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DP-Coloring Cartesian Products of Graphs

Hemanshu Kaul1, Jeffrey A. Mudrock2, Gunjan Sharma1, Quinn Stratton1

Abstract

DP-coloring (also called correspondence coloring) is a generalization of list coloring
introduced by Dvořák and Postle in 2015. Motivated by results related to list coloring
Cartesian products of graphs, we initiate the study of the DP-chromatic number, χDP ,
of the same. We show that χDP (G�H) ≤ min{χDP (G) + col(H), χDP (H) + col(G)} − 1
where col(H) is the coloring number of the graph H . We focus on building tools for lower
bound arguments for χDP (G�H) and use them to show the sharpness of the bound
above and its various forms. Our results illustrate that the DP color function of G, the
DP analogue of the chromatic polynomial, is essential in the study of the DP-chromatic
number of the Cartesian product of graphs, including the following question that extends
the sharpness problem above and the classical result on gap between list chromatic number
and chromatic number: given any graph G and k ∈ N, what is the smallest t for which
χDP (G�Kk,t) = χDP (G) + k?

Keywords. graph coloring, DP-coloring, correspondence coloring, Cartesian product,
DP color function, DP-chromatic number.
Mathematics Subject Classification. 05C15, 05C30, 05C69, 05D40.

1 Introduction

In this paper all graphs are nonempty, finite and simple unless otherwise noted. Generally
speaking we follow West [25] for terminology and notation. We use N to denote the set of all
natural numbers. For k ∈ N, [k] denotes the set {1, ..., k}. For a graph G, V (G) and E(G)
denote the vertex set and edge set of G respectively. If S ⊆ V (G), G[S] denotes the subgraph
of G induced by S. For any S1, S2 ⊆ V (G), EG(S1, S2) denotes the subset of E(G[S1 ∪ S2])
with at least one end point in S1 and at least one end point in S2. The neighborhood of
a vertex v in G is denoted by NG(v) or N(v) when the graph is clear from context. The
neighborhood of a set of vertices S ⊆ V (G) is defined as N(S) =

⋃

v∈S NG(v). We use Km,n

to denote the complete bipartite graphs with partite sets of size m and n.

1.1 Graph coloring, list coloring, and DP-coloring

A proper m-coloring of a graph G is a function f that assigns an element f(v) ∈ [m] to
each v ∈ V (G) such that f(v) 6= f(u) whenever uv ∈ E(G). We say that G is m-colorable
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if it has a proper m-coloring. The chromatic number χ(G) of G is the smallest m ∈ N such
that there exists a proper m-coloring of G. The coloring number of a graph G, col(G), is
the smallest integer d for which there exists an ordering, v1, . . . , vn, of the vertices of G such
that each vertex vi has at most d−1 neighbors among v1, . . . , vi−1. Clearly, col(Kk,t) = k+1
when k ≤ t, and χ(G) ≤ col(G) for any graph G.

List coloring is a generalization of classical vertex coloring. It was introduced in the 1970s
independently by Vizing [23] and Erdős, Rubin, and Taylor [9]. A list assignment of G is a
function L on V (G) that assigns a set of colors to each v ∈ V (G). If |L(v)| = m for each
v ∈ V (G), then L is called an m-assignment of G. The graph G is L-colorable if there exists
a proper coloring f of G such that f(v) ∈ L(v) for each v ∈ V (G) (we refer to f as a proper
L-coloring of G). The list-chromatic number χℓ(G) is the smallest m such that there exists a
proper L-coloring for every m-assignment L of G. It immediately follows that for any graph
G, χ(G) ≤ χℓ(G) ≤ col(G). The first inequality may be strict since it is known that the gap
between χ(G) and χℓ(G) can be arbitrarily large; for example, χℓ(Kk,t) = k+1 when t ≥ kk

but all bipartite graphs are 2-colorable.
DP-coloring is a generalization of list coloring that was introduced by Dvořák and Pos-

tle [8] in 2015. Intuitively, DP-coloring is a generalization of list coloring where each vertex
in the graph still gets a list of colors but identification of which colors are different can vary
from edge to edge. We now state the formal definition. A cover of a graph G is a pair
H = (L,H), where H is a graph and L is function L : V (G) → P(V (H)) such that:

(1) the set {L(v) : v ∈ V (G)} forms a partition of V (H) of size |V (G)|;
(2) for every v ∈ V (G), the graph H[L(v)] is a complete graph;
(3) if EH(L(u), L(v)) is nonempty, then either u = v or uv ∈ E(G);
(4) if uv ∈ E(G), then EH(L(u), L(v)) is a matching (the matching may be empty).

We refer to the edges of H connecting distinct parts of the partition {L(v) : v ∈ V (G)}
as cross edges. A cover H = (L,H) of G is m-fold if |L(v)| = m for each v ∈ V (G). An
H -coloring of G is an independent set in H of size |V (G)|. An independent set I ⊆ V (H)
is an H-coloring of G if and only if |I ∩ L(v)| = 1 for all v ∈ V (G). If an H-coloring of G
exists, then we say that G admits an H-coloring. The DP-chromatic number χDP (G) is the
smallest m ∈ N such that G admits an H-coloring for every m-fold cover H of G.

Suppose H = (L,H) is an m-fold cover of G and U ⊆ V (G). Let HU = (LU ,HU ) where
LU is the restriction of L to U and HU = H[

⋃

u∈U L(u)]. Clearly, HU is an m-fold cover of
G[U ]. We call HU the subcover of H induced by U . When U = {u}, we use the notation Hu

instead of H{u}. A cover H = (L,H) of a graph G is called a full cover if for each uv ∈ E(G),
the matching EH(L(u), L(v)) is perfect. We say H is a bad cover of G if G does not admit
an H-coloring.

Given an m-assignment, L, for a graph G, it is easy to construct an m-fold cover H of G
such that G has an H-coloring if and only if G has a proper L-coloring (see [2]). It follows that
χℓ(G) ≤ χDP (G). This inequality may be strict since it is easy to prove that χDP (Cn) = 3
whenever n ≥ 3, but the list chromatic number of any even cycle is 2 (see [2] and [9]).
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1.2 Chromatic Polynomial, List Color Function, and DP Color Function

For m ∈ N, the chromatic polynomial of a graph G, P (G,m), is equal to the number of
proper m-colorings of G. It can be shown that P (G,m) is a polynomial in m of degree |V (G)|
(see [4]).

In 1990 the notion of chromatic polynomial was extended to list coloring as follows [16].
If L is a list assignment for G, we use P (G,L) to denote the number of proper L-colorings
of G. The list color function Pℓ(G,m) is the minimum value of P (G,L) where the minimum
is taken over all possible m-assignments L for G. Since an m-assignment could assign the
same m colors to every vertex in a graph, it is clear that Pℓ(G,m) ≤ P (G,m) for each
m ∈ N. It is known that for each m ∈ N, P (G,m) = Pℓ(G,m) when G is a cycle or chordal1

(see [15] and [16]). But for some graphs, the list color function can differ significantly from
the chromatic polynomial for small values of m. One reason for this is that a graph can
have a list chromatic number that is much higher than its chromatic number. On the other
hand, Wang, Qian, and Yan [24] (improving upon results in [7] and [22]) showed that for a
connected graph G with t edges, Pℓ(G,m) = P (G,m) whenever m > (t− 1)/ln(1 +

√
2).

Recently, the notion of chromatic polynomial was extended to DP-coloring [13]. Suppose
H = (L,H) is a cover of graph G. Let PDP (G,H) be the number of H-colorings of G. Then,
the DP color function of G, denoted PDP (G,m), is the minimum value of PDP (G,H) where
the minimum is taken over all possible m-fold covers H of G. It is easy to see that for any
graph G and m ∈ N, PDP (G,m) ≤ Pℓ(G,m) ≤ P (G,m). It is also fairly straightforward
to prove that for each n ≥ 3 and m ∈ N, PDP (Cn,m) = P (Cn,m) when n is odd and
PDP (Cn,m) = (m− 1)n − 1 when n is even and m ≥ 2 (see [13] or [19]).

As the DP color function of an even cycle demonstrates, unlike the list color function, the
DP color function need not be equal to the chromatic polynomial even for sufficiently large
values of m. In fact, Dong and Yang [6] recently (extending results of [13]) showed that if G
contains an edge e such that the length of a shortest cycle containing e in G is even, then
there exists N ∈ N such that PDP (G,m) < P (G,m) whenever m ≥ N . In general, it was
shown in [20] that for every n-vertex graph G, P (G,m)−PDP (G,m) = O(mn−3) as m → ∞;
it follows that for any graph G whose PDP (G,m) is a polynomial in m for large enough m,
the polynomial will have the same three terms of highest degree as P (G,m).

1.3 List Coloring Cartesian Products of Graphs

The Cartesian product of graphs G and H, denoted G�H, is the graph with vertex set
V (G)×V (H) and edges created so that (u, v) is adjacent to (u′, v′) if and only if either u = u′

and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G). Every connected graph has a unique factorization
under this graph product ([21]), and this factorization can be found in linear time and space
([11]).

It is well-known that χ(G�H) = max{χ(G), χ(H)}. For the list-chromatic number,
Borowiecki, Jendrol, Král, and Mǐskuf [5] showed the following in 2006.

Theorem 1 ([5]). For any graphs G and H, χℓ(G�H) ≤ min{χℓ(G) + col(H), col(G) +
χℓ(H)} − 1.

1A chordal graph is a graph in which all cycles of length four or more contain a chord.
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For any graph G, it is easy to see that Theorem 1 implies χℓ(G�Kk,t) ≤ χℓ(G) + k. The
following result by Kaul and Mudrock [12] demonstrates the sharpness of Theorem 1.

Theorem 2 ([12]). Let G be any graph. Then, χℓ(G�Kk,t) = χℓ(G) + k whenever t ≥
(Pℓ(G,χℓ(G) + k − 1))k.

