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Local Orthogonality Dimension

Inon Attias* Ishay Haviv†

Abstract

An orthogonal representation of a graph G over a field F is an assignment of a vector

uv ∈ Ft to every vertex v of G, such that 〈uv, uv〉 6= 0 for every vertex v and 〈uv, uv′〉 = 0

whenever v and v′ are adjacent in G. The locality of the orthogonal representation is the largest

dimension of a subspace spanned by the vectors associated with a closed neighborhood in the

graph. We introduce a novel graph parameter, called the local orthogonality dimension, defined

for a given graph G and a given field F, as the smallest possible locality of an orthogonal rep-

resentation of G over F. This is a local variant of the well-studied orthogonality dimension of

graphs, introduced by Lovász (Trans. Inf. Theory, 1978), analogously to the local variant of the

chromatic number introduced by Erdös et al. (Discret. Math., 1986).

We investigate the usefulness of topological methods for proving lower bounds on the lo-

cal orthogonality dimension. Such methods are known to imply tight lower bounds on the

chromatic number of several graph families of interest, such as Kneser graphs and Schrijver

graphs. We prove that graphs for which topological methods imply a lower bound of t on

their chromatic number have local orthogonality dimension at least ⌈t/2⌉+ 1 over every field,

strengthening a result of Simonyi and Tardos on the local chromatic number (Combinator-

ica, 2006). We show that for certain graphs this lower bound is tight, whereas for others, the

local orthogonality dimension over the reals is equal to the chromatic number. More generally,

we prove that for every complement of a line graph, the local orthogonality dimension over R

coincides with the chromatic number. This strengthens a recent result by Daneshpajouh, Meu-

nier, and Mizrahi, who proved that the local and standard chromatic numbers of these graphs

are equal (J. Graph Theory, 2021). As another extension of their result, we prove that the lo-

cal and standard chromatic numbers are equal for some additional graphs, from the family of

Kneser graphs. We also study the computational aspects of the local orthogonality dimension

and show that for every integer k ≥ 3 and a field F, it is NP-hard to decide whether the local

orthogonality dimension of an input graph over F is at most k. We finally present an applica-

tion of the local orthogonality dimension to the index coding problem from information theory,

extending a result of Shanmugam, Dimakis, and Langberg (ISIT, 2013).
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in part by the Israel Science Foundation (grant No. 1218/20).
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1 Introduction

In this work, we introduce a novel graph parameter called the local orthogonality dimension. We

investigate it from combinatorial and computational perspectives and relate it to the index coding

problem from information theory. We start with an overview on several related graph parameters

and then present our contribution.

Chromatic number & local chromatic number. Graph coloring is one of the most fundamental

and popular topics in graph theory. A proper coloring of a (simple undirected) graph G is an

assignment of a color to each vertex such that every two adjacent vertices receive distinct colors.

The chromatic number of G, denoted by χ(G), is the minimum number of colors needed for a

proper coloring of G. A variant of the chromatic number, known as the local chromatic number,

was introduced in 1986 by Erdös, Füredi, Hajnal, Komjáth, Rödl, and Seress [9]. In contrast to

the standard chromatic number, here the objective is not to minimize the total number of colors

of a proper coloring, but the number of colors locally viewed by the vertices. More precisely, the

locality of a proper coloring of a graph G is the maximum number of colors that appear in a closed

neighborhood of a vertex of G (where a closed neighborhood of a vertex consists of the vertex

itself and its neighbors). The local chromatic number of G, denoted by χl(G), is defined as the

smallest possible locality of a proper coloring of G. Every proper coloring of a graph G with χ(G)

colors obviously has locality at most χ(G), hence χl(G) ≤ χ(G) for every graph G. It was shown

in [9] that the gap between the two quantities can be arbitrarily large, even for graphs with local

chromatic number 3. From a computational point of view, for every k ≥ 3, it is NP-hard to decide

whether an input graph G satisfies χl(G) ≤ k [22], and strong hardness of approximation results

are known to follow from those of the standard chromatic number.

In 1978, Lovász [17] developed an exciting approach for proving lower bounds on the chro-

matic number of graphs relying on the Borsuk-Ulam theorem from algebraic topology [6]. The

approach was applied in [17] to prove a conjecture of Kneser [15], saying that for all integers

n ≥ 2k, it holds that χ(K(n, k)) = n − 2k + 2, where K(n, k) is the Kneser graph defined as follows.

Its vertices are all the k-subsets of [n] = {1, 2, . . . , n}, and two such sets are adjacent in the graph

if they are disjoint. The result of [17] was strengthened by Schrijver [24], who proved that the

subgraph of K(n, k) induced by the k-subsets of [n] that do not include two consecutive integers

modulo n has the same chromatic number. This subgraph is known as the Schrijver graph and

is denoted by S(n, k). The topological approach of [17] was further generalized to obtain lower

bounds on the chromatic number of general graphs (see, e.g., [21, 20]). We say that a graph G is

topologically t-chromatic if a certain topological argument, specified later, implies that χ(G) ≥ t.

This terminology, borrowed from Simonyi and Tardos [29], allows us to describe statements in

their full generality, and yet, its precise definition is not essential throughout this introduction,

so it is deferred to Section 2 (see Remark 2.1). The reader is encouraged to think of topologically

t-chromatic graphs as the graphs K(n, k) and S(n, k) with t = n − 2k + 2. Other known families of

topologically t-chromatic graphs G satisfying χ(G) = t are Borsuk graphs, generalized Mycielski

graphs, and rational complete graphs. For additional examples, see, e.g., [30, Section 3.3].

