
ar
X

iv
:2

20
3.

07
70

4v
1 

 [
m

at
h.

C
O

] 
 1

5 
M

ar
 2

02
2

DP color functions versus chromatic polynomials (II)
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Abstract

For any connected graph G, let P (G,m) and PDP (G,m) denote the chromatic polynomial

and DP color function of G, respectively. It is known that PDP (G,m) ≤ P (G,m) holds for

every positive integer m. Let DP≈ (resp. DP<) be the set of graphs G for which there exists an

integer M such that PDP (G,m) = P (G,m) (resp. PDP (G,m) < P (G,m)) holds for all integers

m ≥ M . Determining the sets DP≈ and DP< is a key problem on the study of the DP color

function. For any edge set E0 of G, let ℓG(E0) be the length of a shortest cycle C in G such

that |E(C) ∩E0| is odd whenever such a cycle exists, and ℓG(E0) = ∞ otherwise. Write ℓG(E0)

as ℓG(e) if E0 = {e}.

In this paper, we prove that if G has a spanning tree T such that ℓG(e) is odd for each

e ∈ E(G) \ E(T ), the edges in E(G) \ E(T ) can be labeled as e1, e2, · · · , eq with ℓG(ei) ≤

ℓG(ei+1) for all 1 ≤ i ≤ q − 1 and each edge ei is contained in a cycle Ci of length ℓG(ei) with

E(Ci) ⊆ E(T ) ∪ {ej : 1 ≤ j ≤ i}, then G is a graph in DP≈. As a direct application of this

conclusion, all plane near-triangulations and complete multipartite graphs with at least three

partite sets belong to DP≈. We also show that if E∗ is an edge set of G such that ℓG(E
∗) is

even and E∗ satisfies certain conditions, then G belongs to DP<. In particular, if ℓG(E
∗) = 4,

where E∗ is a set of edges between two disjoint vertex subsets of G, then G belongs to DP<.

Both results extend known ones in [DP color functions versus chromatic polynomials, Advances

in Applied Mathematics 134 (2022), article 102301].

1 Introduction

1.1 Proper coloring, list coloring and DP coloring

In this article, we consider simple graphs only. For any graph G, let V (G) and E(G) be the

vertex set and edge set of G, respectively. For any two disjoint subsets V1 and V2 of V (G), let

EG(V1, V2) be the set of edges uv ∈ E(G), where u ∈ V1 and v ∈ V2. For any non-empty subset V0

of V (G), let G[V0] denote the subgraph of G induced by V0. For any A ⊆ E(G), let V (A) be the

∗Email: nie21.zm@e.ntu.edu.sg and meiqiaozhang95@163.com.
†Corresponding author. Email: fengming.dong@nie.edu.sg and donggraph@163.com.
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set of vertices in G which are incident to some edges in A, and let G[A] be the subgraph of G with

vertex set V (A) and edge set A when A 6= ∅. Let G〈A〉 be the spanning subgraph of G with edge

set A and G−A = G〈E(G) \A〉, and denote by c(A) the number of components of G〈A〉. For any

u ∈ V (G), let NG(u) (or simply N(u)) be the set of the neighbors of u in G.

Denote the set of positive integers by N. For any m ∈ N, let [m] = {1, · · · ,m}. For any graph

G, a proper coloring of G is a mapping c : V (G) → N, such that c(u) 6= c(v) for all uv ∈ E(G).

For any positive integer m, a proper m-coloring of G is a proper coloring c with c(v) ∈ [m] for

all v ∈ V (G). The chromatic polynomial P (G,m) of G is a function which counts the number of

proper m-colorings of G for each m ∈ N. The chromatic polynomial was originally designed as a

tool to attack the Four Color Conjecture [1], but later gained unique research significance because

of its elegant properties, see [2, 3, 11, 12] for reference.

To generalize proper coloring, Vizing [14] and Erdős, Rubin and Taylor [7] independently intro-

duced the notion of list coloring. For any graph G, a list assignment L of G is a mapping from

V (G) to the power set of N, and an L-coloring of G is a proper coloring c with c(v) ∈ L(v) for all

v ∈ V (G). Denote the number of L-colorings of G by P (G,L).

L is an m-list assignment of G if |L(v)| = m holds for all v ∈ V (G). Then the list color function

Pl(G,m) of G counts the minimum value of P (G,L) among all m-list assignments L for each m ∈ N.

Obviously, Pl(G,m) ≤ P (G,m) holds for each m ∈ N. And surprisingly, Pl(G,m) = P (G,m) holds

whenever m > |E(G)|−1

ln(1+
√
2)

(see [15]). While this implies that the list color function of some graph

might not be a polynomial [5], the list color function Pl(G,m) of any graph G inherits all the nice

properties of its chromatic polynomial when m is sufficiently large. See [13] for some open problems

of list color functions.

To make breakthroughs in list coloring, Dvořák and Postle [6] recently defined the correspondence

coloring, or DP-coloring. The formal definition is as follows.

For any graph G, a cover of G is an ordered pair H = (L,H), where H is a graph and L is a

mapping from V (G) to the power set of V (H) satisfying the conditions below:

• the set {L(u) : u ∈ V (G)} is a partition of V (H),

• for every u ∈ V (G), H[L(u)] is a complete graph,

• if u and v are not adjacent in G, then EH(L(u), L(v)) = ∅, and

• for each edge uv ∈ E(G), EH(L(u), L(v)) is a matching.

For any cover H = (L,H) of G, H is m-fold if |L(v)| = m for all v ∈ V (G), and H is full if for

each edge uv ∈ E(G), EH(L(u), L(v)) is a perfect matching. An H-coloring of G is an independent

set I in H with |I| = |V (G)|. Obviously, any H-coloring I of G has the property that |I ∩L(v)| = 1

for each v ∈ V (G). Denote the number of H-colorings of G by PDP (G,H).
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The DP color function PDP (G,m) of G, introduced by Kaul and Mudrock [9] in 2019, counts

the minimum value of PDP (G,H) among all m-fold covers H of G for each m ∈ N. Note that

PDP (G,m) ≤ Pl(G,m) holds for each m ∈ N. Therefore, for each m ∈ N,

PDP (G,m) ≤ Pl(G,m) ≤ P (G,m). (1.1)

It is known that all the equalities in (1.1) can hold simultaneously. For example, the authors of [9]

proved that PDP (G,m) = P (G,m) holds for all m ∈ N when G is a chordal graph. However,

different from list color functions, not the DP color functions of all graphs tend to be the same as

their chromatic polynomials. In [9], it is shown that for any graph G with even girth, there exists an

N ∈ N, such that PDP (G,m) < P (G,m) for all integers m ≥ N . Therefore, how to characterize the

two classes of graphs DP≈ and DP< becomes a research focus in the study of DP color functions,

where

• DP≈ is the set of graphsG for which there exists an integerM such that PDP (G,m) = P (G,m)

holds for all integers m ≥ M , and

• DP< is the set of graphsG for which there exists an integerM such that PDP (G,m) < P (G,m)

holds for all integers m ≥ M .

So far it is still unknown if there exists a graph G such that G /∈ DP≈ and G /∈ DP<. Thus, a

characterization of the graphs in DP≈ or DP< does not necessarily guarantee a characterization of

the graphs in the other class.

In this paper, we shall introduce our new findings on determining DP≈ and DP<.