This was an improvement on Borowiecki, Jendrol, Král, and Mǐskuf’s earlier result,
χℓ(G�Kk,t) = χℓ(G) + k whenever t ≥ (χℓ(G) + k− 1)k|V (G)| which is a generalization of the
classical result on the list chromatic number of a complete bipartite graph; χℓ(Kk,t) = k + 1
if and only if t ≥ kk (see [5]). A motivation for this paper was to extend Theorems 1 and 2
to DP-coloring.

1.4 Outline of Results and Open Questions

In this section we present an outline of the paper while also mentioning some open ques-
tions. We begin Section 2 by proving the DP-analogue of Theorem 1.

Theorem 3. For any graphs G and H, χDP (G�H) ≤ min{χDP (G) + col(H), χDP (H) +
col(G)} − 1.

We conclude Section 2 by showing that the bound in Theorem 3 is sharp.

Theorem 4. For any graph G, χDP (G�Kk,t) = χDP (G)+k whenever t ≥ (PDP (G,χDP (G)+
k − 1))k.

To prove this, we define the notion of volatile coloring which gives a characterization
of the bad covers of the Cartesian product of an arbitrary graph with a complete bipartite
graph. Volatile coloring, and conditions derived from it, may be of independent interest in
the study of the DP-chromatic number of other Cartesian products. In the remainder of the
paper we will show how volatile colorings are a useful tool for lower bound arguments for the
DP-chromatic number.

Building upon Theorem 4, in the rest of the paper, we will show evidence that the DP
color function is a useful tool in the study of the DP-chromatic number of the Cartesian
product of graphs. Considering the sharpness of Theorem 4, also inspires us to consider a
more general question which is the focus of Sections 3 and 4.

Question 5. Given a graph G and k ∈ N, let f(G, k) be the function satisfying: χDP (G�Kk,t)
= χDP (G) + k if and only if t ≥ f(G, k). What is f(G, k)?2

Note that f(G, k) is the smallest t such that χDP (G�Kk,t) = χDP (G) + k (we use this
notation for the remainder of the paper).

We begin Section 3 with definitions of canonical labeling and twisted-canonical labeling
of covers which give a characterization of the bad covers of odd and even cycles respectively
(see [14] and [17] for more general definitions and results related to bad covers of graphs
which imply our characterizations for cycles3). These notions of labelings are of independent

2Since χDP (G�Kk,0) = χDP (G) < χDP (G) + k, we have f(G, k) ≥ 1. Moreover by Theorem 4, f(G, k) ≤
(PDP (G,χDP (G) + k − 1))k. Hence f(G, k) exists for every G and k ∈ N.

3We thank the referees for bringing these papers to our attention.
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interest in the study of DP coloring (see e.g., [1, 10, 20]). Using these tools along with
volatile coloring, we end Section 3 by showing that Theorem 4 is sharp when G is an even
cycle and k = 1; that is, for any m ∈ N, f(C2m+2, 1) = PDP (C2m+2, 3) = 22m+2 − 1. This is
the only sharpness example that we have found which makes us think that Theorem 4 might
not be sharp very often. This motivates us to ask the following question.

Question 6. Does there exist a graph G such that f(G, k) = (PDP (G,χDP (G)+ k− 1))k for
every k ∈ N?

Questions 5 and 6 seem hard to answer completely since there is no G for which we
know f(G, k) for every k ∈ N. Even in the case when G = K1, the form of this question
which has been studied before, f(K1, k) is not known exactly. Mudrock [18] showed that
kk/k! < f(K1, k) ≤ 1 + (kk/k!)(log(k!) + 1). This also demonstrates that Theorem 4 is
not always sharp. Consider the case when k = 3, χDP (K1�K3,t) = 4 whenever t ≥ 27 by
Theorem 4 (note that χDP (K1) = 1 and PDP (K1, k) = k); whereas by Mudrock’s result,
χDP (K1�K3,t) = 4 whenever t ≥ 10.

In Section 4, we make progress towards Question 5 by improving the bound in Theorem 4
when G is a cycle. Our arguments also illustrate the subtle difference in handling even cycles
versus odd cycles in DP coloring, as also evident in results on the DP color function (see
Section 1.2).

By extending the proof ideas of Theorem 4 and using the tools from Section 3, we con-
struct random covers using a combination of random matchings defined using an equiva-
lence relation on an appropriate set of colorings, and matchings defined using canonical and
twisted-canonical labelings. We show that there exists an appropriate bad cover by counting
the expected number of volatile colorings.

Theorem 7. Given k ∈ N, let ck =
⌈

k ln(k+2)
ln 2+(k−1) ln(k+2)−ln(2(k+2)k−1−(k+1)!)

⌉

if k ≥ 2 and

c1 = 1. Then,

χDP (C2m+1�Kk,t) = k + 3 whenever t ≥ ck

(

PDP (C2m+1,k+2)
k+2

)k
= ck

(

(k+1)2m+1−(k+1)
k+2

)k
.

For example, the theorem requires ck = 1, 3, 8 when k = 1, 2, 3 respectively. It is easy to

see that ck <
(

2k ln(k+2)
(k+1)!

)

(k + 2)k, and hence
(

2k ln(k+2)
(k+1)!

)

(PDP (C2m+1, k + 2))k suffices as a

lower bound on t, a strong improvement on Theorem 4 when G is an odd cycle.
Note that Theorem 7 implies that f(C2m+1, k) ≤ ck (PDP (C2m+1, k + 2)/(k + 2))k. Next

we show that Theorem 7 is sharp when k = 1; specifically, f(C2m+1, 1) = PDP (C2m+1, 3)/3 =
(22m+1 − 2)/3. For list coloring, it is shown in [12] that g(C2m+1, 1) = Pℓ(C2m+1, 3) =
(22m+1 − 2) where g(C2m+1, 1) is the list coloring analogue 4 of f(C2m+1, 1).

We conclude Section 4 by proving the even cycle analogue of Theorem 7.

Theorem 8. Given k ∈ N, let ck =
⌈

k ln(k+2)
k ln(k+2)−ln((k+2)k−⌊(k+2)/2⌋k!)

⌉

. Then,

χDP (C2m+2�Kk,t) = k + 3 whenever t ≥ ck

(

PDP (C2m+2,k+2)
k+2

)k
= ck

(

(k+1)2m+2−1
k+2

)k
.

4g(G, k) is the function satisfying: χℓ(G�Kk,t) = χℓ(G) + k if and only if t ≥ g(G,k).
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For example, the theorem requires ck = 3, 10, 48 when k = 1, 2, 3 respectively. It is easy

to see that ck <
(

2 ln(k+2)
⌊(k+2)/2⌋(k−1)!

)

(k + 2)k, and hence
(

2 ln(k+2)
⌊(k+2)/2⌋(k−1)!

)

(PDP (C2m+2, k + 2))k

suffices as a lower bound on t, a strong improvement on Theorem 4 when G is an even cycle.
Note that Theorem 8 implies that f(C2m+2, k) ≤ ck (PDP (C2m+2, k + 2)/(k + 2))k. The

sharpness of Theorem 8 follows from the earlier result: f(C2m+2, 1) = PDP (C2m+2, 3) =
22m+2 − 1.

2 DP-coloring Cartesian products of Graphs

We now prove Theorem 3 using a straightforward generalization of Borowiecki et al.’s
argument [5] for Theorem 1.

Theorem 3. For any graphs G and H, χDP (G�H) ≤ min{χDP (G) + col(H), χDP (H) +
col(G)} − 1.

Proof. Since the Cartesian product of graphs is commutative, we assume without loss of
generality that χDP (G) + col(H) ≤ χDP (H) + col(G). We let m = χDP (G), k = col(H),
and d = χDP (G) + col(H) − 1. Suppose V (H) = {vi : i ∈ [n]}. Let H = (L,M) be a d-fold
cover of G�H. To prove the bound, we will show the existence of an independent set of size
n|V (G)| in M . We proceed by induction on n. If n = 1, then G�H ∼= G and clearly k = 1.
So there exists an H-coloring of G�H since d = χDP (G).

Now suppose n > 1. Since k = col(H), there exists an ordering of the vertices of H such
that each vertex has at most k−1 neighbors preceding it in that ordering. Suppose v1, . . . , vn
is one such ordering. Let H ′ = H[{v1, . . . , vn−1}]. We now construct a d-fold cover of G�H ′.
First, we define the function L′ on V (G�H ′) so that for each (u, v) ∈ V (G�H ′), L′(u, v) =
L(u, v). Next, let S =

⋃

(u,v)∈V (G�H′) L(u, v) and let M ′ = M [S]. Notice that H′ = (L′,M ′)

is a d-fold cover of G�H ′. By the inductive hypothesis, χDP (G�H ′) ≤ χDP (G)+col(H ′)−1
and since col(H ′) ≤ col(H), we have χDP (G�H ′) ≤ d. This implies that there exists an
independent set I ′ in M ′ of size (n − 1)|V (G)|. We now extend I ′ to an H-coloring of
G�H. For each u ∈ V (G), let Fu = L(u, vn) ∩ NM (I ′). Note that for each i ∈ [n − 1],
|I ′ ∩ L(u, vi)| = 1 and in H, vn has at most (k − 1) neighbors in {v1, . . . , vn−1}. So for each
u ∈ V (G), |Fu| ≤ (k − 1) and thus |L(u, vn) − Fu| ≥ m. For each u ∈ V (G), let Au be an
m-element subset of L(u, vn)−Fu. We define a function, L̂ on V (G)×{vn} such that for each
u ∈ V (G), L̂(u, vn) = Au. Let A =

⋃

u∈V (G)Au and let M̂ = M [A]. Clearly, Ĥ = (L̂, M̂)
is an m-fold cover of G�H[{vn}]. Note that G�H[{vn}] ∼= G and since m = χDP (G), there
exists an independent set Î of size |V (G)| in M̂ . Since no vertex in Î is adjacent to any vertex
in I ′, I = Î ∪ I ′ is an independent set of size n|V (G)| in M as needed.