In a line of works initiated by Simonyi and Tardos [29], topological methods were also em-

ployed to prove lower bounds on the local chromatic number. A result of Simonyi, Tardif, and

Zsbán [28], extending a previous result of [29], asserts the following (see Remark 2.1).
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Theorem 1.1 ([29, 28]). For every topologically t-chromatic graph G with at least one edge,

χl(G) ≥ ⌈t/2⌉+ 1.

For topologically t-chromatic graphs G with χ(G) = t, such as the graphs K(n, k) and S(n, k)

with t = n − 2k + 2, Theorem 1.1 implies that χl(G) lies in the interval [⌈t/2⌉ + 1, t]. Interest-

ingly, it turns out that both the lower and upper bounds can be tight. For example, it was shown

in [29, Section 4.2] that for Schrijver graphs S(n, k) with an odd t = n − 2k + 2 > 2 satisfying

n ≥ 4t2 − 7t, the local chromatic number is ⌈t/2⌉+ 1 (see [29, Remark 4] and [31] for such state-

ments with relaxed conditions). Another example for graphs that attain the lower bound, given

in [29, Section 4.3], is from the family of generalized Mycielski graphs. On the other hand, for the

Schrijver graphs S(n, 2), it was shown in [29, Section 4.2] that the local chromatic number is equal

to the chromatic number, that is, χl(S(n, 2)) = χ(S(n, 2)) = n − 2 for all n ≥ 4, hence the upper

bound of t is tight in this case. This result was recently generalized by Daneshpajouh, Meunier,

and Mizrahi [8], as follows.

Theorem 1.2 ([8]). If G is the complement of a line graph, then χl(G) = χ(G).

Recall that the line graph of a graph H has a vertex for every edge of H and two vertices are adjacent

if as edges of H they share a vertex. Notice that the Schrijver graph S(n, 2) is the complement of

the line graph of the complement of a cycle on n vertices.

Orthogonality dimension. A t-dimensional orthogonal representation of a graph G = (V, E) over

a field F is an assignment of a vector uv ∈ Ft with 〈uv, uv〉 6= 0 to every vertex v ∈ V, such that

〈uv, uv′〉 = 0 whenever v and v′ are adjacent vertices in G. Here, for two vectors x, y ∈ Ft, we let

〈x, y〉 = ∑
t
i=1 xiyi denote the standard inner product of x and y over F, where over the complex

field C, it can be replaced by 〈x, y〉 = ∑
t
i=1 xiyi. The orthogonality dimension of a graph G over a

field F, denoted by ξ(G, F), is the smallest integer t for which there exists a t-dimensional orthog-

onal representation of G over F.1 The research on orthogonal representations and on the orthog-

onality dimension was initiated by Lovász [18] in the study of the Shannon capacity of graphs

in information theory. Over the years, they have been found useful for applications in several

areas of theoretical computer science, e.g., algorithms [2], circuit complexity [32], and communi-

cation complexity [7]. As for the computational perspective, it follows from a work of Peeters [23]

that for every k ≥ 3 and a field F, it is NP-hard to decide whether an input graph G satisfies

ξ(G, F) ≤ k (see [16] and [10] for related hardness of approximation results). It is worth men-

tioning here another graph parameter, called minrank and denoted by minrkF(G), that was intro-

duced by Haemers in [11] motivated by questions in information theory (see Definition 6.1). This

graph parameter is closely related to the orthogonality dimension, and in particular, it satisfies

minrkF(G) ≤ ξ(G, F), where G stands for the complement of G (see Section 6.1).

Orthogonal representations can be viewed as a generalization of proper colorings of graphs.

Indeed, a proper coloring of a graph with t colors naturally induces a t-dimensional orthogonal

representation over every field F, assigning to the vertices of the ith color class the ith vector ei of

1Orthogonal representations of graphs are sometimes defined in the literature as orthogonal representations of the

complement, namely, the definition requires vectors associated with non-adjacent vertices to have zero inner product.

Here we use the other definition, but one may view the notation ξ(G, F) as standing for ξ(G, F).
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the standard basis of Ft. This implies that for every graph G and a field F, ξ(G, F) ≤ χ(G). For

the opposite direction, a t-dimensional orthogonal representation of a graph G over a finite field

F of size q forms a proper coloring of G with at most qt colors, hence

ξ(G, F) ≥ logq χ(G). (1)

Over the reals, it is not difficult to show that ξ(G, R) ≥ log3 χ(G), and it turns out that there are

graphs for which this lower bound on the orthogonality dimension is tight up to a multiplicative

constant (see, e.g., [13, Proposition 2.2]). Recently, topological methods were found beneficial for

proving lower bounds on the orthogonality dimension and on the minrank parameter of graphs.