1.2 Known results

Throughout this paper, we need only to consider connected graphs because for disconnected

graph G with components G1, · · · , Gk,

PDP (G,m) =

k
∏

i=1

PDP (Gi,m). (1.2)

In this subsection, we introduce the known graphs contained in sets DP≈ and DP< respectively.

Let HG,m = (LG,m,HG,m) denote the special full m-fold cover such that LG,m(u) = {(u, i) : i ∈

[m]} for each vertex u ∈ V (G) and EHG,m
(LG,m(u), LG,m(v)) = {(u, i)(v, i) : i ∈ [m]} for each edge

uv ∈ E(G). Obviously, PDP (G,HG,m) = P (G,m) for all m ∈ N. Let DP ∗ denote the set of graphs

G for which there exists M ∈ N such that for every m-fold cover H = (L,H) of G, if H 6∼= HG,m,

then PDP (G,H) > P (G,m) holds for all integers m ≥ M . Apparently, DP ∗ ⊆ DP≈, but whether

DP ∗ = DP≈ or not is currently unknown.
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On one hand, Mudrock and Thomason [10] showed that each graph with a dominating ver-

tex belongs to DP≈. Actually they proved that each graph with a dominating vertex belongs to

DP ∗. Dong and Yang [4] then extended their conclusion to a large set of connected graphs (see

Theorem 1.1).

Let CG(e) be the set of cycles in G containing e with the minimum order. Note that CG(e) = ∅

if e is a bridge. Denote by ℓG(e) the girth of edge e in G, which is the order of any C ∈ CG(e) if

CG(e) 6= ∅; otherwise, ℓG(e) = ∞.

Theorem 1.1 ([4]) Let G be a graph with a spanning tree T . If for each edge e in E(G) \ E(T ),

ℓG(e) is odd and there exists C ∈ CG(e) such that ℓG(e
′) < ℓG(e) for each e′ ∈ E(C) \ (E(T )∪ {e}),

then G ∈ DP ∗ and hence G ∈ DP≈.

On the other hand, some families of graphs belonging to DP< were found. Kaul and Mudrock [9]

discovered the fact that for any graph G with an edge e, if P (G− e,m) < mP (G,m)/(m− 1), then

PDP (G,m) < P (G,m) holds, and showed that every graph with an even girth belongs to DP<.

The latter conclusion was extended to the following one.

Theorem 1.2 ([4]) Graph G belongs to DP< if G contains an edge of even girth.

An edge gluing of vertex disjoint graphs G1 and G2 is a graph obtained by identifying an edge

in G1 and an edge in G2 as a same one. Then, it is easy to check [4, 8] that G belongs to DP<

if G1 ∈ DP< and either G1 is a block of G or G is an edge-gluing of G1 and some other graph.

Therefore, as shown in [4], Theorem 1.2 cannot be a characterization of all the graphs in DP<

because by edge gluing any graph G in DP< with a number of 3-cycles, infinitely many graphs G′

in DP< can be obtained in which ℓG′(e) = 3 holds for all e ∈ E(G′).

1.3 New results

In this article, we will further extend Theorems 1.1 and 1.2. We first give the definition of a

family of graphs.

A graph G is called DP-good if G has a spanning tree T and a labeling e1, · · · , eq of the edges

in E(G) \ E(T ), where q = |E(G)| − |E(T )|, such that ℓG(e1) ≤ · · · ≤ ℓG(eq) and for each i ∈ [q],

ℓG(ei) is odd and E(Ci) ⊆ E(T ) ∪ {e1, · · · , ei} holds for some Ci ∈ CG(ei). Obviously, the q cycles

C1, · · · , Cq are pairwise distinct.

It is clear that any graph satisfying the condition in Theorem 1.1 is DP-good. But the graph

shown in Figure 1 is a DP-good graph which doesn’t satisfy the requirement in Theorem 1.1. The

following theorem shows that each DP-good graph belongs to DP≈.

Theorem 1.3 Every DP-good graph is in DP ∗.
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G

e3

e2

e4

e1

e7

e8

e5

e6

T and an edge labeling

Figure 1: A DP-good graph G with a spanning tree T and an edge labeling of the edges in E(G) \
E(T )

As an immediate consequence of Theorem 1.3, Corollary 1.4 below suggests that many special

classes of graphs are DP-good and therefore contained in DP ∗, such as chordal graphs, complete

multipartite graphs with at least three partite sets, and plane near-triangulations.

Corollary 1.4 Let G be a graph with vertex set {vi : i = 0, 1, 2, · · · , n}. If for each i ∈ [n], the

set N(vi) ∩ {vj : 0 ≤ j ≤ i − 1} is not empty and the subgraph of G induced by this vertex set is

connected, then G is DP-good.

On the other hand, in order to extend Theorem 1.2, we shall first generalize the definition of the

girth of an edge to the girth of an edge set. Given any subset E0 of E(G), let C′
G(E0) be the set of

the shortest cycles C in G such that |E(C)∩E0| is odd (i.e., |E(C)∩E0| is odd and |E(C) ≤ |E(C ′)|

holds for each cycle C ′ in G whenever |E(C ′)∩E0| is odd), and the girth of E0, denoted by ℓG(E0), is

defined to be the length of any cycle in C′
G(E0) if this set is non-empty, and ℓG(E0) = ∞ otherwise.

Obviously, ℓG(E0) < ∞ if and only if G contains a cycle C such that |E(C) ∩ E0| is odd, and if

E0 = {e}, then C′
G({e}) = CG(e) and ℓG({e}) = ℓG(e).

Let E∗ be a set of edges in G. Assume that each edge e in E∗ is assigned a direction −→e and
−→
E∗

is the set of directed edges −→e for all e ∈ E∗. In graph G, only edges in E∗ are assigned directions.

For any cycle C in G, we say the directed edges in
−→
E∗ are balanced on C if |E(C)∩E∗| is even and

exactly half of the edges in E(C) ∩ E∗ are oriented clockwise along C, and unbalanced otherwise.

Obviously, the directed edges of
−→
E∗ are balanced on C when E(C) ∩E∗ = ∅, and unbalanced on C

if |E(C)∩E∗| is odd. Examples of cycles on which directed edges of
−→
E∗ are balanced or unbalanced

are shown in Figure 2 (a) and (b), respectively, where E(C) ∩ E∗ = {e1, e2, e3, e4}.

We are now going to introduce the second main result in this article.

Theorem 1.5 Let G be a connected graph and E∗ be a set of edges in G. If the following conditions

are satisfied, then G belongs to DP<:
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...
...

−→e1
−→e2

−→e4
−→e3

...
...

−→e1
−→e2

−→e4
−→e3

(a) Balanced directed edges on C (b) Unbalanced directed edges on C

Figure 2: E(C) ∩ E∗ = {e1, e2, e3, e4}

(i) r0 = ℓG(E
∗) is even; and

(ii) there exists a way to assign an orientation −→e for each edge e ∈ E∗ such that the directed edges

in
−→
E∗ = {−→e : e ∈ E∗} are balanced on each cycle C of G with |E(C)| < r0.

The following Corollary 1.6 of Theorem 1.5 introduces a family of graphs in DP<, including the

graphs determined by Theorem 1.2.