Next we wish to show that Theorem 3 is sharp. To do this, we introduce the notion
of volatile coloring. As we will see throughout the paper, volatile coloring is an important
tool in the process of constructing bad covers of the Cartesian product of an arbitrary graph
and a complete bipartite graph. In particular, it gives a necessary and sufficient condition
for a cover to be bad. Though we define the notion of volatile coloring specifically for the
Cartesian products with a complete bipartite factor, this definition can easily be generalized
for the Cartesian products of any two graphs.
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2.1 Volatile Coloring

Let G be a graph with V (G) = {vi : i ∈ [n]} and χDP (G) = m. Let K be a copy of the
complete bipartite graph Kk,t with partite sets, X = {xj : j ∈ [k]} and Y = {yq : q ∈ [t]}.
Let M = G�K and MX = M [{(vi, xj) : i ∈ [n], j ∈ [k]}], and for each q ∈ [t], let Myq =
M [{(vi, yq) : i ∈ [n]}]. Let H = (L,H) be an (m+ k − 1)-fold cover of M .

Let HX = (LX ,HX) denote the subcover of H induced by V (G) × X. Recall that LX

is the restriction of L to V (G) × X and HX = H[
⋃

v∈L(V (G)×X) L(v)]. Similarly, for each
q ∈ [t], let Hyq = (Lyq ,Hyq ) denote the subcover of H induced by V (G)× {yq}.

Suppose I is an HX-coloring of MX . For each q ∈ [t], let Dq = {u ∈ V (Hyq) : NH(u) ∩
I = ∅} and H ′

yq = H[Dq]. For each u ∈ V (Myq ), we define L′
yq (u) = Lyq (u) ∩ Dq. Let

H′
yq = (L′

yq ,H
′
yq). We say I is volatile for Myq , if H′

yq is a bad cover of Myq .
Assuming the same setup as in the definition of volatile coloring above, we now give a

necessary and sufficient condition for a cover to be bad.

Lemma 9. For each HX -coloring of MX , IX , there exists a q ∈ [t] such that IX is volatile
for Myq if and only if H is a bad cover of M .

Proof. Suppose there exists an HX -coloring of MX , IX , such that for each q ∈ [t], IX is not
volatile for Myq . Since for each q ∈ [t], IX is not volatile for Myq , there exists an H′

yq -coloring,
Iq, of Myq . Let IY =

⋃

q∈[t] Iq. Clearly, IX ∪ IY is an H-coloring of M as desired.
Conversely suppose M admits an H-coloring, I. Let IX = I ∩ V (HX). Clearly, IX is

an HX-coloring of MX . Suppose there exists an r ∈ [t] such that IX is volatile for Myr .
Notice that I ∩ V (Hyr) ⊆ Dr. This means I ∩ V (Hyr) is an H′

yr -coloring of Myr . This is a
contradiction since IX is volatile for Myr .

By a straightforward application of Lemma 9, next we give a sufficient condition for M
to admit an H-coloring which will often be used in the remaining sections.

Corollary 10. Let c be the number of HX -colorings of MX . Suppose for each q ∈ [t], the
number of volatile HX-colorings for Myq is at most z. If c > zt then M admits an H-coloring.

Using Lemma 9, we are now ready to prove the sharpness of Theorem 3.

Theorem 4. For any graph G, χDP (G�Kk,t) = χDP (G)+k whenever t ≥ (PDP (G,χDP (G)+
k − 1))k.

Proof. Let χDP (G) = m and K be a complete bipartite graph with partite sets X = {xj :
j ∈ [k]} and Y = {yq : q ∈ [t]}. We construct a bad (m + k − 1)-fold cover H = (L,H) of
G�K. For each (u, v) ∈ V (G�K), we let L(u, v) = {(u, v, i) : i ∈ [m + k − 1]}. We begin
constructing the graph H by defining the vertex set, V (H) =

⋃

(u,v)∈V (G�K) L(u, v). We then
create edges in H such that for each (u, v) ∈ V (G�K), H[L(u, v)] is a complete graph on
(m+ k− 1) vertices. Next, we construct the matchings among these cliques such that G�K
does not admit an H-coloring.

Let PDP (G,m + k − 1) = d; suppose HG = (LG,HG) is an (m + k − 1)-fold cover of G
such that PDP (G,HG) = d. For each u ∈ V (G), suppose LG(u) = {(u, l) : l ∈ [m+ k − 1]}.
We denote the collection of all HG-colorings of G by IG = {IGi

: i ∈ [d]}.
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For each x ∈ X, we create edges so that (u, x, l)(v, x, j) ∈ E(H) for all distinct u, v ∈ V (G)
whenever (u, l)(v, j) ∈ E(HG). Notice that for each x,H[V (G)×{x}×[m+k−1]] is isomorphic
to HG and for each j ∈ [k] the isomorphism is defined as: g(j) : V (HG) → V (G) × {xj} ×
[m+k−1] such that g(j)(u, l) = (u, xj , l). For each IGi

∈ IG, we let Iij = {g(j)(a) : a ∈ IGi
}.

For each j ∈ [k], let IG,j = {Iij : i ∈ [d]}
Notice that by construction all possible independent sets containing one vertex from each

clique, L(u, xj) whenever (u, xj) ∈ V (G) × X can be formed by picking an independent
set from IG,j for each j ∈ [k]. Clearly there are d choices for each j ∈ [k] giving us a
total of dk possible independent sets. We denote the collection of these independent sets by
I = {Ii : i ∈ [dk]}.

For each Ii ∈ I and u ∈ V (G), we define, Iiu = Ii ∩ (
⋃

x∈X L(u, x)). Clearly, |Iiu | = k
for each u ∈ V (G). We name the vertices in Iiu so that Iiu = {(u, xj , zi,u,j) : j ∈ [k]}.
Note that zi,u,j ∈ [m + k − 1]. For each Ii ∈ I, u ∈ V (G), and j ∈ [k], we create edges so
that(u, xj , zi,u,j)(u, yi, j) ∈ E(H). Notice that this can be done since t ≥ dk.

We now create the remaining edges in H. Let H′
G = (L′

G,H
′
G) be a bad (m − 1)-fold

cover of G. For each u ∈ V (G), suppose L′
G(u) = {(u, l) : l ∈ [m− 1]}. For each q ∈ [t], we

create edges so that (u, yq, k + l)(v, yq, k + j) ∈ E(H) for all distinct u, v ∈ V (G) whenever
(u, l)(v, j) ∈ E(H ′

G). This completes the construction of H.
For each L(u, yi) where (u, yi) ∈ V (G) × Y , let Wu,yi = {(u, yi, j) : j ∈ [k]}. Recall that

we created edges from vertices in Wu,yi to Iiu for each i ∈ [dk]. Now, for each i ∈ [t], we

define H
(i)
G = H[

⋃

u∈V (G)(L(u, yi)−Wu,yi)]. Clearly, each H
(i)
G is isomorphic to H ′

G and the

isomorphism is defined as: f (i) : V (H ′
G) → V (H

(i)
G ) such that f (i)(u, l) = (u, yi, k + l). For

each q ∈ [t], let Myq = M [{(v, yq) : v ∈ V (G)}]. By construction, for each i ∈ [dk], Ii is
volatile for Myi and thus by Lemma 9, H is a bad cover of G�K.

We are now ready to turn our attention to making progress on Question 5.

3 Characterization of Bad Covers of Cycles

In this Section, we define the notions of canonical labeling and twisted-canonical labeling
which characterize the bad covers of odd and even cycles respectively(see [14] and [17] for
more generalized results). Canonical labeling, in particular, is of independent interest and
has been used in many recent papers on DP-coloring (see e.g., [1], [10], and [20]). As an
application of these together with volatile coloring, we are able to show the sharpness of
Theorem 4. This also makes progress towards Question 5.

3.1 Canonical Labeling

Suppose G is a graph and H = (L,H) is a k-fold cover of G. We say H has a canonical
labeling if for each v ∈ V (G), it is possible to let L(v) = {(v, j) : j ∈ [k]} so that whenever
uv ∈ E(G), (u, j) and (v, j) are adjacent in H for each j ∈ [k].

Note that if G is a graph and H is an m-fold cover of G with a canonical labeling, then
G has a proper m-coloring if and only if G admits an H-coloring. We next restate a result of
Kaul and Mudrock [13] using the concept of canonical labeling.
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. . .

(v1, 2)

(v1, 1)

(v2, 2)

(v2, 1)

(v3, 2)

(v3, 1) (v2m, 1)

(v2m, 2)

(v2m+1, 1)

(v2m+1, 2)

Figure 1: A 2-fold cover of an odd cycle with a canonical labeling

Proposition 11 ([13]). Let T be a tree and H = (L,H) be a full m-fold cover of T . Then,
H has a canonical labeling.

Using the notion of canonical labeling, we can characterize the bad 2-fold covers of odd
cycles. See [14] for a more general result about bad covers non-DP-degree colorable graphs,
which also implies the following result. Note that in [14], a cover with canonical labeling is
called a ladder.

Lemma 12. Suppose that G is an odd cycle and H = (L,H) is a cover of G where |L(v)| ≥ 2
for each v ∈ V (G). Then G does not admit an H-coloring if and only if H is a 2-fold cover
with a canonical labeling.

Proof. Let G = C2m+1 where m ∈ N. Suppose H is a 2-fold cover with a canonical labeling.
The fact that G does not admit an H-coloring immediately follows from the fact that G is
not 2-colorable.