This approach was initiated in [12] and successfully extended by Alishahi and Meunier [1], who

proved that for every topologically t-chromatic graph G with at least one edge and for every field

F, it holds that

ξ(G, F) ≥ t and minrkF(G) ≥ ⌈t/2⌉+ 1. (2)

Index coding. The index coding problem, introduced by Birk and Kol [5] and further developed

by Bar-Yossef, Birk, Jayram, and Kol [4], is a well-studied problem in zero-error information the-

ory. In this problem, a sender holds an n-symbol message x ∈ Σn over an alphabet Σ and wishes

to broadcast information to n receivers R1, . . . , Rn in a way that enables each receiver Ri to retrieve

the ith symbol xi ∈ Σ. For this purpose, the receivers are allowed to use some side information

they have in advance comprising a subset of the symbols of x. The side information map is natu-

rally represented by a directed graph G on the vertex set [n] that includes a directed edge (i, j) if

the receiver Ri knows xj. For simplicity, we will consider here symmetric side information maps

and will thus refer to G as undirected. For a given side information graph G, the goal is to design

an encoding function that maps any n-symbol message x ∈ Σn to a broadcast information in Σℓ,

where ℓ is as small as possible, so that the receivers are able to retrieve their messages based on this

information and on the side information available to them. As example, consider the case where

Σ = Zm and G is the complete graph on n vertices, meaning that every receiver Ri knows all the

symbols xj with j ∈ [n] \ {i}. Observe that it suffices in this case to broadcast a single symbol of Σ

that consists of the sum ∑
n
i=1 xi modulo m to enable each receiver to retrieve its message.

A significant attention was given in the literature for the setting of linear index coding. Here,

the alphabet Σ is a field F, and the sender is allowed to apply a linear encoding function over F

to map the message x ∈ Fn to the transmitted broadcast information. It was shown in [4] that the

minimum length of a linear index code over a field F for a side information graph G is precisely

the aforementioned minrank parameter of G over F. It is easy to see that minrkF(G) ≤ χ(G)

for every graph G and a field F, as follows from the index code that consists of the sum of the

symbols of every clique in a minimum clique cover of G. The linear index coding problem was

related to the local chromatic number by Shanmugam, Dimakis, and Langberg [26], who proved

that minrkF(G) ≤ χl(G) whenever the field F is sufficiently large (see Proposition 6.5 for a precise

statement). For the binary field F2, which is of special interest for the index coding problem, they

proved the following.

Theorem 1.3 ([26]). For every graph G on n vertices, minrkF2
(G) ≤ χl(G) + 2 · log2 n.
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1.1 Our Contribution

In this work, we initiate the study of a novel graph parameter called the local orthogonality dimen-

sion. This graph parameter is a local variant of the orthogonality dimension of graphs, analo-

gously to the local variant of the chromatic number introduced in [9]. In contrast to the standard

orthogonality dimension, here we do not aim to minimize the dimension of the whole space of an

orthogonal representation of the graph, but the dimensions of the subspaces spanned by the vec-

tors associated with the vertices of closed neighborhoods. The formal definition is given below.

Here, for a graph G and a vertex v, we let N(v) stand for the set of vertices adjacent to v in G.

Definition 1.4. The locality of an orthogonal representation (uv)v∈V of a graph G = (V, E) over a field F

is the maximum dimension of a subspace spanned by the vectors of a closed neighborhood of a vertex, that is,

maxv∈V dim(Uv) where Uv = span({uv′ | v′ ∈ {v} ∪ N(v)}). The local orthogonality dimension of

a graph G over a field F, denoted by ξ l(G, F), is the smallest integer ℓ for which there exists an orthogonal

representation of G over F with locality ℓ.

Aside from being a natural graph parameter to investigate, the study of the local orthogonality

dimension is motivated by the connections, discovered by Shanmugam et al. [26], between the

index coding problem and the local chromatic number. Indeed, the same authors showed in [27]

that the known graph-theoretic combinatorial upper bounds on the index coding problem, even

in the local framework, suffer from an inherent limitation. In contrast, it is known that for certain

graphs, algebraic tools such as the orthogonality dimension and the minrank parameter provide

significantly better upper bounds [19]. It would thus be of interest to explore the potential benefit

of locality for such algebraic tools, as suggested by Definition 1.4.

Let us already mention some basic observations on the local orthogonality dimension. For

every graph G and a field F, it clearly holds that

ξ l(G, F) ≤ ξ(G, F), (3)

because every t-dimensional orthogonal representation of G over F has locality at most t. It further

holds that

ξ l(G, F) ≤ χl(G), (4)

as a proper coloring of G with locality ℓ induces an orthogonal representation over any field F with

locality ℓ, simply by assigning the vector ei of the standard basis of Fℓ to the vertices of the ith color

class. Since there exist graphs G with χl(G) = 3 and arbitrarily large χ(G) [9], inequality (1) above

implies that the orthogonality dimension can be arbitrarily large even when its local variant is 3.

Our first result, proved in Section 2, shows that topological methods can be used to obtain

lower bounds on the local orthogonality dimension of graphs. Its proof is a simple application of

a result of [1].

Theorem 1.5. For every topologically t-chromatic graph G with at least one edge and for every field F,

ξ l(G, F) ≥ ⌈t/2⌉+ 1.

By (4), Theorem 1.5 strengthens the lower bound of [29, 28] on the local chromatic number, as

given in Theorem 1.1. Recall that certain families of topologically t-chromatic graphs G are known
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to satisfy χ(G) = t and χl(G) = ⌈t/2⌉ + 1 (namely, certain Schrijver graphs and generalized

Mycielski graphs [29]). It thus follows from (4) that the lower bound given in Theorem 1.5 is tight

on these graphs. Note that, by (2), these graphs also satisfy ξ(G, F) = t for every field F, showing

that the inequality (3) can be strict. Moreover, by considering a disjoint union of such a graph with

a graph from [9] that has local chromatic number 3 and large orthogonality dimension over F, one

can obtain graphs G satisfying ξ l(G, F) < min(ξ(G, F), χl(G)).