Corollary 1.6 Let G be any graph and let E∗ ⊆ EG(V1, V2), where V1 and V2 are disjoint vertex

subsets of V (G) with V1 ∪ V2 6= V (G). If the following conditions are satisfied, then G ∈ DP<:

(i) r0 = ℓG(E
∗) is even; and

(ii) for each cycle C in G such that |E(C) ∩ E∗| is positive, either |E(C)| ≥ r0 or no component

of the subgraph C − (E∗ ∩ E(C)) is a (v1, v2)-path for some v1 ∈ V1 and v2 ∈ V2.

u1 v1

u2

v2

v3u3

u1 v1

u2 v2

u3 v3

(a) (b)

Figure 3: Two graphs in DP<

It is easy to verify that both the graphs in Figure 3 satisfy the conditions in Corollary 1.6 by

taking V1 = {ui : i = 1, 2, 3}, V2 = {vi : i = 1, 2, 3} and E∗ = EG(V1, V2). Note that the graph
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in Figure 3 (b) belongs to a family of graphs stated in the following corollary, which follows from

Corollary 1.6 directly.

Corollary 1.7 Let G be any graph and let E∗ ⊆ EG(V1, V2), where V1 and V2 are disjoint vertex

subsets of V (G). If ℓG(E
∗) = 4, then G ∈ DP<.

We will introduce some notations and fundamental results on an m-fold cover of a graph in

Section 2. We will then prove Theorem 1.3 and Corollary 1.4 in Section 3, and Theorem 1.5 and

Corollary 1.6 in Section 4. Finally, in Section 5, we will apply Theorem 1.5 to determine some

families of plane graphs belonging to DP<.

2 Notations and preliminary facts on an m-fold cover

In this section, we introduce some notations and preliminary facts on an m-fold cover which will

be applied in the proofs of Theorems 1.3 and 1.5.

Let G be a graph. By the definition of PDP (G,m), PDP (G,m) is actually equal to the minimum

value of PDP (G,H)’s over all those full m-fold covers H = (L,H) of G with L(u) = {(u, i) : i =

1, · · · ,m} for every u ∈ V (G). Now we assume that H = (L,H) is any full m-fold cover of G with

L(u) = {(u, i) : i = 1, · · · ,m} for every u ∈ V (G).

For any edge e = uv in E(G), let

Xe(G,H) = EH(L(u), L(v)) \ {(u, i)(v, i) : i = 1, · · · ,m}, and

Ye(G,H) = {i ∈ [m] : (u, i)(v, j) ∈ Xe(G,H)}.

Then |Xe(G,H)| = |Ye(G,H)|, and if (u, i)(v, j) ∈ Xe(G,H), j is also included in set Ye(G,H) as

(u, j)(v, s) ∈ Xe(G,H) for some s 6= j. We say an edge e in G is horizontal with respect to H

if Xe(G,H) = ∅; sloping otherwise. Denote the set of sloping edges in G with respect to H by

SG(H). For a given spanning tree T of G, it is common to further assume that each edge in T is

horizontal with respect to H because we can rename the vertices in L(u) for every vertex u ∈ V (G)

to guarantee that EH(L(u), L(v)) = {(u, i)(v, i) : i = 1, · · · ,m} holds whenever uv ∈ E(T ), during

which the structure of graph H remains unchanged.

Let S (H) (simply S ) be the set of subsets S of V (H) with |S ∩ L(v)| = 1 for each v ∈ V (G).

Clearly, |S| = |V (G)| for each S ∈ S . For each U ⊆ V (G), let S |U be the set of subsets S of V (H)

such that |S ∩L(v)| = 1 for each v ∈ U and S ∩L(v) = ∅ for each v ∈ V (G) \U . Clearly, |S| = |U |

for each S ∈ S |U , and S = S |U when U = V (G).

For any subgraph G0 of G, let HG0
be the subgraph of H with vertex set ∪u∈V (G0)L(u) and

edge set ∪uv∈E(G0)EH(L(u), L(v)). Let GH(G0) be the set of graphs HG0
[S] (i.e., the subgraph of

7



HG0
induced by S), where S ∈ S |V (G0), such that HG0

[S] ∼= G0. Note that HG0
[S] is the induced

subgraph H[S] whenever G0 is an induced subgraph of G. For each j ∈ [m], let Sj(G0) = {(v, j) :

v ∈ V (G0)} and write HG0
[Sj(G0)] as Hj[G0].

For each edge e = uv ∈ E(G), let Se be the set of S ∈ S such that the two vertices in

S ∩ (L(u) ∪ L(v)) are adjacent in H. For each A ⊆ E(G), let SA = ∩e∈ASe. Then, by the

inclusion-exclusion principle,

PDP (G,H) =
∑

A⊆E(G)

(−1)|A||SA|, (2.1)

which generalizes a well known property of the chromatic polynomial that

P (G,m) =
∑

A⊆E(G)

(−1)|A|mc(A). (2.2)

For any graph F , let B(F ) be the set of bridges (i.e., cut-edges) in F , and let B̄(F ) = E(F ) \

B(F ). Write B̄(G〈A〉) as B̄(A) for any A ⊆ E(G). The following properties hold, as proved in [4].

(i) For any A ⊆ E(G), if G1, G2, · · ·Gc(A) are the components of G〈A〉, then

|SA| =

c(A)
∏

i=1

|GH(Gi)|. (2.3)

(ii) For any connected subgraph G0 of G, we have |GH(G0)| ≤ m, where the equality holds if

B̄(G0) ∩ SG(H) = ∅ (i.e., B̄(G0) does not contain sloping edges with respect to H).

(iii) By Facts (i) and (ii), for each A ⊆ E(G), we have |SA| ≤ mc(A), where the equality holds if

B̄(A) ∩ SG(H) = ∅.

(iv) Let E (H) (or simply E ) be the set of subsets A of E(G) such that B̄(A) contains at least one

sloping edge with respect to H. Then Fact (iii) implies that

PDP (G,H)− P (G,m) =
∑

A∈E

(−1)|A|(|SA| −mc(A)). (2.4)

(v) Fact (iii) also implies that for any k ∈ [n],

∑

A∈E

c(A)=k

(−1)|A|(|SA| −mc(A)) ≥
∑

A∈E , c(A)=k
|A| is even

(|SA| −mk) (2.5)

8



and

∑

A∈E

c(A)=k

(−1)|A|(|SA| −mc(A)) ≤
∑

A∈E , c(A)=k
|A| is odd

(mk − |SA|). (2.6)

(vi) For any A ∈ E and any sloping edge e in B̄(A), let G1 be the component of G〈A〉 containing

e. Then |V (G1)| ≥ ℓG(e) and c(A) ≤ |V (G)| − ℓG(e) + 1, and |A| = ℓG(e) whenever c(A) =

|V (G)| − ℓG(e) + 1.

3 Proof of Theorem 1.3.

Now we give the proof of Theorem 1.3.

Proof of Theorem 1.3. We need only to prove that there exists an M ∈ N, such that whenever

m ≥ M , PDP (G,H) > P (G,m) holds for every full m-fold cover H = (L,H) of G with H 6∼= HG,m.

Suppose n = |V (G)|. As G is DP-good, G has a spanning tree T and an edge labeling e1, · · · , eq

of the edges in E(G) \ E(T ), such that ℓG(e1) ≤ · · · ≤ ℓG(eq) and for all i ∈ [q], ℓG(ei) is odd and

E(Ci) ⊆ E(T ) ∪ {e1, · · · , ei} for some Ci ∈ CG(ei).

Let H = (L,H) be a full m-fold cover of G with L(u) = {(u, i) : i = 1, · · · ,m} for every

u ∈ V (G) and H 6∼= HG,m. We can further assume that SG(H) 6= ∅ and all the edges in E(T ) are

horizontal with respect to H. Then, every sloping edge e in G with respect to H is of odd girth as

SG(H) ⊆ E(G) \ E(T ).