Conversely, suppose first that H is a 2-fold cover without a canonical labeling. We can
assume H is a full cover. Otherwise, we could define H ′ such that V (H ′) = V (H) and
E(H) ⊆ E(H ′) but EH′(L(u), L(v)) is a perfect matching for each uv ∈ E(G), and note
that if I is an independent set in H ′, then it will be an independent set in H. For any
edge uv ∈ E(G), the cover (L,H − E(L(u), L(v))) of G − uv has a canonical labeling by
Proposition 11. Hence, we can name the vertices of H such that for each xy ∈ E(G)−{uv},
the edges (x, 1)(y, 1) and (x, 2)(y, 2) are in E(H). Since we know that H does not have a
canonical labeling, it must then be the case that (u, 1)(v, 2) and (u, 2)(v, 1) are in E(H).
So, we can construct an independent set I in H as follows. Suppose the vertices of G are
ordered cyclically as x1, x2, . . . , x2m+1 where x1 = u and x2m+1 = v. Then consider the set
I = {(xi, 1) : i is odd, 1 ≤ i ≤ 2m+1}∪{(xi, 2) : i is even, 2 ≤ i ≤ 2m}. Clearly |I| = 2m+1,
and we claim that I is an independent set. First, note that there is no edge between the
vertices selected from L(xi) and L(xi+1) for i = 1, . . . , 2m. Finally, (u, 1), (v, 1) ∈ I, and as
argued above, (u, 1)(v, 1) /∈ E(H). So I is an independent set of size 2m+1 in H, and hence
G admits an H-coloring.

Now suppose H is not 2-fold. Then we know that there must exist some u ∈ V (G) such
that |L(u)| ≥ 3. Suppose the vertices of G are ordered cyclically as x1, . . . , x2m+1 where
x2m+1 = u. Then we can construct an H-coloring I greedily by selecting for each xi some
vertex vi in L(xi) that is not adjacent in H to any vertex in {v1, . . . , vi−1}. Since each xi
for i ∈ [2m] has at most one neighbor preceding it in the ordering there will always exist
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such a vertex vi for each i ∈ [2m]. Finally, since x2m+1 has two neighbors preceding it but
|L(x2m+1)| ≥ 3, there must exist a v2m+1 ∈ L(x2m+1) which can be added to I. Thus, G
admits an H-coloring.

3.2 Twisted-Canonical Labeling

Suppose G is a graph and H = (L,H) is a k-fold cover of G. We say H has a twisted-
canonical labeling ifH is full and it is possible to let L(v) = {(v, j) : j ∈ [k]} for each v ∈ V (G)
and choose two adjacent vertices, u and v in G so that whenever xy ∈ E(G)−{uv}, (x, j) and
(y, j) are adjacent in H for each j ∈ [k] and there exists l ∈ [k] such that (u, l)(v, l) /∈ E(H).
We call the matching EH(L(u), L(v)), the twist.

. . .

(v1, 2)

(v1, 1)

(v2, 2)

(v2, 1)

(v3, 2)

(v3, 1) (v2m+1, 1)

(v2m+1, 2)

(v2m+2, 1)

(v2m+2, 2)

Figure 2: A 2-fold cover of an even cycle with a twisted-canonical labeling

The following result is a straightforward analogue of Proposition 11 for twisted-canonical
labeling.

Proposition 13. Let T be a tree and let H = (L,H) be a full m-fold cover of T where m ∈ N.
Then H has a twisted-canonical labeling.

Notice that by Propositions 11 and 13, a cover that has a canonical labeling may also
have a twisted-canonical labeling. In contrast, we have the following result for cycles.

Lemma 14. Let G be a cycle and suppose H is a 2-fold cover of G. Then H has a twisted-
canonical labeling if and only if it is full and has no canonical labeling.

Proof. Suppose G is an m-cycle and the vertices of G are ordered cyclically as v1, . . . , vm.
Suppose H = (L,H). Let H ′ be the spanning subgraph of H such that the edge set of H ′

only consists of the cross edges of H. Suppose H has a twisted-canonical labeling. Without
loss of generality, suppose the vertices of H are named so that EH(L(vm), L(v1)) is the twist.
Hence we know that for each vivj ∈ E(G) − {vmv1}, (vi, 1)(vj , 1) and (vi, 2)(vj , 2) are edges
in H. Additionally (vm, 1)(v1, 2), (vm, 2)(v1, 1) ∈ E(H). Notice that
(v1, 1)(v2, 1), . . . , (vm−1, 1)(vm, 1), (vm, 1)(v1, 2), (v1, 2)(v2, 2), . . . , (vm−1, 2)(vm, 2) are edges of
a spanning path in H ′. Now, for the sake of contradiction, suppose H has a canonical la-
beling. So we can rename the vertices of H so that for each uiuj ∈ E(G), (ui, 1)(uj , 1) and
(ui, 2)(uj , 2) are edges in H where ui and vi refer to the same vertex in G for each i ∈ [m].
After naming the vertices of H canonically, notice that all the edges in H ′ are among the
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vertices having the same second coordinate. Hence H ′ does not have a spanning path which
is a contradiction.

Conversely, suppose H is full and has no canonical labeling. Let uv ∈ E(G). The cover
(L,H − EH(L(u), L(v))) of G − uv, has a canonical labeling by Proposition 11. Hence we
can name the vertices of H such that for each xy ∈ E(G) − {uv}, the edges (x, 1)(y, 1) and
(x, 2)(y, 2) are in E(H). Since we know that H does not have a canonical labeling, it must
then be the case that (u, 1)(v, 2) and (u, 2)(v, 1) are in E(H). HenceH has a twisted-canonical
labeling.

Using the notion of twisted-canonical labeling, we can characterize the bad 2-fold covers of
even cycles. See [14] for a more general result about bad covers of non-DP-degree colorable
graphs, which also implies the following result. Note that in [14], a cover with twisted-
canonical labeling is called a Möbius ladder.

Lemma 15. Suppose that G is an even cycle and H = (L,H) is a cover of G where |L(v)| ≥ 2
for each v ∈ V (G). Then G does not admit an H-coloring if and only if H is a 2-fold cover
with a twisted-canonical labeling.

Proof. Let G = C2m+2 for some m ∈ N. Suppose the vertices of G are ordered cyclically
as x1, x2, . . . , x2m+2. Suppose H is a 2-fold cover with a twisted-canonical labeling. We will
show that G does not admit an H-coloring. Without loss of generality, suppose the vertices of
H are named so that EH(L(x1), L(x2m+2)) is the twist. Notice that this means (x1, 1)(x2m+2,
2) and (x1, 2)(x2m+2, 1) are edges in H. For the sake of contradiction, suppose H contains
an independent set I of size 2m + 2. Without loss of generality, suppose (x1, 1) ∈ I. This
means I = {(xi, 1) : i is odd, 1 ≤ i ≤ 2m + 1} ∪ {(xi, 2) : i is even, 2 ≤ i ≤ 2m + 2}. Since
(x1, 1) and (x2m+2, 2) are adjacent in H, this is a contradiction. Hence G does not admit an
H-coloring.

We will now prove the contrapositive of the converse. Suppose first that H is a 2-fold
cover with no twisted-canonical labeling. Clearly, we may assume that H is a full cover. By
Lemma 14, H has a canonical labeling. Thus G admits an H-coloring.

Now suppose H is not 2-fold, then we know that there must exist some u ∈ V (G) such
that |L(u)| ≥ 3. Without loss of generality, suppose x2m+2 = u. Then we can construct an
H-coloring I greedily as in the proof of Lemma 12.

3.3 Sharpness of Theorem 4

Assuming the same setup as in the definition of volatile coloring in Section 2.1, we first
prove an upper bound on the number of volatile HX -colorings for each Myq when M =
C2m+2�K1,t. This is essential for proving the sharpness result.

Lemma 16. Let M = C2m+2�K1,t and let H be a 3-fold cover of M . Then for each q ∈ [t],
Myq has at most 1 volatile HX-coloring.

Proof. Suppose the vertices of the even cycle are ordered cyclically as v1, . . . , v2m+2. Let
X = {x}. Suppose H = (L,H) where L(u, v) = {(u, v, i) : i ∈ [3]} for each (u, v) ∈ V (M).
Suppose for r ∈ [t], Myr has at least 2 distinct volatile HX-colorings. Let I1 and I2 denote
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two of these colorings. For each j ∈ [2], let Dj = {u ∈ V (Hyr) : NH(u) ∩ Ij = ∅} and

Hj
yr = H[Dj ]. For each u ∈ V (Myr ), we let Lj

yr(u) = Lyr(u) ∩Dj. Let Hj
yr = (Lj

yr ,H
j
yr).

Suppose I1 ∩ I2 6= ∅. Since I1 and I2 are distinct, there exist adjacent vertices vi0 , vi1
in the even cycle such that L(vi0 , x) ∩ I1 6= L(vi0 , x) ∩ I2 and L(vi1 , x) ∩ I1 = L(vi1 , x) ∩ I2.
Without loss of generality, suppose i0 = 1 and i1 = 2. Let L(v1, x) ∩ I1 = {(v1, x, l1)},
L(v1, x) ∩ I2 = {(v1, x, l2)}, and (v2, x, k1) be the vertex in L(v2, x) ∩ I1 and L(v2, x) ∩ I2.
Notice that l1, l2, k1 ∈ [3].

