Complete minors and average degree - a short proof

Noga Alon * Michael Krivelevich ${ }^{\dagger}$ Benny Sudakov ${ }^{\ddagger}$

Abstract

We provide a short and self-contained proof of the classical result of Kostochka and of Thomason, ensuring that every graph of average degree d has a complete minor of order $\Omega(d / \sqrt{\log d})$.

Let $G=(V, E)$ be a graph with $|E| /|V| \geq d$. How large a complete minor are we guaranteed to find in G ? This classical question, closely related to the famed Hadwiger's conjecture, has been thoroughly studied over the last half a century. It is quite easy to see the answer is at least logarithmic in d. Mader [3] proved it is of order at least $d / \log d$. The right order of magnitude was established independently by Kostochka [1, 2, 2a by Thomason [4] to be $d / \sqrt{\log d}$, its tightness follows by considering random graphs. Finally, Thomason found in [5] the asymptotic value of this extremal function.

Here we provide a short and self-contained proof of the celebrated Kostochka-Thomason bound.
Theorem 1. Let $G=(V, E)$ be a graph with $|E| /|V| \geq d$, where d is a sufficiently large integer. Then G contains a minor of the complete graph on at least $\frac{d}{10 \sqrt{\text { Ind }}}$ vertices.

The constant $1 / 10$ in the above statement is inferior to the best constant $3.13 \ldots$ found by Thomason [5] (yet is better than the constants in [1, 2]); we did not make any serious attempt to optimize it in our arguments. The main point here is to give a short proof of the tight $\Omega(d / \sqrt{\log d})$ bound for this classical extremal problem.

Throughout the proof we assume, whenever this is needed, that the parameters n and d are sufficiently large. To simplify the presentation we omit all floor and ceiling signs in several places. For a graph $G=(V, E)$, its minimum degree is denoted by $\delta(G)$, and for $v \in V$ we use $N_{G}(v)$ for the external neighborhood of v in G.

We need the following lemma proven by simple probabilistic arguments.
Lemma 2. Let $H=(V, E)$ be a graph on at most n vertices with $\delta(H) \geq n / 6$. Let $t \leq n / \sqrt{\ln n}$, and let $A_{1}, \ldots, A_{t} \subset V$ with $\left|A_{j}\right| \leq n e^{-\sqrt{\ln n} / 3}$ for all $1 \leq j \leq t$. Then there is $B \subset V$ of size $|B| \leq 3.1 \sqrt{\ln n}$

[^0]such that B dominates all but at most $n e^{-\sqrt{\ln n} / 3}$ vertices of $V, B \backslash A_{j} \neq \emptyset$ for all $j=1, \ldots$, t, and the induced subgraph $G[B]$ has at most six connected components.
Proof. Set $s=3.1 \sqrt{\ln n}$ and choose s vertices of V independently at random with repetitions. Let B be the set of chosen vertices. Observe that for every vertex $v \in V$,
$$
\operatorname{Pr}[N(v) \cap B=\emptyset] \leq\left(1-\frac{d(v)}{n}\right)^{s} \leq e^{-\frac{s d(v)}{n}} \leq e^{-s / 6}
$$

Hence the expected number of vertices not dominated by B is at most $n e^{-s / 6}<n e^{-3.1 \sqrt{\ln n} / 6}<$ $n e^{-\sqrt{\ln n} / 2}$, and by Markov's inequality, it is at most $n e^{-\sqrt{\ln n} / 3}$ with probability exceeding $1 / 2$ (with room to spare). Also, since $|V|>\delta(H) \geq n / 6$, for every subset A_{j},

$$
\operatorname{Pr}\left[B \subseteq A_{j}\right]=\left(\frac{\left|A_{j}\right|}{|V|}\right)^{s}<\left(\frac{6\left|A_{j}\right|}{n}\right)^{s} \leq 6^{s} e^{-s \sqrt{\ln n} / 3}=6^{\Theta(\sqrt{\log n})} e^{-3.1 \ln n / 3}<\frac{1}{n}
$$