We next consider the local orthogonality dimension of complements of line graphs. The fol-

lowing theorem, proved in Section 3, shows that for this family of graphs, the local orthogonality

dimension over the reals coincides with the chromatic number.

Theorem 1.6. If G is the complement of a line graph, then ξ l(G, R) = χ(G).

Theorem 1.6 implies that for every integer n ≥ 4, the Schrijver graph S(n, 2), which is topolog-

ically t-chromatic for t = n − 2, satisfies ξ l(S(n, 2), R) = n − 2. This shows that there are topo-

logically t-chromatic graphs G with χ(G) = t for which the lower bound given in Theorem 1.5

has a multiplicative gap of roughly 2 from the truth. Additionally, since every graph G satisfies

ξ l(G, R) ≤ χl(G) ≤ χ(G), the theorem implies that for complements of lines graphs, the chromatic

number is equal to its local variant, and thus strengthens the result of [8] given in Theorem 1.2.

In the current work, we contribute another family of graphs for which the chromatic number

is equal to the local chromatic number. This is done in the following theorem, proved in Section 4,

that determines the local chromatic number of the Kneser graphs K(n, 3).

Theorem 1.7. For every n ≥ 6, χl(K(n, 3)) = n − 4.

The proof of Theorem 1.7 borrows the approach applied in [29] to prove that for every n ≥ 4,

χl(S(n, 2)) = n − 2. It was shown there that for every proper coloring of S(n, 2), the vertices of

every color class are adjacent to ‘many’ vertices of the graph. This was used to derive that there

exists a vertex whose closed neighborhood includes at least n − 2 colors. However, a straight-

forward attempt to apply this strategy to the graph K(n, 3) does not succeed. It turns out that a

proper coloring of this graph may include color classes whose vertices are adjacent to relatively

‘few’ vertices, hence one cannot deduce, as in [29], that some vertex has at least n − 4 colors in

its closed neighborhood. To overcome this difficulty, we show that if a proper coloring of K(n, 3)

involves such color classes, then the total number of colors must be quite ‘large’, and this is used

to obtain a vertex with at least n − 4 colors in its closed neighborhood. The proof involves a deli-

cate analysis of the number of vertices adjacent to the vertices of color classes of several types, and

uses the fact that the chromatic number of K(n, 3) is equal to that of its subgraph S(n, 3).

We next consider the computational aspects of the local orthogonality dimension. It should be

mentioned that a result of [8] implies that, unless P = NP, there is no algorithm with polynomial

running-time that determines the chromatic number of the complement of a given line graph

(see [8, Section 4.3]). By Theorem 1.6, it follows that it is unlikely that there exists an algorithm

with polynomial running-time that determines the local orthogonality dimension over R of such

graphs. For general fields, we prove in Section 5 the following hardness result.

Theorem 1.8. For every integer k ≥ 3 and a field F, the problem of deciding whether an input graph G

satisfies ξ l(G, F) ≤ k is NP-hard.
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The proof of Theorem 1.8 combines ideas that were applied by Peeters [23] and by Osang [22]

to prove hardness results for, respectively, the orthogonality dimension and the local chromatic

number. We note that for k ∈ {1, 2} and for every field F, a graph G satisfies ξ l(G, F) ≤ k if and

only if χ(G) ≤ k (see Lemma 5.1). This implies that for such values of k, it is possible to efficiently

decide whether a graph G satisfies ξ l(G, F) ≤ k (see Proposition 5.2).

Finally, in Section 6, we relate the local orthogonality dimension to the minrank parameter,

motivated by the linear index coding problem. We first present, in a generalized form, the con-

nection given in [26] between the local chromatic number and the minrank parameter, and relate

it to a derandomization problem studied by Schulman [25] (see also [14]). We observe there that

topologically t-chromatic graphs G with χl(G) = ⌈t/2⌉+ 1, such as the ones given in [29], satisfy

minrkF(G) = ⌈t/2⌉ + 1 for every sufficiently large field F (see Proposition 6.5). This shows that

for certain graphs and fields, the topological lower bound on the minrank parameter, given in (2)

and proved in [1], is tight. Then, for the local orthogonality dimension, we prove the following.

Theorem 1.9. For every graph G on n vertices, minrkF2
(G) ≤ ξ l(G, F2) + ⌈log2 n⌉.

Theorem 1.9 is proved by a probabilistic argument. By (4), it strengthens Theorem 1.3 proved

in [26]. For an extension of Theorem 1.9 to general finite fields, see Theorem 6.9.

2 A Topological Lower Bound on the Local Orthogonality Dimension

In this section we show, as a simple application of a result of [1], that topological methods can be

used to obtain lower bounds on the local orthogonality dimension over every field. We start with

the following remark on the notion of topologically t-chromatic graphs.

Remark 2.1. In this work, we use a variant of the notion of topologically t-chromatic graphs, suggested

in [29], to describe in a general form the bounds that topological methods provide on graph parameters. The

precise definition of this notion is not needed throughout this work, and we refer the reader to Matoušek’s

book [20] for an in-depth introduction to the topic. For concreteness, we mention that we refer to a graph G

as topologically t-chromatic if t ≤ Xind(Hom(K2, G)) + 2, where Hom(K2, G) stands for the homo-

morphism complex of K2 in G and Xind for the cross-index (see [28, Sections 2 and 3] for the definitions).