Since I1 and I2 are volatile for Myr , there is no H1
yr -coloring and no H2

yr -coloring of
Myr . By Lemma 15, H1

yr and H2
yr are 2-fold covers with twisted-canonical labelings. Since

H1
yr and H2

yr are 2-fold, each of (v1, x, l1), (v1, x, l2) and (v2, x, k1) have exactly one neigh-
bor in Hyr . Moreover, these neighbors are pairwise distinct. Let (v1, yr, l3), (v1, yr, l4),
and (v2, yr, k2) be the neighbors of (v1, x, l1), (v1, x, l2) and (v2, x, k1) in Hyr respectively.
Note that L1

yr(v1, yr) = L(v1, yr) − {(v1, yr, l3)}, L2
yr(v1, yr) = L(v1, yr) − {(v1, yr, l4)} and

L1
yr(v2, yr) = L2

yr(v2, yr) = L(v2, yr)−{(v2, yr, k2)}. Therefore, |L1
yr(v1, yr)∩L2

yr(v1, yr)| = 1.
We can let (v1, yr, l5) be the third element of Lyr(v1, yr) so that L1

yr(v1, yr) = {(v1, yr, l4),
(v1, yr, l5)}, L2

yr(v1, yr) = {(v1, yr, l3), (v1, yr, l5)}. Similarly, we can let (v2, yr, k3) and (v2,
yr, k4) be the remaining two elements of Lyr(v2, yr) so that L1

yr(v2, yr) = L2
yr(v2, yr) =

{(v2, yr, k3), (v2, yr, k4)}. Note that {l3, l4, l5} = {k2, k3, k4} = [3].
Since H1

yr and H2
yr have twisted-canonical labelings, the matchings EH1

yr
(L1

yr(v1, yr),

L1
yr(v2, yr)) and EH2

yr
(L2

yr(v1, yr), L
2
yr (v2, yr)) are perfect. Hence

NHyr
({(v1, yr, l4), (v1, yr, l5)}) = {(v2, yr, k3), (v2, yr, k4)} and (v1, yr, l3) must have exactly

one neighbor in Hyr . This means that (v1, yr, l3)(v2, yr, k2) ∈ E(Hyr). On the other hand,
NHyr

({(v1, yr, l3), (v1, yr, l5)}) = {(v2, yr, k3), (v2, yr, k4)}. This implies NHyr
((v1, yr, l3)) ∈

{(v2, yr, k3), (v2, yr, k4)}. This is a contradiction.
Now suppose I1 ∩ I2 = ∅. Since H1

yr is a 2-fold cover of a cycle with a twisted-canonical
labeling, it can not have a canonical labeling by Lemma 14. To complete the proof, we will
inductively rename the vertices in H1

yr to demonstrate that H1
yr has a canonical labeling.

Clearly L(v1, x) ∩ I1 6= L(v1, x) ∩ I2 and L(v2, x) ∩ I1 6= L(v2, x) ∩ I2. Let L(v1, x) ∩
I1 = {(v1, x, l1)}, L(v1, x) ∩ I2 = {(v1, x, l2)}, L(v2, x) ∩ I1 = {(v2, x, k1)} and L(v2, x) ∩
I2 = {(v2, x, k2)}. Notice that l1, l2, k1, k2 ∈ [3]. Let (v1, yr, l3), (v1, yr, l4), (v2, yr, k3) and
(v2, yr, k4) be the neighbors of (v1, x, l1), (v1, x, l2), (v2, x, k1) and (v2, x, k2) in Hyr respec-
tively. Since I1 and I2 are volatile for Myr , by Lemma 15, the covers H1

yr and H2
yr are

2-fold with twisted-canonical labelings. Clearly l3 6= l4 and k3 6= k4. We can let (v1, yr, l5)
and (v2, yr, k5) be the remaining elements of Lyr(v1, yr) and Lyr(v2, yr) respectively. Notice
that L1

yr(v1, yr) = {(v1, yr, l4), (v1, yr, l5)}, L2
yr(v1, yr) = {(v1, yr, l3), (v1, yr, l5)}, L1

yr(v2, yr) =
{(v2, yr, k4), (v2, yr, k5)} and L2

yr(v2, yr) = {(v2, yr, k3), (v2, yr, k5)}. Moreover note that {l3,
l4, l5} = {k3, k4, k5} = [3]. Since H1

yr and H2
yr have twisted-canonical labelings, the matchings

EH1
yr
(L1

yr(v1, yr), L
1
yr (v2, yr)) and EH2

yr
(L2

yr(v1, yr), L
2
yr (v2, yr)) are perfect. This means that

(v1, yr, l3)(v2, yr, k3) and (v1, yr, l4)(v2, yr, k4) must be edges in Hyr . This further implies that
(v1, yr, l5)(v2, yr, k5) also must be an edge in Hyr . In L1

yr(v1, yr) and L1
yr(v2, yr), we now re-

name the vertices (v1, yr, l4), (v1, yr, l5), (v2, yr, k4) and (v2, yr, k5) as ((v1, yr), 1), ((v1, yr), 2),
((v2, yr), 1) and ((v2, yr), 2) respectively. Notice that ((v1, yr), j)((v2, yr), j) ∈ E(H1

yr) for each
j ∈ [2].

Now proceeding inductively for each i ∈ {3, . . . , 2m + 2}, we will rename the vertices in
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L1
yr(vi, yr) as ((vi, yr), 1) and ((vi, yr), 2) so that ((vi−1, yr), 1)((vi, yr), 1) and ((vi−1, yr), 2)((vi,

yr), 2) are edges in Hyr . By our renaming procedure, we have
L1
yr(vi−1, yr) = {((vi−1, yr), 1), ((vi−1 , yr), 2)} and L2

yr(vi−1, yr) = {(vi−1, yr, l), ((vi−1, yr), 2)}
where l ∈ [3]. Suppose L1

yr(vi, x) ∩ I1 = (vi, x, p1) and L1
yr(vi, x) ∩ I2 = (vi, x, p2). Let

(vi, yr, p3) and (vi, yr, p4) be the neighbors of (vi, x, p1) and (vi, x, p2) respectively in Hyr . Let
(vi, yr, p5) be the remaining element of Lyr(vi, yr). We rename the vertices (vi, yr, p4) and
(vi, yr, p5) as ((vi, yr), 1) and ((vi, yr), 2). Clearly ((vi−1, yr), 1)((vi, yr), 1) and
((vi−1, yr), 2)((vi, yr), 2) must be edges in Hyr . This completes the renaming of the vertices
in Hyr .

We will now show that this renaming demonstrates that H1
yr has a canonical labeling. By

our inductive procedure, we only need to verify that ((v2m+2, yr), 1)((v1, yr), 1) and ((v2m+2,
yr), 2)((v1, yr), 2) are edges in H1

yr . We have L1
yr(v2m+2, yr) = {((v2m+2, yr), 1), ((v2m+2 , yr),

2)}. We can let (v2m+2, yr, p) be the remaining vertex of L2
yr(v2m+2, yr) so that L2

yr(v2m+2,
yr) = {(v2m+2, yr, p), ((v2m+2, yr), 2)}. Notice that p ∈ [3]. Recall that L1

yr(v1, yr) = {((v1,
yr), 1), ((v1, yr), 2)} and L2

yr(v1, yr) = {(v1, yr, l3), ((v1, yr), 2)} where l3 ∈ [3]. By Lemma 15,
the matchings EH1

yr
(L1

yr(v2m+2, yr), L
1
yr(v1, yr)) and EH2

yr
(L2

yr(v2m+2, yr), L
2
yr(v1, yr)) are per-

fect. This implies that (v2m+2, yr, p)(v1, yr, l3), ((v2m+2, yr), 1)((v1, yr), 1) and ((v2m+2, yr),
2)((v1, yr), 2) are edges in Hyr . Hence H1

yr has a canonical labeling.

We are now ready to prove the sharpness of Theorem 4.

Proposition 17. χDP (C2m+2�K1,t) = 4 if and only if t ≥ PDP (C2m+2, 3) = 22m+2 − 1.

Proof. Let C = C2m+2, and let K be the complete bipartite graph with the bipartition
X = {x} and Y = {yq : q ∈ [t]}. Let M = C�K. Suppose t ≥ PDP (C, 3). We have
χDP (M) = 4 by Theorem 4.

Conversely, suppose t < PDP (C, 3). Let H = (L,H) be an arbitrary 3-fold cover of M
with PDP (MX ,HX) = d. Clearly d ≥ PDP (C, 3) > t. By Lemma 16, for each q ∈ [t],
M [V (C)× yq] has at most 1 volatile HX-coloring. By Corollary 10, M admits an H-coloring.
Thus χDP (M) ≤ 3.

We do not know of any other sharpness examples for Theorem 4 which leads us to believe
that Theorem 4 is not sharp very often. This motivates us to study Question 5 further.

4 Cartesian Product of a Cycle and Complete Bipartite Graph

In this Section, we will completely answer Question 5 when G is an odd cycle and k = 1 by
showing that f(C2m+1, 1) = PDP (C2m+1, 3)/3 as compared to f(C2m+2, 1) = PDP (C2m+2, 3)
as given by Proposition 17. More generally, in this Section, we make progress towards Ques-
tion 5 by improving Theorem 4 when G is a cycle and k ≥ 2. We construct random covers with
a combination of random matchings defined using an equivalence relation on an appropriate
set of colorings, and matchings defined using canonical and twisted-canonical labelings. We
show that there exists an appropriate bad cover by counting the expected number of volatile
colorings and applying Lemma 9.
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4.1 Odd Cycles

We now explore the Cartesian product of an odd cycle and a complete bipartite graph.
We start by defining an equivalence relation on the set of proper colorings of an odd cycle,
which is the final ingredient we need to set up the process of creating a bad cover.

Let G = C2m+1 with vertices ordered cyclically as v1, . . . , v2m+1 and let C denote the set
of all proper k-colorings of G. We define the equivalence relation ∼ on C such that if c, d ∈ C,
then c ∼ d if there exists a j ∈ Zk such that (c(vi) − d(vi)) mod k = j for all i ∈ [2m + 1].
The following Lemma is now immediate.

Lemma 18. Each equivalence class E of ∼ as defined above is of size k. Furthermore, if
c, d ∈ E such that c 6= d, then c(vi) 6= d(vi) for all i ∈ [2m+ 1].

Note that Lemma 18 gives a partition of the set of all proper k-colorings of an odd cycle
into sets of size k which immediately gives a corresponding partition of proper H-colorings
of an odd cycle into sets of size k where H is a k-fold cover of an odd cycle with a canonical
labeling.