In the following, write Xe(G,H) and Ye(G,H) simply as Xe and Ye for any edge e ∈ E(G). Let

r = min{ℓG(e) : e ∈ SG(H)}, and let E0 = {ek1 , · · · , ekt} be the set of sloping edges in G with

ℓG(eki) = r, where k1 < k2 < · · · < kt. Then r is odd, r ≥ 3 and 1 ≤ t ≤ q. Let Xr = ∪t
i=1Xeki

.

Then |Xr| =
∑t

i=1 |Xeki
| ≥ 1.

Recall that the cycles C1, · · · , Cq are pairwise distinct. We first prove the following three claims.

Claim 1
t
∑

i=1
|GH(Cki)| ≤ mt−

∣

∣

∣

∣

t
⋃

i=1
Yeki

∣

∣

∣

∣

, i.e.,
t
∑

i=1
(m− |GH(Cki)|) ≥

∣

∣

∣

∣

t
⋃

i=1
Yeki

∣

∣

∣

∣

.

Proof. It suffices to prove the two facts below:

(i) |GH(Ck1)| = m− |Yek1
|; and

(ii) for any integer p ∈ [t− 1], |GH(Ckp+1
)| ≤ m− |Yekp+1

\ (∪p
i=1Yeki

)|.

Since E(Ck1) ⊆ E(T ) ∪ {e1, · · · , ek1} and ℓG(e1) ≤ · · · ≤ ℓG(ek1) = r, Ck1 contains exactly one

sloping edge ek1 . Thus for any j ∈ [m], Hj[Ck1 − {ek1}]
∼= Ck1 − {ek1}, and Hj[Ck1 ]

∼= Ck1 if and

only if j /∈ Yek1
. Hence Fact (i) holds.
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Similarly, for p ∈ [t − 1], all the edges in E(Ckp+1
) \ {ek1 , ek2 , · · · ekp+1

} are horizontal as

E(Ckp+1
) ⊆ E(T )∪{e1, e2, · · · , ekp+1

} and ℓG(e1) ≤ · · · ≤ ℓG(ekp+1
) = r. Let j ∈ Yekp+1

\(∪p
i=1Yeki

).

Then, Hj[Ckp+1
− {ekp+1

}] ∼= Ckp+1
− {ekp+1

} but Hj[Ckp+1
] 6∼= Ckp+1

. Hence Fact (ii) holds and

Claim 1 follows. ♮

Claim 2 The following inequality holds:

t
∑

i=1

Ä

mn−r+1 − |SE(Cki
)|
ä

≥
|Xr|

q
mn−r. (3.1)

Proof. Since |Ye| = |Xe| for every edge e ∈ E(G), we have

|
t
⋃

i=1

Yeki
| ≥ max

i∈[t]
|Xeki

| ≥
1

t

t
∑

i=1

|Xeki
| =

1

t
|Xr| ≥

1

q
|Xr|. (3.2)

Then, by (2.3) and Claim 1,

t
∑

i=1

(mn−r+1 − |SE(Cki
)|) =

t
∑

i=1

(mn−r+1 −mn−r|GH(Cki)|)

≥ |
t
⋃

i=1

Yeki
|mn−r

≥
|Xr|

q
mn−r. (3.3)

♮

Claim 3 The following inequality holds:

∑

A∈E

c(A)=n−r+1

(−1)|A|(|SA| −mc(A)) ≥
|Xr|

q
mn−r. (3.4)

Proof. Recall that for any A ∈ E , B̄(A) contains a sloping edge e, where ℓG(e) ≥ r. Thus, by (vi)

in Section 2, ℓG(e) = r = |A| holds whenever c(A) = n− r + 1. Therefore,

∑

A∈E

c(A)=n−r+1

(−1)|A|(|SA| −mc(A)) =
∑

A∈E , |A|=r
c(A)=n−r+1

(−1)r(|SA| −mc(A))

=
∑

A∈E , |A|=r
c(A)=n−r+1

(mc(A) − |SA|), (3.5)

where the last equality holds as r is odd.
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By (iii) in Section 2, mc(A) ≥ |SA| for any A ⊆ E(G), hence

∑

A∈E

c(A)=n−r+1

(−1)|A|(|SA| −mc(A)) ≥
t

∑

i=1

(mn−r+1 − |SE(Cki
)|)

≥
|Xr|

q
mn−r, (3.6)

where the last inequality follows from Claim 2. ♮

The rest of the proof is basically the same as in the proof of Theorem 1.1 that are given in [4].

For completeness, we restate the proofs of Claims 4-7 here with slight changes.

Claim 4 For any subgraph G0 of G, if ℓG(e) ≤ r for each sloping edge e in G0, then |GH(G0)| ≥

m− |Xr|.

Proof. Since ℓG(e) ≤ r for each sloping edge e in G0, each sloping edge in G0 belongs to E0 =

{ek1 , · · · , ekt}. Thus, for every j ∈ [m] \ (∪t
i=1Yeki

), Hj[G0] ∼= G0 holds, implying that

|GH(G0)| ≥ m−

∣

∣

∣

∣

∣

t
⋃

i=1

Yeki

∣

∣

∣

∣

∣

≥ m−
t

∑

i=1

|Yeki
| = m−

t
∑

i=1

|Xeki
| = m− |Xr|. (3.7)

Hence Claim 4 holds. ♮

Claim 5 For any A ∈ E with c(A) = n− r, we have |SA| ≥ (m− |Xr|)m
n−r−1.

Proof. Since A ∈ E , B̄(A) contains a sloping edge e with ℓG(e) ≥ r. Thus, by (vi) in Section 2, G〈A〉

has a component G0 with e ∈ E(G0) and |V (G0)| ≥ r. Moreover, as c(A) = n− r, |V (G0)| ≤ r + 1

holds, and for any other component G′ of G〈A〉, G′ is either an isolated vertex or an edge, and thus

|GH(G′)| = m. Hence by (2.3), it suffices to prove that |GH(G0)| ≥ m− |Xr|.

If G0 is 2-connected, then for every edge e ∈ E(G0), ℓG(e) ≤ |V (G0)| ≤ r + 1. Moreover, for

each sloping edge e in G0, ℓG(e) ≤ r as r+ 1 is even and ℓG(e) is odd. Hence |GH(G0)| ≥ m− |Xr|

holds by Claim 4.

Otherwise, G0 has exaxctly two blocks as G0 contains a cycle C with |V (C)| ≥ r. Then, it is

clear that the two blocks of G0 are G0[V (C)] and an edge f , where |V (C)| = r and |GH(G0[f ])| = m.