It should be mentioned, though, that this definition is different from the one used in [29]. There, a graph G

was said to be topologically t-chromatic if t ≤ coind(B0(G)) + 1, where B0(G) stands for the box complex

of G and coind for the Z2-coindex. With respect to this definition, it was proved there that a topologically

t-chromatic graph G with at least one edge satisfies χl(G) ≥ ⌈t/2⌉ + 1, and in the later work [28], the

same bound was proved under the assumption t ≤ Xind(Hom(K2, G)) + 2. The result of [28] extends the

one of [29], because it is known that coind(B0(G)) ≤ Xind(Hom(K2, G)) + 1 holds for every graph G

(see [28, Section 3]). Further, the results of [1], that relate the topological quantities to orthogonality dimen-

sion and minrank, were also shown under the weaker assumption t ≤ Xind(Hom(K2, G)) + 2 (making

the results stronger). This allows us to use the above weaker condition as the definition of topologically t-

chromatic graphs, where all the stated results on such graphs in particular hold under the stronger condition

of [29].

We need the following definition of independent representations of graphs.
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Definition 2.2. A t-dimensional independent representation of a graph G = (V, E) over a field F is

an assignment of a vector uv ∈ Ft to every vertex v ∈ V, such that for every v ∈ V, uv does not belong to

the subspace span({uv′ | v′ ∈ N(v)}) spanned by the vectors of its neighbors.

Remark 2.3. Note that an orthogonal representation of a graph G = (V, E) over a field F is also an

independent representation of G over F. Indeed, for an orthogonal representation (uv)v∈V of G over F, it is

impossible that some vector uv is a linear combination of the vectors uv′ with v′ ∈ N(v), because the inner

product of such a linear combination with uv is zero whereas the inner product of uv with itself is not.

We will use the following special case of a result proved in [1].

Theorem 2.4 ([1]). Let G be a topologically t-chromatic graph with at least one edge, and let F be a

field. Then, for every independent representation of G over F, there exists a complete bipartite subgraph

K⌊t/2⌋,⌈t/2⌉ of G such that the vectors assigned to each of its sides are linearly independent over F.

We are ready to derive Theorem 1.5.

Proof of Theorem 1.5: Let G = (V, E) be a topologically t-chromatic graph with at least one edge,

and let F be a field. Put ℓ = ξ l(G, F). By definition, there exists an orthogonal representation

(uv)v∈V of G over F with locality ℓ, which forms, by Remark 2.3, an independent representation of

G over F. By Theorem 2.4, there exists a complete bipartite subgraph K⌊t/2⌋,⌈t/2⌉ of G such that the

vectors assigned to each of its sides are linearly independent over F. In particular, the vectors of

the vertices of the right side of this bipartite subgraph span a linear subspace of dimension ⌈t/2⌉.

Let v be an arbitrary vertex from the left side of the bipartite subgraph, and observe that its vector

uv cannot be represented as a linear combination of the vectors of the right side (because the inner

product of uv with itself is nonzero, whereas the inner products of uv with the vectors of the right

side are all zeros). It thus follows that the vectors {uv′ | v′ ∈ {v} ∪ N(v)} assigned by the given

orthogonal representation to the closed neighborhood of v span a subspace of dimension at least

⌈t/2⌉+ 1, hence its locality satisfies ℓ ≥ ⌈t/2⌉+ 1, as desired.

3 The Local Orthogonality Dimension of Complements of Line Graphs

In this section we prove Theorem 1.6, which asserts that the local orthogonality dimension over R

of the complement of a line graph is equal to its chromatic number.

Consider the following definition.

Definition 3.1. For a set system F , let K(F) denote the graph on the vertex set F where two distinct

vertices A, B ∈ F are adjacent if A ∩ B = ∅.

Note that the Kneser graph K(n, k) is the graph K(F) where F is the family of all k-subsets of [n],

and that the Schrijver graph S(n, k) is the graph K(F) where F is the family of all k-subsets of [n]

with no two consecutive elements modulo n. In fact, it is known that every graph is isomorphic

to K(F) for some set system F (see, e.g., [21]). Observe that the complements of line graphs are

precisely the graphs K(F) where F is a system of sets of size 2 each.

Throughout the proof of Theorem 1.6, we say that two real vectors x, y ∈ Rt are proportional if

x = α · y for some nonzero α ∈ R.
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Proof of Theorem 1.6: The complement G of a line graph can be viewed, as mentioned above, as

a graph K(F) for a family F of 2-subsets of some ground set [n] (see Definition 3.1). By (4), it holds

that ξ l(G, R) ≤ χl(G) ≤ χ(G). To prove that ξ l(G, R) ≥ χ(G), we will apply an induction on the

number n of the elements in the ground set. For n = 2, the statement is trivial because G has at

most one vertex, hence it clearly holds that ξ l(G, R) = χ(G). We turn to prove the statement for

n ≥ 3, assuming that it holds for n − 1.

Let F be a system of 2-subsets of [n], and let G = K(F). Put ℓ = ξ l(G, R), and let (uA)A∈F

be a t-dimensional orthogonal representation (uA)A∈F of G over R with locality ℓ, where the

dimension t is minimized over all the orthogonal representations of G over R with locality ℓ. For

every set C ⊆ [n], define

WC = span
(
{uB | B ∈ F and B ∩ C = ∅}

)
.