We are now ready to prove Theorem 7. We construct random (k + 2)-fold covers of
C2m+1�Kk,t in such a way that, using the notation in the definition of volatile coloring
in Section 2.1, each HX-coloring is volatile for some Myq . We use a combination of two
types of matchings: (i) random matchings between L(u, xj) and L(u, yq) defined using the
equivalence relation ∼ where u ∈ V (G), xj ∈ X and yq ∈ Y , and (ii) matchings between
L(u, z) and L(v, z) defined using a canonical labeling where uv ∈ E(G) and z ∈ X ∪ Y .
We partition the set of all HX-colorings into sets of size (k + 2)k, and we find the expected
number of volatile HX -colorings in each part. If that expectation is larger than (k+2)k − 1,
we can use Lemma 9 to show a bad (k + 2)-fold cover must exist.

Theorem 7. Given k ∈ N, let ck =
⌈

k ln(k+2)
ln 2+(k−1) ln(k+2)−ln(2(k+2)k−1−(k+1)!)

⌉

if k ≥ 2 and

c1 = 1. Then,

χDP (C2m+1�Kk,t) = k + 3 whenever t ≥ ck

(

PDP (C2m+1,k+2)
k+2

)k
= ck

(

(k+1)2m+1−(k+1)
k+2

)k
.

Proof. For simplicity of notation, we will refer to ck as c in the proof.
Let C be the odd cycle with vertices ordered cyclically as u1, . . . , u2m+1, and let K be

the complete bipartite graph with bipartition X = {xj : j ∈ [k]} and Y = {yq : q ∈ [t]}.
Let M = C�K and MX = M [{(ui, xj) : i ∈ [2m + 1], j ∈ [k]}]. By Theorem 3, we have
χDP (M) ≤ χDP (C) + col(K) − 1 = k + 3. It remains to show that χDP (M) > k + 2. We
form a (k + 2)-fold cover H = (L,H) of M using a partially random process.

For each v ∈ V (K), let Hv = (Lv,Hv) be a (k + 2)-fold cover of M [V (C) × {v}] with
a canonical labeling. For each v ∈ V (K), we let L(u, v) = Lv(u, v) for every u ∈ V (C)
and create edges so that H[

⋃

u∈V (C) L(u, v)] = Hv. For simplicity, we rename each vertex
((u, v), l) in V (H) as (u, v, l). Next we use a random process to add matchings (possibly
empty) between L(ui, xj) and L(ui, yq) for each i ∈ [2m + 1], j ∈ [k] and q ∈ [t] to complete
the construction of H.

Let HX = (LX ,HX) denote the cover of MX where LX(u, xj) = Lxj
(u, xj) for every

(u, xj) ∈ V (C) × X and HX =
⋃k

j=1Hxj
. Let C and I denote the collection of all proper

(k + 2)-colorings and the collection of all HX-colorings respectively of MX . Note that since
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HX is a (k + 2)-fold cover of MX with a canonical labeling, there exists a bijection between
C and I. Note that one such bijection is, f : C → I where f(c) = {(ui, xj , c(ui, xj)) : i ∈
[2m + 1], j ∈ [k]}. Moreover, PDP (MX , k + 2) = P (MX , k + 2) (see Theorem 11 in [13]).
Hence PDP (MX ,HX) = PDP (MX , k + 2). Let d = P (C, k + 2) = (k + 1)2m+1 − (k + 1) so
that PDP (MX ,HX) = dk.

For every j ∈ [k], let Cj and Ij denote the collection of all proper (k + 2)-colorings and
all Hxj

-colorings respectively of M [V (C) × {xj}]. For each j ∈ [k], Cj is partitioned into
equivalence classes of size (k+2) by Lemma 18 under the equivalence relation ∼ as described
in the definition of ∼. We let b = d/(k + 2) and arbitrarily name these equivalence classes
Ej,p where p ∈ [b].

We arbitrarily name the elements of the set [b]k as p1, . . . ,pbk . Let a ∈ [bk] and suppose

pa = (p1, p2, . . . , pk). We define Spa =
{

⋃k
j=1 Ipj : Ipj ∈ f(Ej,pj) for each j ∈ [k]

}

. Note that

the size of Spa is (k + 2)k. Clearly
{

Spa : a ∈
[

bk
]}

is a partition of I. For each a ∈ [bk], we
associate c cycles M [V (C)× {yc(a−1)+1}], . . . ,M [V (C)× {yc(a−1)+c}] to Spa. Note that this

can be done since t ≥ cbk. By Lemma 9, if there exists a cover H∗ of M such that for each
a ∈

[

bk
]

, every s ∈ Spa is volatile for at least one of M [V (C)×{y1}], . . . ,M [V (C)×{yt}] then
M does not have an H∗-coloring. Next we use a probabilistic argument and show that there
exists a way to create matchings between L(ui, xj) and L(ui, yq) for each i ∈ [2m+1], j ∈ [k]
and q ∈ {c(a − 1) + 1, . . . , c(a − 1) + c} so that each s ∈ Spa is volatile for at least one of
M [V (C)× {yc(a−1)+1}], . . . ,M [V (C)× {yc(a−1)+c}].

Let a ∈ [bk] and suppose pa = (p1, p2, . . . , pk). Let j ∈ [k] and suppose f(Ej,pj) =
{I1, . . . , Ik+2}. Note that by Lemma 18, for each j ∈ [k], f(Ej,pj) is a partition of the vertex
set of Hxj

. For each ℓ ∈ [c] and j ∈ [k], we pick a random bijection σj between f(Ej,pj)
and [k + 2]. Then we draw an edge between the vertex in Il ∩ L(ui, xj) and the vertex
(ui, yqc(a−1)+ℓ

, σj(Il)) for each i ∈ [2m+1] and l ∈ [k+2]. This completes the construction of
H. It is easy to verify that H is a cover.

Let a ∈ [bk] and s ∈ Spa . Suppose pa = (p1, p2, . . . , pk) and s =
⋃k

j=1 Jpj where Jpj ∈
f(Ej,pj) for each j ∈ [k]. For each j ∈ [k], suppose the random bijection chosen previously
between f(Ej,pj) and [k + 2] is σj. Let r ∈ {c(a − 1) + 1, . . . , c(a − 1) + c}. Let Dr = {w ∈
V (Hyr) : NH(w) ∩ s = ∅} and H ′

yr = H[Dr]. For each u ∈ V (C), we define L′
yr(u, yr) =

Lyr(u, yr)∩Dr. Let H′
yr = (L′

yr ,H
′
yr). By Lemma 12, s is volatile for M [V (C)×{yr}] if and

only if H′
yr is a 2-fold cover of M [V (C) × {yr}] with a canonical labeling which happens if

and only if the cardinality of the set {σj(Jpj ) : j ∈ [k]} is k.
We now calculate the probability that s is volatile for M [V (C)× {yr}]. Since number of

possible bijections between f(Ej,pj) and [k + 2] for each j ∈ [k] is (k + 2)!, there are total
((k + 2)!)k ways to add matchings in the way described earlier corresponding to each Spa.
We count the number of matchings that correspond to s being volatile for M [V (C)× yr] as
follows. For j = 1, there are (k + 2) possible values for σ1(Jp1). Then there are (k + 1)!
possible bijections between f(E1,p1)− {Jp1} and [k + 2] − {σ1(Jp1)}. Note that if k = 1, the
probability that s is volatile for M [V (C) × {yr}] is 1. If k ≥ 2, consider j = 2. Clearly
σ2(Jp2) must be different from σ1(Jp1). Thus there are k + 1 possible values for σ2(Jp2) and
(k + 1)! possible bijections between f(E2,p2) − {Jp2} and [k + 2] − {σ2(Jp2)}. Continuing in
this fashion, once we get to j = k, there are (k + 2)− (k − 1) = 3 possible values for σk(Jpk)
and (k + 1)! possible bijections between f(Ek,pk) − {Jpk} and [k + 2] − {σk(Jpk)}. Thus for
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k ≥ 2, the probability that s is volatile for M [V (C)× {yr}] is

(k + 2)(k + 1)!(k + 1)(k + 1)! · · · 3(k + 1)!

((k + 2)!)k
=

(k + 2)!

2(k + 2)k
.

Suppose Ea,s is the event that s is volatile for at least one of M [V (C) × {yc(a−1)+1}],
. . . ,M [V (C) × {yc(a−1)+c}]. Hence P[Ea,s] = 1 −

(

1− (k + 2)!/2(k + 2)k
)c
. Let Xa,s be the

indicator random variable such that Xa,s = 1 when Ea,s occurs and Xa,s = 0 otherwise. Let
Xa = Σs∈Spa

Xa,s. By linearity of expectation we have,

E[Xa] = (k + 2)k
[

1−
(

1− (k + 2)!

2(k + 2)k

)c]

.

Thus if c satisfies

(k + 2)k
[

1−
(

1− (k + 2)!

2(k + 2)k

)c]

> (k + 2)k − 1,

then there exists a (k + 2)-fold cover, H∗, of M such that for each a ∈ [bk] each s ∈ Spa is
volatile for at least one of M [V (C)× {yc(a−1)+1}], . . . ,M [V (C)× {yc(a−1)+c}]. We can show
by a straightforward simplification that when k ≥ 2 the above inequality holds if and only
if c > k ln(k + 2)/(ln 2 + (k − 1) ln(k + 2)− ln(2(k + 2)k−1 − (k + 1)!)). It is also easy to see
that the above inequality holds when c = 1 and k = 1. Finally, note that by Lemma 9, M
does not admit an H∗-coloring and k + 2 < χDP (M).

To show the sharpness of Theorem 7, we need a lemma which utilizes the notation given
in the definition of volatile coloring in Section 2.1.

Lemma 19. Let M = C2m+1�K1,t and let H be a 3-fold cover of M . Then for each q ∈ [t],
Myq has at most 3 volatile HX-colorings.

