If x = `
2 and k is odd, then y = ` − 2x = 0, which implies that b = 0 as 0 ≤ b ≤ y.

Therefore, as 2a is even, we have C(k, x) = ∑2a=k (xa)
2 = 0.

Assume ` ≠ 2x or ` = 2x and k is even.
First assume that x ≥ ⌊k2 ⌋. As x ≤ ⌊ `2⌋, so ` − 2x ≥ 0. Note that

k − 2⌊k
2
⌋ =

⎧⎪⎪⎨⎪⎪⎩

0 if k is even,

1 if k is odd.

By Equality (5.2), ( `−2x
k−2⌊ k

2
⌋) = 0 if and only if `−2x < k−2⌊k2 ⌋, i.e. `−2x = 0 and k−2⌊k2 ⌋ = 1,

which means that ` = 2x and k is odd. So ( `−2x
k−2⌊ k

2
⌋) > 0 and

C(k, x) ≥ ( x

⌊k2 ⌋
)
2

( ` − 2x

k − 2⌊k2 ⌋
) ≥ 1.

Next assume that 1 ≤ x ≤ ⌊k2 ⌋−1, then k−2x > 0. Recall that ` ≥ k+1, so `−2x > k−2x.
Hence,

C(k, x) ≥ (x
x
)
2

(` − 2x

k − 2x
) ≥ 1.

This completes the proof of Lemma 5.2.

Lemma 5.2 and Inequality (5.3) implies that when 1 ≤ x ≤ ⌊ `2⌋, F (x, y) ≤ 1
2
(`
k
), and the

equality holds if and only if ` = 2x and k is odd.

Case 2. x ≥ ⌈ `2⌉.
In this case, y ≥ 0 ≥ ` − 2x. By Lemma 5.1(1), F (x, y) ≤ F (x,0).

Note that in this case, b = y = 0 and 2x + y + k + 1 − ` ≥ k + 1, so 2a + b = 2a ≥
2x + y + k + 1 − ` = 2x + k + 1 − `. For brevity, let p(x) = x + ⌈k+1−`2 ⌉. Then a ≥ p(x) and

F (x,0) =
k

∑
i=p(x)

(x
i
)(` − x
k − i). (5.4)
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Lemma 5.3 F (x, y) ≤ F (⌈ `2⌉,0) whenever x ≥ ⌈ `2⌉.

Proof. We first prove that F (x,0) ≥ F (x + 1,0). Let ∆ = F (x,0) − F (x + 1,0), then

∆ =
k

∑
i=p(x)

(x
i
)(` − x
k − i) −

k

∑
i=p(x+1)

(x + 1

i
)(` − 1 − x

k − i ). (5.5)

Note that p(x+1) = p(x)+1. Using equalities (x+1
i
) = (x

i
)+( x

i−1) and (`−x
k−i) = (`−x−1

k−i )+(`−x−1k−i−1),

and cancel the term
k−1
∑

j=p(x)+1
(x
i
)(`−x−1

k−i ), we have

∆ = ( x

p(x))(
` − x

k − p(x)) +
k

∑
i=p(x)+1

(x
i
)(` − 1 − x
k − 1 − i) −

k

∑
i=p(x)+1

( x

i − 1
)(` − 1 − x

k − i ).

When i = k in the first sum above, we have (`−1−x−1 ) = 0. Writing the last sum in the

equality above as
k−1
∑

i=p(x)
(x
i
)(`−1−x

k−1−i), we have

∆ = ( x

p(x))(
` − x

k − p(x)) − ( x

p(x))(
` − 1 − x

k − p(x) − 1
) = ( x

p(x))(
` − 1 − x
k − p(x)) ≥ 0.

So, F (x, y) ≤ F (⌈ `2⌉,0).
If ` is even, then by Lemma 5.1 and the case that x ≤ ⌊ `2⌋, we have F (⌈ `2⌉,0) =

F (⌊ `2⌋, ` − 2⌊ `2⌋) ≤ 1
2
(`
k
), the equality holds if and only if ` = 2x and k is odd.

In the rest of the proof, we assume that ` is odd, and we prove that F (⌈ `2⌉,0) ≤
F (⌊ `2⌋,1), i.e., F ( `+12 ,0) ≤ F ( `−12 ,1), which implies that Lemma 2.9 when x ≥ ⌈ `2⌉, as by

the first case, F ( `−12 ,1) < 1
2
(`
k
).

Note that in F ( `−12 ,1), the summation is over b = 0 and 1. Using (
`−1
2−1 ) = 0 and writing

k−1
∑

i=⌈ k
2
⌉
(

`−1
2
i
)(

`−1
2

k−1−i) as
k

∑
i=⌈ k

2
⌉+1

(
`−1
2
i−1)(

`−1
2
k−i), we have

F (` − 1

2
,1) =

k

∑
i=⌈ k

2
⌉
(
`−1
2

i
)(1

1
)(

`−1
2

k − 1 − i) +
k

∑
i=⌈ k+1

2
⌉
(
`−1
2

i
)(1

0
)(

`−1
2

k − i)

=
k

∑
i=⌈ k

2
⌉+1

(
`−1
2

i − 1
)(

`−1
2

k − i) +
k

∑
i=⌈ k+1

2
⌉
(
`−1
2

i
)(

`−1
2

k − i)

≥
k

∑
i=⌈ k

2
⌉+1

(
`−1
2

i − 1
)(

`−1
2

k − i) +
k

∑
i=⌈ k

2
⌉+1

(
`−1
2

i
)(

`−1
2

k − i).
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On the other hand, by Equality (5.4), F ( `+12 ,0) =
k

∑
i=⌈ k

2
⌉+1

(
`+1
2
i
)(

`−1
2
k−i). Therefore, using

equalities (
`+1
2
i
) = (

`−1
2
i
) + (

`−1
2
i−1), we have

F (` − 1

2
,1)−F (` + 1

2
,0) ≥

k

∑
i=⌈ k

2
⌉+1

(
`−1
2

i − 1
)(

`−1
2

k − i)+(
k

∑
i=⌈ k

2
⌉+1

(
`−1
2

i
)(

`−1
2

k − i)−
k

∑
i=⌈ k

2
⌉+1

(
`+1
2

i
)(

`−1
2

k − i)) = 0.

This completes the proof of Lemma 2.9.

References

[1] N. Alon, Zs, Tuza, and M. Voigt, Choosability and fractional chromatics numbers,
Graphs and combinatorics (Marseille, 1995), Discrete Math. 165-166 (1997), 31-38.
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