In words, WC is the subspace of Rt spanned by the vectors of the given orthogonal representation

that correspond to vertices that are disjoint from C. In particular, for a vertex A ∈ F , WA is the

subspace spanned by the vectors associated with the neighborhood of A in G, hence uA is orthog-

onal to WA. Since the dimension of a subspace spanned by the vectors of a closed neighborhood

in G is at most ℓ, it follows that dim(WA) ≤ ℓ− 1 for every A ∈ F .

Our goal is to prove that ℓ ≥ χ(G). To do so, we consider three cases, as described below.

Suppose first that for every vertex {i, j} ∈ F there exists some k ∈ [n] \ {i, j} for which both

{i, k} and {j, k} are vertices of G and the three vectors u{i,j}, u{i,k}, u{j,k} are pairwise proportional.

In this case, for every vertex {i, j} ∈ F associated with such an index k, every vertex B ∈ F that

is not contained in {i, j, k} is disjoint from at least one of the sets {i, j}, {i, k}, and {j, k}, hence

the vector uB is orthogonal to u{i,j} (and to u{i,k} and u{j,k} as well). This implies that the vectors

of the given orthogonal representation satisfy that every two of them are either proportional or

orthogonal, hence they induce a proper coloring of the graph K(F) with equivalence classes of

proportional vectors as color classes. This coloring satisfies that every color class is of size 3, its

locality is ℓ, and every vertex has all colors in its closed neighborhood. This implies that ℓ ≥ χ(G),

as required.

Suppose next that there exist distinct i, j, k ∈ [n] for which both {i, j} and {i, k} are vertices of

G whereas {j, k} is not, and the vectors u{i,j}, u{i,k} are proportional. Let F ′ = {A ∈ F | i /∈ A} be

the family of sets in F that are contained in [n] \ {i}, and consider the subgraph G′ = K(F ′) of G.

Observe that every vertex A ∈ F ′ is disjoint from at least one of the sets {i, j} and {i, k}, because

i /∈ A and A 6= {j, k}. Since the vectors u{i,j}, u{i,k} are proportional, for such an A it holds that uA

is orthogonal to u{i,j}. The restriction (uA)A∈F ′ of the given orthogonal representation obviously

forms an orthogonal representation of G′. We turn to show that its locality is at most ℓ− 1.

Consider some vertex A ∈ F ′, and denote by W̃A the subspace of Rt spanned by the vectors

uB with B ∈ F ′ such that A ∩ B = ∅. Since for B ∈ F ′, the vector uB is orthogonal to u{i,j}, it

follows that u{i,j} /∈ W̃A. On the other hand, since A is disjoint from at least one of the sets {i, j}

and {i, k}, it follows that u{i,j} ∈ WA. The fact that F ′ ⊆ F implies that W̃A ⊆ WA, so we get that

W̃A ( WA, hence dim(W̃A) ≤ dim(WA)− 1 ≤ ℓ− 2. This shows that the locality of the orthogonal

representation (uA)A∈F ′ of G′ is at most ℓ− 1, hence

ξ l(G
′, R) ≤ ℓ− 1. (5)
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Since the underlying ground set of the graph G′ = K(F ′) is of size n − 1, we can apply the

inductive assumption to obtain that

χ(G′) ≤ ξ l(G
′, R). (6)

We further observe that

χ(G) ≤ χ(G′) + 1, (7)

because a proper coloring of G′ with χ(G′) colors can be extended to a proper coloring of G by

assigning an additional color to all the vertices of F \F ′ which form an intersecting family. Com-

bining (5), (6), and (7), it follows that

χ(G)− 1 ≤ χ(G′) ≤ ξ l(G
′, R) ≤ ℓ− 1,

which implies that ℓ ≥ χ(G), as required.

Otherwise, if none of the above two cases holds, there exists a vertex {i, j} ∈ F such that for

every k ∈ [n] \ {i, j}, either the sets {i, k} and {j, k} are not vertices of F , or at least one of these sets

is a vertex of F and its vector is not proportional to u{i,j}. As before, put F ′ = {A ∈ F | i /∈ A},

and consider the subgraph G′ = K(F ′) of G. We turn to define an orthogonal representation

(ũA)A∈F ′ of G′ such that all of its vectors are orthogonal to u{i,j}. For every A ∈ F ′ such that

j /∈ A, we simply define ũA = uA. Every other vertex of F ′ is of the form {j, k} for k ∈ [n] \ {i, j}.

If u{j,k} is not proportional to u{i,j} then we define ũ{j,k} as the (nonzero) projection of u{j,k} to the

subspace of Rt orthogonal to u{i,j}, that is,

ũ{j,k} = u{j,k} −
〈u{j,k}, u{i,j}〉

〈u{i,j}, u{i,j}〉
· u{i,j}.

Otherwise, it follows that {i, k} ∈ F and that u{i,k} is not proportional to u{i,j}, so we define ũ{j,k}

as the (nonzero) projection of u{i,k} to the subspace of Rt orthogonal to u{i,j}, that is,

ũ{j,k} = u{i,k} −
〈u{i,k}, u{i,j}〉

〈u{i,j}, u{i,j}〉
· u{i,j}.