Proof. Suppose the vertices of the odd cycle are ordered cyclically as v1, . . . , v2m+1. Let
X = {x}. Let H = (L,H) where L(u, v) = {(u, v, i) : i ∈ [3]} for each (u, v) ∈ V (M). Let I
be the set of all HX-colorings of MX .

Suppose for r ∈ [t], Myr has at least 4 distinct volatile HX -colorings. Let J1, J2, J3 and
J4 denote 4 of these colorings. By the pigeonhole principle, at least two of these colorings
are non-disjoint. Let I1 and I2 denote two such colorings. Additionally since I1 and I2 are
distinct, there exist i0 ∈ [2m+ 1] and i1 = (i0 mod (2m+ 1)) + 1 such that L(vi0 , x) ∩ I1 =
L(vi0 , x)∩ I2 = {(vi0 , x, l0)} and L(vi1 , x)∩ I1 = {(vi1 , x, l1)} and L(vi1 , x)∩ I2 = {(vi1 , x, l2)}
where l1 6= l2 and l0, l1, l2 ∈ [3]. Without loss of generality, suppose i0 = 1 and suppose i1 = 2

For each j ∈ [2], let Dj = {u ∈ V (Hyr) : NH(u) ∩ Ij = ∅} and Hj
yr = H[Dj ]. For each

u ∈ V (Myr ), we define Lj
yr(u) = Lyr(u) ∩Dj . Let Hj

yr = (Lj
yr ,H

j
yr).

Since I1 and I2 are volatile for Myr , there is no H1
yr -coloring and no H2

yr -coloring of
Myr . By Lemma 12, H1

yr and H2
yr are 2-fold covers with canonical labelings. Since L(v1,

x) ∩ I1 = L(v1, x) ∩ I2 = (v1, x, l0) and (v1, x, l0) has a unique neighbor in Hyr , we have
L1
yr(v1, yr) = L2

yr(v1, yr) = L(v1, yr)−NH((v1, x, l0)). Let L(v1, yr)−NH((v1, x, l0)) = {(v1,
yr, l3), (v1, yr, l4)} where l3, l4 ∈ [3]. On the the other hand, since l1 6= l2,(v2, x, l1) and
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(v2, x, l2) have distinct neighbors in Hyr . Therefore |L1
yr(v2, yr) ∩ L2

yr(v2, yr)| = 1. Let (v2,
yr, l5) ∈ L1

yr(v2, yr) − L2
yr(v2, yr) and (v2, yr, l6) ∈ L2

yr(v2, yr) − L1
yr(v2, yr) and let (v2, yr,

l7) ∈ L1
yr(v2, yr) ∩ L2

yr(v2, yr) where {l5, l6, l7} = [3]. To summarize, L1
yr(v1, yr) = L2

yr(v1,
yr) = {(v1, yr, l3), (v1, yr, l4)}, L1

yr(v2, yr) = {(v2, yr, l5), (v2, yr, l7)} and L2
yr(v2, yr) = {(v2,

yr, l6), (v2, yr, l7)}.
Since H1

yr has a canonical labeling, either (v1, yr, l3)(v2, yr, l7) ∈ E(H) or (v1, yr, l4)(v2,
yr, l7) ∈ E(H). Without loss of generality, suppose (v1, yr, l3)(v2, yr, l7) ∈ E(H). This means
(v1, yr, l4)(v2, yr, l5) ∈ E(H).

Similarly since H2
yr has a canonical labeling, either (v1, yr, l3)(v2, yr, l7) ∈ E(H) or (v1,

yr, l4)(v2, yr, l7) ∈ E(H). Since EH(L(v1, yr), L(v2, yr)) is a matching and (v1, yr, l4)(v2, yr,
l5) ∈ E(H), (v1, yr, l4)(v2, yr, l7) /∈ E(H). Hence we have (v1, yr, l3)(v2, yr, l7) ∈ E(H). Then
(v1, yr, l4)(v2, yr, l6) ∈ E(H). Hence EH(L(v1, yr), L(v2, yr)) is not a matching. Therefore H
is not a cover and we have arrived at a contradiction.

We are now ready to prove the sharpness result.

Proposition 20. χDP (C2m+1�K1,t) = 4 if and only if t ≥ PDP (C2m+1,3)
3 = 22m+1−2

3 .

Proof. Let C = C2m+1 and K be the complete bipartite graph with bipartition X = {x} and
Y = {yq : q ∈ [t]}. Let M = C�K and Mx = M [{(ui, x) : i ∈ [2m+1]}]. Let d = PDP (C, 3).
Suppose t ≥ d/3. Applying Theorem 7 with c1 = 1 implies χDP (M) = 4.

Conversely, suppose t < PDP (C2m+1, 3)/3 or equivalently d > 3t. Let H = (L,H) be
an arbitrary 3-fold cover of M . By Lemma 19, for each q ∈ [t], M [V (C) × {yq}] has at
most 3 volatile HX-colorings. By Corollary 10, M admits an H-coloring. Hence we have,
χDP (M) ≤ 3.

4.2 Even Cycles

We next present a result that is an improvement on Theorem 4 when G is an even cycle.
Similar to the odd cycle case in the previous Subsection, we use an equivalence relation which
is the final ingredient we need to set up the process of creating a bad cover of the Cartesian
product of an even cycle and a complete bipartite graph. We start with the notion of a cover,
H, for which PDP (C2m,H) = PDP (C2m, k) for m ≥ 2 and k ∈ N.

For any m ≥ 2, a k-fold C2m-twister is a k-fold cover, H = (L,H), of G = C2m such that it
is possible to order the vertices of G cyclically as u1, . . . , u2m, let L(ui) = {(ui, l) : l ∈ [k]} for

each i ∈ [2m] so that
(

⋃

l∈[k],i∈[2m−1]{(ui, l)(ui+1, l)}
)

∪
(

⋃

l∈[k]{(u2m, l)(u1, (l mod k) + 1)
)

is the set of cross edges of H.
By Lemma 23 in [13], PDP (C2m,H) = PDP (C2m, k) when H is a k-fold C2m-twister.
Let G = C2m+2 with vertices ordered cyclically as u1, . . . , u2m+2, and let H = (L,H) be a

k-fold cover of G. Suppose for each i ∈ [2m+ 2], L(ui) = {(ui, l) : l ∈ [k]}. Let I denote the
set of all H-colorings of G. Suppose I1, I2 ∈ I, and for each i ∈ [2m+ 2], we let c1,i and c2,i
be the second coordinate of the vertex in I1 ∩L(ui) and the vertex in I2 ∩L(ui) respectively.
We define the relation ≈ on I such that I1 ≈ I2 if there exists a j ∈ Zk such that (c1,i − c2,i)
mod k = j for all i ∈ [2m+ 2]. It is easy to see that ≈ is an equivalence relation.
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(u2m, 2)

(u2m, 3)

Figure 3: A 3-fold C2m-twister. Note that the set of vertices inside each oval is a clique; we
have omitted drawing the corresponding edges for simplicity.

Lemma 21. Suppose H is a k-fold C2m+2-twister of G = C2m+2 where k ≥ 3. Using the
notation of the definition of ≈ above, the following statements hold.

(i) Each equivalence class E of ≈ as defined above is of size k.
(ii) If I1, I2 are in the same equivalence class of ≈ and I1 6= I2, then c1,i 6= c2,i for all

i ∈ [2m+ 2]}.

Proof. We only prove Statement (i) since Statement (ii) is obvious. Let I ∈ E . For each
i ∈ [2m + 2], we let ci be the second coordinate of the vertex in I ∩ L(ui). For each l ∈
Zk, i ∈ [2m + 2], we define cl,i = ((ci − 1 + l) mod k) + 1. Then for each l ∈ Zk, we
construct Il so that Il = {(ui, cl,i) : i ∈ [2m + 2]}. Notice that I0 = I. Let l′ ∈ Zk. Clearly
|Il′ ∩ L(ui)| = 1 for each i ∈ [2m+ 2]. We now show that Il′ is an H-coloring of G. Suppose
there exist two vertices in Il′ , (uj , cl′,j) and (uj′ , cl′,j′) such that (uj , cl′,j)(uj′ , cl′,j′) ∈ E(H).
This implies that (uj , cj), (uj′ , cj′) ∈ I. The fact that H is a twister of G and our assumption
(uj , cl′,j)(uj′ , cl′,j′) ∈ E(H) imply that (uj , cj)(uj′ , cj′) ∈ E(H). This is a contradiction. Thus
Il is an H-coloring of G for each l ∈ Zk. Also, clearly Il ∈ E for each l ∈ Zk. Therefore,
|E| ≥ k.

Now suppose |E| > k. Let J ∈ E be an H-coloring of G that is not equal to Il for any
l ∈ Zk. For each i ∈ [2m+2], let di be the second coordinate of the vertex in J ∩L(ui). Then
since J ∈ E , there exists some r ∈ Zk such that (di − ci) mod k = r for all i ∈ [2m + 2].
Recall that ci = c0,i. Note that (cr,i − ci) mod k = r for all i ∈ [2m + 2]. Since di and cr,i
are both elements of [k], di = cr,i for all i ∈ [2m + 2]. Therefore J = Ir and |E| ≤ k. This
proves the Statement (i).

We now prove Theorem 8. The strategy of the proof is similar to that of Theorem 7. We
construct random (k + 2)-fold covers of C2m+2�Kk,t in such a way that, using the notation
in the definition of volatile coloring in Section 2.1, each HX-coloring is volatile for some Myq .
We begin so that HX is built from (k + 2)-fold C2m+2-twisters. We then use a combination
of two types of matchings: (i) random matchings between L(u, xj) and L(u, yq) defined using
the equivalence relation ≈ where u ∈ V (G), xj ∈ X, and yq ∈ Y and (ii) matchings between
L(u, yq) and L(v, yq) defined using a twisted-canonical labeling where uv ∈ E(G) and yq ∈ Y .
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We partition the set of all HX-colorings into sets of size (k + 2)k, and we find the expected
number of volatile HX -colorings in each part. If that expectation is larger than (k+2)k − 1,
we can use Lemma 9 to show a bad (k + 2)-fold cover must exist.