Therefore the probability that $B \backslash A_{j} \neq \emptyset$ for all j is at least $1-t / n \geq 1-1 / \sqrt{\ln n}$.
We now argue about the number of connected components in $G[B]$. Writing $B=\left(v_{1} \ldots, v_{s}\right)$, for $1 \leq i \leq s$ let x_{i} be the random variable counting the number of indices $1 \leq j \neq i \leq s$ for which v_{j} is a neighbor of v_{i}. Conditioning on v_{i}, we see that x_{i} is distributed as a binomial random variable with parameters $s-1$ and $d\left(v_{i}\right) /|V|>1 / 6$. Hence invoking the standard Chernoff-type bound on the lower tail of the binomial distribution, we derive that $\operatorname{Pr}\left[x_{i}<s / 7\right] \leq e^{-\Theta(s)}$. Applying the union bound over all $1 \leq i \leq s$, we conclude that with probability $1-o(1)$, we have $x_{i} \geq s / 7$ for all i. Finally, observe that since $s \ll \sqrt{|V|}$, with probability $1-o(1)$ there are no repetitions in B, and hence $d\left(v_{i}, B\right)=x_{i} \geq s / 7$ for all $1 \leq i \leq s$. But then all connected components of $G[B]$ are of size exceeding $s / 7$, and therefore $G[B]$ has at most six connected components.

Combining the above three estimates, the desired result follows.
Proof of Theorem 1. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be a minor of G such that $\left|E^{\prime}\right| \geq d\left|V^{\prime}\right|$ and $\left|V^{\prime}\right|+\left|E^{\prime}\right|$ is minimal. If an edge e of G^{\prime} is contained in t triangles then contracting e gives a minor of G with one vertex and $t+1$ edges less. By the minimality of G^{\prime} we have $t+1>d$, implying $t \geq d$. Hence for every edge $e=(u, v) \in E\left(G^{\prime}\right)$, the vertex u is connected by an edge of G^{\prime} to at least d neighbors of v. The minimality of G^{\prime} also implies $\left|E^{\prime}\right|=d\left|V^{\prime}\right|$, hence G^{\prime} has a vertex v of degree at most $2 d$. Let H be the subgraph of G^{\prime} induced by $N_{G^{\prime}}(v)$. Then H has at most $2 d$ vertices and minimum degree at least d. Obviously a minor of H is a minor of G as well.

We now argue that H contains a $d / 3$-connected subgraph H_{1} with $\delta\left(H_{1}\right) \geq 2 d / 3$. If H itself is $d / 3$ connected this holds for $H_{1}=H$. Otherwise there is a partition $V(H)=A \cup B \cup S$, where $A, B \neq \emptyset$, $|S|<d / 3$, and H has no edges between A and B. Assume without loss of generality $|A| \leq|B|$. Then $|A| \leq d$, and since $\delta(H) \geq d$, every vertex $v \in A$ has at least $2 d / 3$ neighbors in A, implying that every pair of vertices of A has at least $d / 3$ common neighbors in A. Hence the induced subgraph $H_{1}:=H[A]$ is $d / 3$-connected, has at most $2 d$ vertices and satisfies $\delta\left(H_{1}\right) \geq 2 d / 3$.