As G0[V (C)] is 2-connected, for every edge e ∈ E(G0[V (C)]), ℓG(e) ≤ |V (C)| ≤ r holds, and thus

|GH(G0[V (C)])| ≥ m− |Xr| follows from Claim 4. Consequently, |GH(G0)| ≥ m− |Xr| and Claim 5

holds. ♮

For any s ∈ N with s ≤ n − r, let φs be the number of subsets A ⊆ E(G) such that c(A) = s,

G〈A〉 is not a forest and |A| is even.
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Claim 6 The following inequality holds:

∑

A∈E

c(A)=n−r

(−1)|A|(|SA| −mc(A)) ≥ −φn−r|Xr|m
n−r−1. (3.8)

Proof. By (2.5) and Claim 5,

∑

A∈E

c(A)=n−r

(−1)|A|(|SA| −mc(A)) ≥
∑

A∈E , c(A)=n−r
|A| is even

(|SA| −mn−r)

≥
∑

A∈E , c(A)=n−r
|A| is even

(−|Xr|m
n−r−1)

≥ −φn−r|Xr|m
n−r−1. (3.9)

♮

Claim 7 For each s ∈ [n− r − 1], we have

∑

A∈E

c(A)=s

(−1)|A|(|SA| −mc(A)) ≥ −φsm
s. (3.10)

Proof. By (2.5),

∑

A∈E

c(A)=s

(−1)|A|(|SA| −mc(A)) ≥
∑

A∈E , c(A)=s
|A| is even

(|SA| −ms)

≥
∑

A∈E , c(A)=s
|A| is even

(−ms)

≥ −φsm
s. (3.11)

♮

Now we are going to prove the main result by recalling (2.4) that

PDP (G,H) − P (G,m) =
∑

A∈E

(−1)|A|(|SA| −mc(A)).

By (vi) in Section 2 and Claims 3, 6, 7, we have

PDP (G,H)− P (G,m) =

n−r+1
∑

s=1

∑

A∈E

c(A)=s

(−1)|A|(|SA| −mc(A))
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≥
|Xr|

q
mn−r − φn−r|Xr|m

n−r−1 −
n−r−1
∑

s=1

φsm
s

≥
1

q
mn−r − φn−rm

n−r−1 −
n−r−1
∑

s=1

φsm
s, (3.12)

where the last inequality holds when m ≥ qφn−r. As q, φ1, · · · , φn−r are independent of the value of

m, there exists Mr ∈ N, such that PDP (G,H) − P (G,m) > 0 for all m ≥ Mr. Let M = max{Mr :

3 ≤ r ≤ n, r is odd}. Then the result is proven. ✷

The proof of Corollary 1.4 is given below.

Proof of Corollary 1.4. For i = 0, 1, · · · , n, let Vi = {vj : 0 ≤ j ≤ i} and Gi = G[Vi]. Obviously,

Gn = G.

By Theorem 1.3, it suffices to show that for any i ≥ 1, Gi has a spanning tree Ti and the edges

in E(Gi) \ E(Ti) can be labeled as e1, e2, · · · , esi such that for all j = 1, 2, · · · , si, |V (Cj)| = 3 and

E(Cj) ⊆ E(Ti) ∪ {et : 1 ≤ t ≤ j} hold for some Cj ∈ CG(ej).

The above conclusion is obvious for i = 1, as G1
∼= K2 by the given conditions. Now assume

that the above conclusion holds for 1 ≤ i < n.

Since G[Vi∩N(vi+1)] is connected, the vertices in Vi∩N(vi+1) can be labeled as vq0 , vq1 , · · · , vql ,

where l = |N(vi+1) ∩ Vi| − 1, such that for any 1 ≤ j ≤ l, N(vqj) ∩ {vq0 , · · · , vqj−1
} 6= ∅. Now, let

Ti+1 be the spanning tree of Gi+1 obtained from Ti by adding edge vi+1vq0 . Let si+1 = si + l, and

for any 1 ≤ j ≤ l, let esi+j denote the edge vi+1vqj . Then, it is obvious that for any 1 ≤ j ≤ l, esi+j

is contained in a cycle Csi+j of length 3 such that E(Csi+j) ⊆ E(Ti+1) ∪ {et : 1 ≤ t ≤ si + j}.

Hence the above conclusion holds for i+ 1. Therefore Gn is DP-good. ✷

By Corollary 1.4, chordal graphs, complete k-partite graphs, where k ≥ 3, and plane near-

triangulations are DP-good.

4 Proof of Theorem 1.5

We shall prove Theorem 1.5 in this section.

Proof of Theorem 1.5. Assume |V (G)| = n and E∗ = {e1, · · · , ek}, where k ≥ 1.

If k = 1, then ℓG(e1) is even, and the result follows from Theorem 1.2 directly.

In the following, we assume that k ≥ 2. For each i ∈ [k], let ei be the edge uivi for ui, vi ∈ V (G),

and let −→ei be the directed edge (ui, vi) with tail ui. By condition (ii) in Theorem 1.5, the directed

edges in
−→
E∗ = {−→ei : i ∈ [k]} are balanced on every cycle C in G with E(C) < r0.

For any positive integer m, let H = (L,H) be the m-fold cover of G defined below:
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• L(x) = {(x, i) : i = 1, · · · ,m} for all x ∈ V (G);

• EH(L(x), L(y)) = {(x, i)(y, i) : i = 1, · · · ,m} for every edge xy ∈ E(G) \ E∗; and

• EH(L(ui), L(vi)) = {(ui, q)(vi, q + 1) : q = 1, · · · ,m − 1} ∪ {(ui,m)(vi, 1)} for every edge

ei = uivi ∈ E∗.

Clearly, SG(H) = E∗ (i.e., only edges in E∗ are sloping in G with respect to H).

An induced cycle of G is a cycle in G which is induced by some subset of V (G). We first analyze

the structure of connected subgraphs G0 of G with |V (G0)| ≤ r0 by several claims.

Claim 1 Let C be a cycle in G. If |V (C)| ≤ r0 and |E(C)∩E∗| is odd, then C is an induced cycle

of G with |V (C)| = r0.

Proof. By Condition (i) in Theorem 1.5, |V (C)| = r0 trivially holds.

Suppose that there exists e ∈ E(G) \ E(C) such that e joins two vertices in V (C). Then, G

contains a cycle C ′ such that V (C ′) ⊆ V (C), |V (C ′)| < |V (C)| = r0 and |E(C ′) ∩ E∗| is odd, a

contradiction to the definition of r0.

Hence G[V (C)] = C and Claim 1 holds. ♮

Claim 2 Let G0 = (V0, E0) be a 2-connected subgraph of G. If |V0| ≤ r0 and |E∗ ∩ E0| = 1, then

|V0| = r0 and G0 is an induced cycle of G.

Proof. Since G0 is 2-connected, G0 contains a cycle C with |E(C) ∩ E∗| = 1, where |V (C)| ≤

|V0| ≤ r0. By Claim 1, C is an induced cycle of G with |V (C)| = r0, which implies that |V0| = r0,

V0 = V (C) and G0 is C. Hence Claim 2 holds. ♮

Claim 3 Let G0 = (V0, E0) be a connected subgraph of G with |V0| ≤ r0. If |E∗ ∩ E0| ≥ 2, then

G0 − (E∗ ∩ E0) is disconnected.

Proof. Suppose that G0 − (E∗ ∩ E0) is connected. Let e′, e′′ ∈ E∗ ∩ E0, and let P be a path in

G0 − (E∗ ∩E0) connecting the two end-vertices of e′. Consequently, the edge set E(P )∪{e′} forms

a cycle C in G0 with |V (C)| ≤ r0 and E(C) ∩ E∗ = {e′}. By Claim 1, C is an induced cycle with

|V (C)| = r0, implying that G0 is C, a contradiction to the fact that e′′ ∈ E0. Hence Claim 3 holds.

♮

Claim 4 Let G0 = (V0, E0) be a connected subgraph of G with |V0| ≤ r0. If |E∗ ∩E0| ≥ 2, then no

edge e in E∗ ∩E0 joins two vertices in any component G′ of G0 − (E∗ ∩ E0) (i.e., each component

G′ of G0 − (E∗ ∩ E0) is an induced subgraph of G0).