Theorem 8. Given k ∈ N, let ck =
⌈

k ln(k+2)
k ln(k+2)−ln((k+2)k−⌊(k+2)/2⌋k!)

⌉

. Then χDP (C2m+2�

Kk,t) = k + 3 whenever t ≥ ck

(

PDP (C2m+2,k+2)
k+2

)k
= ck

(

(k+1)2m+2−1
k+2

)k
.

Proof. For simplicity of notation, we will refer to ck as c in the proof.
Let C be the even cycle with vertices ordered cyclically as u1, . . . , u2m+2, and let K be

the complete bipartite graph with bipartition X = {xj : j ∈ [k]} and Y = {yq : q ∈ [t]}.
Let M = C�K and MX = M [{(ui, xj) : i ∈ [2m + 2], j ∈ [k]}]. By Theorem 3, we have
χDP (M) ≤ χDP (C) + col(K) − 1 = k + 3. It remains to show that χDP (M) > k + 2. To
show this, we form a (k + 2)-fold cover H = (L,H) of M using a partially random process.

For each x ∈ X, let Hx = (Lx,Hx) be a (k + 2)-fold C2m+2-twister of M [V (C) × {x}].
Clearly, PDP (M [V (C)×{x}],Hx) = PDP (C, k+2). We then let L(u, x) = Lx(u, x) for every
u ∈ V (C) and create edges in H so that H[

⋃

u∈V (C) L(u, x)] = Hx. Let HX = (LX ,HX)
denote the cover of MX where LX(u, x) = Lx(u, x) for every (u, x) ∈ V (C) ×X and HX =
⋃

x∈X Hx. For simplicity we name the vertices in H so that for each (u, v) ∈ V (M), L(u, v) =
{(u, v, l) : l ∈ [k + 2]}. Next we create edges so that for each (u, v) ∈ V (C)× Y , H[L(u, v)]
is a clique on k + 2 vertices. For each j ∈ [t], we draw edges (ui, yj , 2l − 1)(ui+1, yj , 2l − 1)
and (ui, yj, 2l)(ui+1, yj, 2l) for every i ∈ [2m + 1], l ∈ [⌊(k + 2)/2⌋]. Next we draw edges
(u1, yj, 2l−1)(u2m+2, yj , 2l) and (u1, yj, 2l)(u2m+2, yj, 2l−1) for each j ∈ [t], l ∈ [⌊(k+2)/2⌋].
Then, if k+2 is odd, we draw edges so that for each j ∈ [t], H[{(ui, yj , k+2) : i ∈ [2m+2]}]
is a cycle with vertices ordered cyclically as (u1, yj , k + 2), . . . , (u2m+2, yj, k + 2).

Next we use a random process to add matchings(possibly empty) between L(ui, xj) and
L(ui, yq) for each i ∈ [2m+ 2], j ∈ [k] and q ∈ [t] to complete the construction of H.

Let I denote the collection of all HX-colorings of MX . Let d = PDP (C, k + 2) = (k +
1)2m+2 − 1 so that PDP (MX ,HX) = dk. For every j ∈ [k], let Ij denote the collection of all
Hxj

-colorings of M [V (C)× {xj}]. For each j ∈ [k], Ij is partitioned into equivalence classes
of size k + 2 by Lemma 21 under the equivalence relation ≈ as described in the definition of
≈. We let b = d/(k + 2) and name these equivalence classes Ej,p where p ∈ [b]. Notice that
for each j ∈ [t], {Ej,p : p ∈ [b]} is a partition of Ij.

We arbitrarily name the elements of the set [b]k as p1, . . . ,pbk . Let a ∈ [bk] and suppose

pa = (p1, p2, . . . , pk). We define Spa =
{

⋃k
j=1 Ipj : Ipj ∈ Ej,pj for each j ∈ [k]

}

. Note that

the size of Spa is (k + 2)k. Clearly
{

Spa : a ∈
[

bk
]}

is a partition of I. For each a ∈ [bk], we
associate c cycles M [V (C)× {yc(a−1)+1}], . . . ,M [V (C)× {yc(a−1)+c}] to Spa. Note that this

can be done since t ≥ cbk. By Lemma 9, if there exists a cover H∗ of M such that for each
a ∈

[

bk
]

, every s ∈ Spa is volatile for at least one of M [V (C)×{y1}], . . . ,M [V (C)×{yt}] then
M does not have an H∗-coloring. Next we use a probabilistic argument and show that there
exists a way to create matchings between L(ui, xj) and L(ui, yq) for each i ∈ [2m+1], j ∈ [k]
and q ∈ {c(a − 1) + 1, . . . , c(a − 1) + c} so that each s ∈ Spa is volatile for at least one of
M [V (C)× {yc(a−1)+1}], . . . ,M [V (C)× {yc(a−1)+c}].

Let a ∈ [bk] and suppose pa = (p1, p2, . . . , pk). Let j ∈ [k] and suppose Ej,pj =
{I1, . . . , Ik+2}. Note that by Lemma 21, for each j ∈ [k], Ej,pj is a partition of the ver-
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tex set of Hxj
. For each ℓ ∈ [c] and j ∈ [k], we pick a random bijection σj between Ej,pj and

[k + 2]. Then for each l ∈ [k + 2] and i ∈ [2m + 2], we draw an edge between the vertex in
Il ∩ L(ui, xj) and the vertex (ui, yqc(a−1)+ℓ

, σj(Il)). This completes the construction of H. It
is easy to verify that H is a cover.

Let a ∈ [bk] and s ∈ Spa . Suppose pa = (p1, p2, . . . , pk) and s =
⋃k

j=1 Jpj where Jpj ∈ Ej,pj
for each j ∈ [k]. For each j ∈ [k], suppose the random bijection chosen previously between
Ej,pj and [k + 2] is σj . Let r ∈ {c(a − 1) + 1, . . . , c(a − 1) + c}. Let Dr = {w ∈ V (Hyr) :
NH(w) ∩ s = ∅} and H ′

yr = H[Dr]. For each u ∈ V (C), we define L′
yr(u, yr) = L(u, yr) ∩Dr.

Let H′
yr = (L′

yr ,H
′
yr). By Lemma 15, s is volatile for M [V (C)× {yr}] if and only if H′

yr is a
2-fold cover of M [V (C) × {yr}] with a twisted-canonical labeling. This happens if and only
if the cardinality of the set {σj(Jpj ) : j ∈ [k]} is k and there exists l ∈ [⌊(k + 2)/2⌋] such that
H ′

yr = H[
⋃

i∈[2m+2],z∈[2](ui, yr, 2l + z − 2)] (i.e., 2l − 1, 2l /∈ {σj(Jpj) : j ∈ [k]}).
Since number of possible bijections between f(Ej,pj) and [k+2] for each j ∈ [k] is (k+2)!,

there are total ((k + 2)!)k ways to add matchings in the way described earlier corresponding
to each Spa . We now calculate the probability that s is volatile for M [V (C) × {yr}]. Since
number of possible bijections between Ej,pj and [k + 2] for each j ∈ [k] is (k + 2)!, there are
total ((k + 2)!)k ways to add matchings in the way described earlier corresponding to each
Spa. We count the number of matchings that correspond to s being volatile for M [V (C)× yr]
as follows. Recall that there are ⌊(k+2)/2⌋ possible values for l. Then for j = 1, there are k
possible values to choose from the set [k + 2] − {2l − 1, 2l} for σ1(Jp1) and (k + 1)! possible
bijections between E1,p1 and [k + 2] − {σ1(Jp1)}. If k ≥ 2 then for j = 2, σ2(Jp2) must be
different from σ1(Jp1), 2l − 1 and 2l. Thus there are k − 1 possible values for σ2(Jp2) and
(k + 1)! possible bijections between E2,p2 − {Jp2} and [k + 2]− {σ2(Jp2)}. Continuing in this
fashion, once we get to j = k, there is k− (k− 1) = 1 possible value for σk(Jpk) and (k +1)!
possible bijections between Ek,pk − {Jpk} and [k + 2] − {σk(Jpk)}. Thus the probability that
s is volatile for M [V (C)× {yr}] is

⌊(k + 2)/2⌋k(k + 1)!(k − 1)(k + 1)! · · · (k + 1)!

((k + 2)!)k
=

⌊(k + 2)/2⌋k!
(k + 2)k

.

Suppose Ea,s is the event that s is volatile for at least one of M [V (C)×{yc(a−1)+1}], . . . ,
M [V (C)× {yc(a−1)+c}]. Hence P[Ea,s] = 1−

(

1− ⌊(k + 2)/2⌋k!/(k + 2)k
)c
. Let Xa,s be the

indicator random variable such that Xa,s = 1 when Ea,s occurs and Xa,s = 0 otherwise. Let
Xa = Σs∈Spa

Xa,s. By linearity of expectation we have,

E[Xa] = (k + 2)k
[

1−
(

1− ⌊(k + 2)/2⌋k!
(k + 2)k

)c]

.

Thus if c satisfies

(k + 2)k
[

1−
(

1− ⌊(k + 2)/2⌋k!
(k + 2)k

)c]

> (k + 2)k − 1,

then there exists a (k + 2)-fold cover, H∗, of M such that for each a ∈ [bk] each s ∈ Spa

is volatile for at least one of M [V (C) × {yc(a−1)+1}], . . . ,M [V (C) × {yc(a−1)+c}]. We can
show by a straightforward simplification that the above inequality holds if and only if c >
k ln(k + 2)/(k ln(k + 2)− ln((k + 2)k − ⌊(k + 2)/2⌋k!)). Finally, note that by Lemma 9, M
does not admit an H∗-coloring and k + 2 < χDP (M).
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Note that the sharpness of Theorem 8 follows from Proposition 17.
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