By definition, all the vectors ũA with A ∈ F ′ are nonzero and are orthogonal to u{i,j}. We turn

to show that (ũA)A∈F ′ is an orthogonal representation of G′. Consider two disjoint sets A, B ∈ F ′.

If j /∈ A ∪ B then we clearly have 〈ũA, ũB〉 = 〈uA, uB〉 = 0. Otherwise, without loss of generality,

suppose that A = {j, k} for some k ∈ [n] \ {i, j}. Since B is disjoint from A, the vector ũB =

uB is orthogonal to the vectors uC with C ∈ {{i, j}, {i, k}, {j, k}} ∩ F , and since ũA is a linear

combination of them, we get that 〈ũA, ũB〉 = 0, as required.

We next claim that the locality of the orthogonal representation (ũA)A∈F ′ of G′ is at most ℓ− 1.

To prove it, it suffices to show that for every vertex A ∈ F ′ the subspace W̃A spanned by the

vectors ũB with B ∈ F ′ and A ∩ B = ∅ satisfies dim(W̃A) ≤ ℓ − 2. For a vertex A ∈ F ′ such

that A ⊆ [n] \ {i, j}, it holds that W̃A ⊆ WA, because every vector ũB with A ∩ B = ∅ is a linear

combination of vectors uC with C ⊆ B ∪ {i, j} and thus with A ∩ C = ∅. In addition, since u{i,j} is

orthogonal to W̃A, we have u{i,j} ∈ WA \ W̃A, implying that dim(W̃A) ≤ dim(WA)− 1 ≤ ℓ− 2, as
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required. Every other vertex of F ′, which is not contained in [n] \ {i, j}, is of the form A = {j, k}

for some k ∈ [n] \ {i, j}, hence it holds that W̃A = WC for C = {i, j, k}. We turn to prove that

dim(WC) ≤ ℓ− 2, (8)

which implies that dim(W̃A) ≤ ℓ− 2. Observe that this will complete the proof of the theorem.

Indeed, by combining it with the above discussion it follows that ξ l(G
′, R) ≤ ℓ− 1. By applying

the inductive assumption to G′, as in the previous case, we obtain that

χ(G)− 1 ≤ χ(G′) ≤ ξ l(G
′, R) ≤ ℓ− 1,

hence ℓ ≥ χ(G), as required.

To prove (8), recall that the vectors assigned to the 2-subsets of C in F include two vectors that

are not proportional. In particular, it follows that F includes either two or three 2-subsets of C,

and we consider the following two cases accordingly.

Assume first that all the three 2-subsets of C belong to F , and denote them by A1, A2, A3.

Suppose in contradiction that dim(WC) ≥ ℓ − 1. For each i ∈ [3], it follows from the definition

that WC ⊆ WAi
, which by dim(WAi

) ≤ ℓ − 1 implies that WC = WAi
. It therefore follows that

WC = WA1
= WA2

= WA3
. Notice that every vertex B ∈ F \ {A1, A2, A3} is disjoint from at least

one of A1, A2, A3, hence its vector uB belongs to some WAi
and thus to WC, so it is orthogonal

to each of uA1
, uA2

, uA3
. This implies that switching the vectors of the vertices A2 and A3 to uA1

results in another orthogonal representation of G, and it is not difficult to verify that its locality

is at most ℓ. This orthogonal representation lies in a subspace of Rt whose dimension is at most

t− 1. Indeed, uA1
, uA2

, uA3
are not pairwise proportional and they are all orthogonal to uB for every

vertex B ∈ F \ {A1, A2, A3}, so span(uA2
, uA3

) is not contained in the subspace of the modified

representation. By applying an orthogonal linear transformation from this subspace to Rt−1, we

get an orthogonal representation of G that contradicts the minimality of t.

Assume next that only two of the three 2-subsets of C belong to F , denote them by A1, A2,

and let j ∈ [n] denote the element of their intersection. As before, suppose in contradiction that

dim(WC) ≥ ℓ− 1, which implies that WC = WA1
= WA2

. Since one of the 2-subsets of C does not

belong to F , it follows that every vertex B ∈ F such that j /∈ B is disjoint from at least one of A1

and A2, hence its vector uB belongs to some WAi
and thus to WC, so it is orthogonal to each of uA1

and uA2
. This implies that switching the vectors of all vertices B ∈ F with j ∈ B (including A2)

to uA1
results in another orthogonal representation of G. Moreover, the locality of this orthogonal

representation is at most ℓ. Indeed, for a vertex that includes j, the vectors of its neighbors are

unchanged, so the dimension of the subspace spanned by the vectors of its closed neighborhood

is at most ℓ. Further, for a vertex that does not include j, the vectors of its neighbors that do

not include j are unchanged and are all orthogonal to uA1
and to uA2

. All the other neighbors

are assigned now the vector uA1
, whereas their vectors according to the original representation

include at least one of uA1
and uA2

. This implies that the dimension of the subspace spanned by

the vectors assigned by the modified representation to the closed neighborhood of a vertex that

does not include j is at most ℓ.

The obtained orthogonal representation lies in a subspace of Rt whose dimension is at most

t − 1. Indeed, uA1
and uA2

are not proportional and they are both orthogonal to uB for every

vertex B ∈ F with j /∈ B. It follows that uA2
does not belong to the subspace spanned by the
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modified representation, hence its dimension is at most t − 1. By applying an orthogonal linear

transformation from this subspace to Rt−1, we again get an orthogonal representation of G that

contradicts the minimality of t, as required. This completes the proof.