Set $i=1$ and repeat the following iteration $d / 10 \sqrt{\ln d}$ times. Let $H_{i}=\left(V_{i}, E_{i}\right) \subseteq H_{1}$ be the current graph, and suppose A_{1}, \ldots, A_{i-1} are subsets of V_{i} of cardinalities $\left|A_{j}\right| \leq 2 d e^{-\sqrt{\ln (2 d)} / 3}$ (representing
the non-neighbors of the previously found branch sets B_{j} in V_{i}). We assume (and justify it later) that H_{i} is connected and has $\delta\left(H_{i}\right)>d / 3$. Then the diameter of H_{i} is at most 14, as on any shortest path $P=\left(v_{0}, v_{1}, \ldots\right)$ in H_{i} the vertices at positions divisible by three have pairwise disjoint neighborhoods. Since $\left|V\left(H_{i}\right)\right| / \delta\left(H_{i}\right)<6$, the number of such neighborhoods is at most 5 , and therefore any shortest path has at most 15 vertices. Applying Lemma 2 with $H:=H_{i}, n:=2 d, t:=i-1$, and A_{1}, \ldots, A_{i-1} (for the initial step $i=1$ there are no A_{j} 's to plug into Lemma 2- which of course does not hinder its application) we get a subset B_{i} of cardinality $\left|B_{i}\right| \leq 3.1 \sqrt{\ln (2 d)}$ as promised by the lemma. We now turn B_{i} into a connected set by adding few vertices of H_{i} if necessary. Recall that $H_{i}\left[B_{i}\right]$ has at most six connected components. Connecting one of them by shortest paths in H_{i} to all others and recalling that H_{i} has diameter at most 14 , we conclude that by appending to B_{i} all the vertices of these paths we make it connected by adding to it at most $13 \cdot 5=65$ vertices. Altogether we obtain a connected subset B_{i} of cardinality $\left|B_{i}\right| \leq(3.1+o(1)) \sqrt{\ln (2 d)}$, dominating all but at most $2 d e^{-\sqrt{\ln (2 d)} / 3}$ vertices of V_{i} and having a vertex outside every A_{j} (these properties are preserved under vertex addition when making B_{i} into a connected subset) - meaning connected to every previous B_{j}. We now update $V_{i+1}:=V_{i}-B_{i}, A_{i}:=V_{i+1}-N_{H_{i}}\left(B_{i}\right)$, and $A_{j}:=A_{j} \cap V_{i+1}, j=1, \ldots, i-1$, and finally increment $i:=i+1$, set $H_{i}:=H\left[V_{i}\right]$, and proceed to the next iteration. The total number of vertices deleted in all iterations satisfies:

$$
\left|\cup_{i} B_{i}\right| \leq \frac{d}{10 \sqrt{\ln d}} \cdot(3.1+o(1)) \sqrt{\ln (2 d)}<\frac{d}{3},
$$

and since we started with the $d / 3$-connected graph H_{1} with $\delta\left(H_{1}\right) \geq 2 d / 3$, we indeed have that at each iteration the graph H_{i} is connected and has $\delta\left(H_{i}\right)>d / 3$.

After having completed all $d / 10 \sqrt{\ln d}$ iterations, we get a family of $d / 10 \sqrt{\ln d}$ branch sets B_{i}, all connected, and with an edge of H_{1} between every pair of branch sets. Hence they form a complete minor of order $d / 10 \sqrt{\ln d}$ as promised.

References

[1] A. V. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz. 38 (1982), 37-58 (in Russian).
[2] A. V. Kostochka, A lower bound for the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984), 307-316.
[3] W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968), 154-168.
[4] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984), 261-265.
[5] A. Thomason, The extremal function for complete minors, J. Combin. Theory Ser. B 81 (2001), 318-338.

[^0]: *Department of Mathematics, Princeton University, Princeton, NJ 08544, USA and Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel. Email: nalon@math.princeton.edu. Research supported in part by NSF grant DMS-1855464 and USA-Israel BSF grant 2018267.
 ${ }^{\dagger}$ School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997801, Israel. Email: krivelev@tauex.tau.ac.il. Research supported in part by USA-Israel BSF grant 2018267.
 ${ }^{\ddagger}$ Department of Mathematics, ETH, Zürich, Switzerland. Email: benjamin.sudakov@math.ethz.ch. Research supported in part by SNSF grant 200021_196965.