14



Proof. Assume that G′ is a component of G0 − (E∗ ∩ E0) and e is an edge in E∗ ∩ E0 which joins

two vertices in G′.

Then, G′ + e has a block, say G1, which contains e. By Claim 3, |V (G′)| < |V (G0)|. Thus,

|V (G1)| ≤ |V (G′)| < |V0| ≤ r0. But, as |E(G1) ∩ E∗| = 1, Claim 2 implies that |V (G1)| = r0, a

contradiction. ♮

Claim 5 Let G0 = (V0, E0) be a connected subgraph of G with |V0| ≤ r0. Assume that {U1, U2} is

a partition of V0 such that E0 ∩ E∗ = EG0
(U1, U2) and G0[Ui] is connected for both i = 1, 2. If G0

is not a cycle of length r0, then for all the edges ei1 , · · · , eit in EG0
(U1, U2), the vertices ui1 , · · · , uit

must be in the same set Us for some s ∈ {1, 2}.

ui1 vi1

uit vit

−→ei1

−→eit

...

U1 U2

Figure 4: Graph G0 with EG0
(U1, U2) = {ei1 , · · · , eit} and ui1 , · · · , uit ∈ U1

Proof. Let E′ = EG0
(U1, U2). If |E

′| = 1, then the result trivially holds.

In the following, assume that |E′| ≥ 2. We need only to prove the two facts below on any two

edges eip , eiq in E′:

(i) if there is a cycle C in G0 shorter than r0 with |E(C) ∩E∗| = {eip , eiq}, then uip and uiq are

contained in the same set Us for some s ∈ {1, 2};

(ii) otherwise, there exists eij ∈ E′ \ {eip , eiq}, such that there is a cycle C1 in G0 shorter than r0

with E(C1)∩E∗ = {eip , eij} and a cycle C2 in G0 shorter than r0 with E(C2)∩E∗ = {eij , eiq}.

Since G0[Ui] is connected for both i = 1, 2, G0 has a cycle C with |E(C) ∩ E∗| = {eip , eiq}. If

|V (C)| < r0, Condition (ii) in Theorem 1.5 indicates that −→eip = (uip , vip) and −→eiq = (uiq , viq ) are

balanced on C, implying that uip and uiq must be in the same set Us for some s ∈ {1, 2}. Fact (i)

holds.

Now suppose that G0 does not have a cycle C shorter than r0 with |E(C) ∩ E∗| = {eip , eiq}.

Thus, |V (C)| = r0, implying that V (C) = V (G0). As G0 is not a cycle of length r0, there is an

edge e ∈ E0 \ E(C). Obviously, e /∈ E(G0[U1]) ∪ E(G0[U2]). Otherwise, G0 has a cycle C ′ shorter

than r0 with |E(C ′) ∩ E∗| = {eip , eiq}, a contradiction. Thus, e ∈ E′ = EG0
(U1, U2). Assume that
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e = eij ∈ E′\{eip , eiq}. Then, there are cycles C1 and C2 in C+e such that |E(C1)∩E∗| = {eip , eij}

and |E(C2) ∩ E∗| = {eij , eiq}. Note that both C1 and C2 are shorter than r0. Fact (ii) holds and

Claim 5 follows. ♮

Claim 6 Let G0 = (V0, E0) be a connected subgraph of G with |V0| ≤ r0 and |E0 ∩ E∗| ≥ 2. If G0

is not a cycle of length r0, then |GH(G0)| = m.

Proof. By Claim 3, we can assume that G0 − (E0 ∩ E∗) has s (≥ 2) components G1, G2, · · · , Gs,

where Gi = (Vi, Ei) for i = 1, 2, · · · , s. Then, Claim 4 implies that each Gi is an induced subgraph

of G0, i.e., E0 ∩ E∗ =
⋃

1≤i<j≤sEG0
(Vi, Vj).

Let G′ be the graph with vertex set V (G′) = {g1, · · · , gs} in which gigj is an edge if and only

if EG0
(Vi, Vj) 6= ∅. Let

−→
G′ be the digraph obtained from G′ by converting each edge gigj in G′ into

a directed edge whose tail is gi if and only if uq ∈ Vi for some edge eq = uqvq in EG0
(Vi, Vj). Note

that the orientation of directed edges in
−→
G′ is well-defined due to the result in Claim 5. An example

is shown in Figure 5 (b).

g1 g2 g3

g4 g5 g6

G1 G2 G3

G4 G5 G6

(a) G0 (b)
−→
G′

Figure 5: An example of
→
G′

As G0 is connected, G′ is also connected. Let T be a spanning tree of G′ with as many leaves

as possible. Thus, T has at least ∆(G′) leaves, where ∆(G′) is the maximum degree of G′. For

each vertex gi in G′, there is a unique path, denoted by Pi, in T from g1 to gi. Denote by ϕ1(i)

the number of those edges in Pi whose corresponding directed edges in
−→
G′ are along the direction

of path Pi from g1 to gi, and denote by ϕ2(i) the number of the remaining edges in Pi. Thus,

ϕ1(i) + ϕ2(i) = |E(Pi)|.

Now, let ϕ(i) = ϕ1(i) − ϕ2(i) for each i ∈ [s]. For the digraph
−→
G′ in Figure 5 (b), if T is the

spanning tree of G′ with its edge set {g1g4, g2g4, g3g4, g2g5, g2g6}, then

ϕ(1) = 0, ϕ(2) = ϕ(3) = 2, ϕ(4) = ϕ(6) = 1, ϕ(5) = 3.

as given in Figure 6.
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g1(0) g2(2) g3(2)

g4(1) g5(3) g6(1)

Figure 6: With a spanning tree T consisting of dense edges, the value of ϕ(i) for each i = 1, 2, · · · , 6
is shown beside its veterx gi

We will complete the proof of this claim by showing the following subclaims.

Subclaim 6.1. For any edge gigj ∈ E(T ), ϕ(j) = ϕ(i) + 1 whenever (gi, gj) is the corresponding

directed edge of gigj in
−→
G′.

Assume that (gi, gj) is the corresponding directed edge of gigj in
−→
G′. As gigj ∈ E(T ), either

gi is on the path Pj, or gj is on the path Pi. If gi is on the path Pj , then ϕ1(j) = ϕ1(i) + 1 and

ϕ2(j) = ϕ2(i). If gj is on the path Pi, then ϕ1(j) = ϕ1(i) and ϕ2(j) = ϕ2(i)−1. Thus, Subclaim 6.1

follows in both cases.

For every q ∈ [m], let Sq be the set in S |V0
defined as follows:

Sq =
s
⋃

i=1

{(v, (q + ϕ(i))(mod m)) : v ∈ Vi} ,

where (v, 0) = (v,m) for all v ∈ V0. Obviously, {S1, · · · , Sm} is a partition of V (HG0
).

Subclaim 6.2. If ϕ(j) = ϕ(i)+ 1 holds for each directed edge (gi, gj) in
−→
G′, then HG0

[Sq] ∼= G0 for

all q ∈ [m], and hence Claim 6 holds.

Let φ be the bijection from V0 to Sq defined below: for any v ∈ V0 = ∪1≤i≤sVi,

φ(v) = (v, (q + ϕ(i))(mod m)), if v ∈ Vi.

To show that HG0
[Sq] ∼= G0, it suffices to prove that for each edge uv ∈ E(G0), φ(u) and φ(v) are

adjacent in H.

For any uv ∈ Ei, where 1 ≤ i ≤ s, we have uv ∈ E0 \ E
∗, implying that (u, (q + ϕ(i))(mod m))

and (v, (q + ϕ(i))(mod m)) are adjacent in H by the definition of H. Now take any edge uv ∈

EG0
(Vi, Vj) ⊆ E∗, where 1 ≤ i, j ≤ s. Without loss of generality, assume that (gi, gj) is an directed

edge in
−→
G′. Then ϕ(j) = ϕ(i) + 1 by the given condition in the subclaim. By the definition of H,

(u, (q + ϕ(i))(mod m)) and (v, (q + ϕ(j))(mod m)) are adjacent in H.

Hence HG0
[Sq] ∼= G0 for each q ∈ [m], and the subclaim holds.

Subclaim 6.3. ϕ(j) = ϕ(i) + 1 holds for each directed edge (gi, gj) in
−→
G′.
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Suppose that ϕ(j) 6= ϕ(i) + 1 for some directed edge (gi, gj) in
−→
G′. By Subclaim 6.1, gigj ∈

E(G′) \E(T ). Let C ′ be the fundamental cycle of edge gigj in G′ with respect to spanning tree T .

Assume that gj1 , gj2 , · · · , gjt are the consecutive vertices on C ′, where t ≥ 3, j1 = i and jt = j.

As Gi is connected for all i = 1, 2, · · · , s, we can choose a shortest cycle C in G0 such that

E(C) ∩ E∗ ⊆
t
⋃

q=1

EG0
(Vjq , Vjq+1

), |E(C) ∩ EG0
(Vjq , Vjq+1

)| = 1, ∀q ∈ [t],

where Vjt+1
= Vj1 . Thus, |E(C) ∩ E∗| = t. Clearly, t is an even integer; otherwise, Claim 1 implies

that G0 is a cycle of length r0, a contradiction.

Suppose that |V (C)| < r0. By Condition (ii) in Theorem 1.5, the directed edges of
−→
E∗ are

balanced on C, implying that the directed edges in
−→
G′ are balanced on C ′. By counting the number

of edges in C ′ which are oriented clockwise and counterclockwise along C separately, we have

ϕ1(j1) + ϕ2(jt) + 1 = ϕ1(jt) + ϕ2(j1), implying that ϕ(j1) + 1 = ϕ(jt) (i.e., ϕ(i) + 1 = ϕ(j)), a

contradiction.

Thus, |V (C)| = r0, and so V (C) = V0. Therefore, t = s and T is a path in G′ with |V (T )| =

|V (G′)| = s. Moreover, due to the choice of C, for each q ∈ [s], Eq ⊆ E(C) and |EG0
(Vjq , Vjq+1

)| = 1,

implying that EG0
(Vjq , Vjq+1

) ⊆ E(C).

If G′ is a cycle, then G′ is C ′. The above conclusion implies that E0 = E(C), and thus G0 is a

cycle of length r0, a contradiction. Thus, G′ is not a cycle, implying that G′ has a spanning tree

with at least three leaves, a contradiction to the choice of T .

Hence Subclaim 6.3 holds.

By Subclaims 6.2 and 6.3, |GH(G0)| = m and Claim 6 holds. ♮

Claim 7 For any A ∈ E , if either c(A) > n − r0 + 1 or c(A) = n − r0 + 1 and |A| 6= r0, then

|SA| = mc(A) holds.

Proof. As A ∈ E , E∗ ∩ B̄(A) 6= ∅. Then, by (i) and (ii) in Section 2, it suffices to prove that for

every block G0 = (V0, E0) of G〈A〉 with E0 ∩ E∗ 6= ∅, |GH(G0)| = m holds.

Suppose G0 = (V0, E0) is a block of G〈A〉 with E0 ∩ E∗ 6= ∅ and |GH(G0)| < m. As c(A) ≥

n−r0+1, |V0| ≤ r0. Then by Claims 2 and 6, |V0| = |E0| = r0, implying that either c(A) < n−r0+1

or c(A) = n− r0 + 1 and |A| = r0, a contradiction. Hence Claim 7 holds. ♮

Claim 8 If m > k, then GH(C) = ∅ for any cycle C in G such that |E(C) ∩E∗| is odd.

Proof. Assume that |E(C) ∩ E∗| = 2s+ 1 for some integer s ≥ 0 and z1, z2, · · · , zq are consecutive

vertices in C, where q ≥ 3. Suppose that GH(C) 6= ∅. Then, there exists a cycle C ′ in H with

consecutive vertices (z1, h1), (z2, h2), · · · , (zq, hq). By the definition of H = (L,H), hi+1 − hi 6= 0 if
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and only if zizi+1 ∈ E∗, and hi+1 −hi ∈ {0, 1,−1,m− 1, 1−m} for all i ∈ [q], where hq+1 = h1 and

zq+1 = z1. Thus, hi+1 − hi 6= 0 holds for exactly 2s+ 1 integers i’s in [q].

Assume that there are exactly t integers i’s in [q] such that hi+1 − hi ∈ {m− 1, 1 −m}. Then,

there are exactly (2s + 1− t) integers i’s in [q] such that hi+1 − hi ∈ {1,−1}. It follows that

0 =

q
∑

i=1

(hi+1 − hi) = t′(m− 1) + s′ × 1, (4.1)

where t′ and s′ are some integers with |t′| ≤ t and |s′| ≤ 2s + 1 − t such that both t − t′ and

(2s+ 1− t)− s′ are even.

Suppose that t′ 6= 0. Without loss of generality, assume that t′ ≥ 1. Then s′ ≥ −(2s+ 1− 1) =

−2s, and (4.1) implies that

0 = t′(m− 1) + s′ ≥ (m− 1)− 2s ≥ (m− 1)− (k − 1) ≥ m− k > 0, (4.2)

a contradiction. Hence t′ = 0, implying that t is even. As s′ − (2s + 1− t) is even, by (4.1),

0 = s′ = (s′ − (2s+ 1− t)) + (2s− t+ 1) ≡ 1 (mod 2), (4.3)

a contradiction. Thus, Claim 8 holds. ♮

Claim 9 The following inequality holds when m > k:

∑

A∈E

c(A)=n−r0+1

(−1)|A|(|SA| −mc(A)) ≤ −mn−r0+1. (4.4)

Proof. Let C0 be any cycle in C′
G(E

∗). By Claim 8, |SE(C0)| = |GH(C0)| = 0 holds.

Obviously, E(C0) is a member in E with |E(C0)| = r0 and c(E(C0)) = n− r0 +1. Then, due to

Claim 7, the fact that r0 is even, and (iii) in Section 2, we have

∑

A∈E

c(A)=n−r0+1

(−1)|A|(|SA| −mc(A)) =
∑

A∈E , |A|=r0
c(A)=n−r0+1

(−1)r0(|SA| −mc(A))

=
∑

A∈E , |A|=r0
c(A)=n−r0+1

(|SA| −mc(A))

≤ |SE(C0)| −mn−r0+1

= −mn−r0+1. (4.5)

♮
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For any s ∈ N with s ≤ n− r0, let φs be the number of subsets A ⊆ E(G) such that c(A) = s,

G〈A〉 is not a forest and |A| is odd.

Claim 10 For each s ∈ [n− r0], the following inequality holds:

∑

A∈E

c(A)=s

(−1)|A|(|SA| −mc(A)) ≤ φsm
s. (4.6)

Proof. By (2.6),

∑

A∈E

c(A)=s

(−1)|A|(|SA| −mc(A)) ≤
∑

A∈E , c(A)=s
|A| is odd

(ms − |SA|)

≤
∑

A∈E , c(A)=s
|A| is odd

ms

≤ φsm
s. (4.7)

♮

Now, by (2.4) and Claims 7, 9 and 10, we have

PDP (G,H) − P (G,m) =

n−r0+1
∑

s=1

∑

A∈E

c(A)=s

(−1)|A|(|SA| −ms)

≤ −mn−r0+1 +

n−r0
∑

s=1

φsm
s, (4.8)

where the inequality holds when m > k. As k, φ1, · · · , φn−r0 are independent of the value of m,

there exists an M ∈ N, such that PDP (G,H) − P (G,m) < 0 for all m ≥ M . Hence the result is

proven. ✷

We shall conclude this section by proving Corollary 1.6.

Proof of Corollary 1.6: Let E∗ = {e1, e2, · · · , ek} ⊆ EG(V1, V2), where ei = uivi with ui ∈ V1 and

vi ∈ V2 for all i ∈ [k]. For each i ∈ [k], let −→ei be the directed edge (ui, vi), and let
−→
E∗ = {−→ei : i ∈ [k]}.

By Theorem 1.5, it suffices to verify that
−→
E∗ is balanced on every cycle C of G with |E(C)| < r0.

Let C be any cycle of G such that |E(C)| < r0 and |E(C)∩E∗| is positive. By the definition of

r0, |E(C) ∩ E∗| = 2r for some positive integer r, where 2r ≤ k. Without loss of generality, assume

that E(C) ∩ E∗ = {ei : i ∈ [2r]}.

Let P be any minimal path of C which contains exactly two edges in E(C)∩E∗, say ei and ej .

Obviously, by the minimality of P , ei and ej must be the two edges incident with two end-vertices
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of P . Then, the consecutive vertices on P cannot appear in any one of the following orders:

ui, vi, · · · , uj , vj or vi, ui, · · · , vj , uj .

Otherwise, some component of C− (E(C)∩E∗) is either a (vi, uj)-path or a (ui, vj)-path in G−E∗,

contradicting the given condition in the corollary. Thus, the consecutive vertices on P must appear

in one of the following orders:

ui, vi, · · · , vj , uj or vi, ui, · · · , uj , vj .

Since |E(C)∩E∗| = 2r, by the definition of directed edges in
−→
E∗, the above conclusion implies that

the directed edges of
−→
E∗ are balanced on C.

The corollary then follows from Theorem 1.5. ✷

5 Study on plane graphs

By Corollary 1.4, every plane near-triangulation is DP-good and thus belongs to DP ∗. In the

following, we consider those plane graphs G in which at least two faces are not bounded by 3-cycles.

We will first show that such a plane graph G may belong to DP< if some face of G is bounded by

a 4-cycle.

Corollary 5.1 Let G be any 2-connected plane graph in which each 3-cycle is the boundary of some

face of G. If at least two faces of G are not bounded by 3-cycles and one of them is bounded by a

4-cycle, then G ∈ DP<.

Proof. We can choose a shortest sequence of faces F0, F1, · · · , Ft in G, where t ≥ 1, F0 is bounded

by a 4-cycle and Ft is bounded by more than 3 edges, such that Fi is bounded by a 3-cycle for each

i ∈ [t− 1], and faces Fi−1 and Fi share an edge ei on their boundaries for each i ∈ [t]. An example

of the subgraph consisting of vertices and edges on boundaries of faces F0, F1, · · · , Ft is shown in

Figure 7, where t = 8.

If t = 1, then ℓG(e1) = 4 and thus G ∈ DP< by Theorem 1.2. Now assume that t ≥ 2.

As F1, F2, · · · , Ft−1 are all bounded by 3-cycles, ei and ei+1 have a common end-vertex for each

i ∈ [t− 1]. Thus, ei can be written as ei = uivi for all i ∈ [t] such that either ui = ui+1 (i.e., ui and

ui+1 are the same vertex) or vi = vi+1 for all i ∈ [t−1]. Let V1 = {ui : i ∈ [t]} and V2 = {vi : i ∈ [t]}.

Then E∗ := {ei : i ∈ [t]} ⊆ EG(V1, V2).

As F0 is bounded by a 4-cycle, G has a 4-cycle C with |E(C)∩E∗| = 1. But, as each 3-cycle in

G must be the boundary of some face of G, there is no 3-cycle C in G with |E(C)∩E∗| = 1. As the

dual edges of the edges in E∗ actually form a shortest path connecting vertices F ∗
0 and F ∗

t in the
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Figure 7: The graph consisting of vertices and edges on the boundaries of faces F0, F1, · · · , F8

dual plane graph G∗ of G, there is no 3-cycle C in G with |E(C)∩E∗| = 3. Therefore, ℓG(E
∗) = 4.

Thus, by Corollary 1.7, G ∈ DP<, and the result holds. ✷

It is not difficult to generalize Corollary 5.1 as stated below.

Corollary 5.2 Let G be any 2-connected plane graph. If F0, F1, · · · , Ft are faces in G, where t ≥ 1,

which satisfy the following conditions, then G ∈ DP<:

(i) only F0 and Ft are not bounded by 3-cycles, F0 is bounded by an even cycle Cr and Ft is

bounded by a cycle not shorter than r;

(ii) for each i ∈ [t], faces Fi−1 and Fi share an edge ei on their boundaries; and

(iii) for E∗ = {ei : i ∈ [t]}, if C is a cycle in G with E(C) ∩ E∗ 6= ∅, then |E(C)| ≥ r holds

whenever either F0 or Ft is within cycle C.

By Corollarys 1.6 and 5.1, it is interesting to notice that quite many graphs in DP< have their

structures with a doughnut shape, as shown in Figure 8, where E∗ ⊆ EG(V1, V2) for two disjoint

vertex sets V1 and V2, and C is a shortest cycle in G such that |E(C) ∩ E∗| is odd and |E(C)| is

even.

However, for some other plane graphs which also look like doughnuts, we still don’t know whether

they belong to DP≈ or DP<. For example, for a 2-connected plane graph G which is not a near-

triangulation, if ℓG(e) = 3 for all e ∈ E(G), and those faces in G not bounded by 3-cycles have

respectively q1, q2, · · · , qt edges on their boundaries, where 4 ≤ q1 ≤ q2 ≤ · · · ≤ qt and qj is even

whenever qi < qj and qi is even, it is still unknown if G belongs to DP≈ or DP<. For the particular

case that qi is odd for all i ∈ [t− 1], we guess G belongs to DP≈.

References

[1] G.D. Birkhoff, A determinant formula for the number of ways of coloring a map, Annal. Math.

14 (1912), 42–46.

22



C

V1 V2

.

.

.
.
.
.

Figure 8: E∗ ⊆ EG(V1, V2) for V1, V2 ⊆ V (G) and C ∈ C′
G(E

∗)

[2] F.M. Dong and K.M. Koh, “Foundations of the chromatic polynomial,” in the Handbook on the

Tutte Polynomial and Related Topics, Jo Ellis-Monaghan and Iain Moffatt (ed.), pp 232–266,

CRC press, 2022.

[3] F.M. Dong, K.M. Koh and K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs,

World Scientific, Singapore, 2005.

[4] F.M. Dong and Y. Yang, DP color functions versus chromatic polynomials, Advances in Applied

Mathematics 134 (2022), article 102301.

[5] Q. Donner, On the number of list-colorings, J. Graph Theory 16 (1992) 239–245.
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