As an immediate corollary of Theorem 1.6, we obtain the following.

Corollary 3.2. For every integer n ≥ 4, ξ l(K(n, 2), R) = ξ l(S(n, 2), R) = n − 2.

4 The Local Chromatic Number of K(n, 3)

It was shown in [17] that the chromatic number of the Kneser graph K(n, k) is n − 2k + 2 for all

integers n ≥ 2k. This implies, for integers n ≥ 3k, that the local chromatic number of K(n, k)

satisfies χl(K(n, k)) ≥ n − 3k + 3. To see this, observe that the subgraph of K(n, k) induced by

the (open) neighborhood of any vertex is isomorphic to K(n − k, k), whose chromatic number is

n − 3k + 2. Hence, the locality of every proper coloring of K(n, k) is at least n − 3k + 3. For k = 3,

this shows that χl(K(n, 3)) ≥ n− 6 for all integers n ≥ 9. In this section we improve on this bound

and prove that for every n ≥ 6 it holds that χl(K(n, 3)) = n − 4, confirming Theorem 1.7.

Proof of Theorem 1.7: Every graph G satisfies χl(G) ≤ χ(G), hence for every n ≥ 6, it holds that

χl(K(n, 3)) ≤ χ(K(n, 3)) = n − 4.

It thus suffices to prove a matching lower bound. We start with the two easy cases of n ∈ {6, 7}.

The graph K(6, 3) is a perfect matching on 20 vertices, and in particular it contains an edge, hence

χl(K(6, 3)) ≥ 2. The chromatic number of K(7, 3) is 3, so it is not bipartite, hence it contains a

cycle of odd length. It is easy to see that the local chromatic number of such a cycle is 3, implying

that χl(K(7, 3)) ≥ 3. From now on, we may and will assume that n ≥ 8.

Let V denote the vertex set of K(n, 3) for some n ≥ 8, and put ℓ = χl(K(n, 3)). Let c : V → [m]

be a proper coloring of K(n, 3) with locality ℓ, where the total number m of colors is minimized

over all such colorings. Suppose for the sake of contradiction that ℓ ≤ n − 5.

Consider the number M of pairs (A, j) of a vertex A ∈ V and a color j ∈ [m] for which A sees

the color j in its (open) neighborhood, that is, there exists a vertex B ∈ V satisfying A ∩ B = ∅

and c(B) = j. Since the locality of the coloring c is ℓ, it follows that every vertex sees at most ℓ− 1

colors, hence

M ≤ (ℓ− 1) · (n
3) ≤ (n − 6) · (n

3).

We will obtain a contradiction by proving that

M > (n − 6) · (n
3).

This inequality will be established by analyzing the number of vertices that see each of the m

colors of the coloring c. The number of vertices that see a given color is significantly affected by

the structure of its color class (which forms an independent set in K(n, 3)). This requires us to deal

separately with color classes of several types, as described next.

Let I be the collection of color classes of the coloring c : V → [m]. By the definition of the graph

K(n, 3), every I ∈ I is an intersecting family of 3-subsets of [n], and it can be seen that its size
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satisfies |I| ≥ 2. Indeed, if I consists of a single vertex, then this vertex sees at most ℓ− 1 ≤ n − 6

colors, so its color can be replaced by one of the other m − 1 ≥ χ(K(n, 3)) − 1 = n − 5 colors

without increasing the locality, a contradiction to the minimality of m. We consider four types of

color classes I, referred to as (a), (b), (c) and (d), defined as follows.

(a). There are two elements of [n] that belong to all vertices of I.

(b). |I| = 2, and the intersection size of the two vertices of I is 1.

(c). |I| ≥ 3, there is a single element of [n] that belongs to all vertices of I, and either

• the maximum size of a union of three vertices of I is at most 5, or

• the maximum size of a union of three vertices of I is 6, and there is an element of [n] that

belongs to all but one of the vertices of I.

(d). I is not of types (a), (b) and (c), that is, |I| ≥ 3 and either

• there is a single element of [n] that belongs to all vertices of I, the maximum size of a

union of three vertices of I is 6, and there is no element of [n] that belongs to all but one

of the vertices of I, or

• there is a single element of [n] that belongs to all vertices of I, and the maximum size of

a union of three vertices of I is 7, or

• there is no element of [n] that belongs to all vertices of I.

For a color class I ∈ I , let MI denote the number of vertices of K(n, 3) that do not see the

color of I, i.e., the vertices that intersect each of the vertices of I (including the vertices of I). The

following lemma provides an upper bound on MI for each type of I. (Note that Lemma 4.1 below

and Lemma 4.3 that follows it are stated under the assumption for contradiction that ℓ ≤ n − 5.)

Lemma 4.1. Let I ∈ I be a color class of the coloring c : V → [m] of K(n, 3). Then, the following holds.

1. If I is of type (a) then MI ≤ (n−1
2 ) + (n−2

2 ) + (n − 4).

2. If I is of type (b) then MI = (n−1
2 ) + 4(n − 4).

3. If I is of type (c) then MI ≤ (n−1
2 ) + 3(n − 4) + 1.

4. If I is of type (d) then MI ≤ max
(

7n − 25, (n−1
2 ) + n

)
.

In addition, let G be a graph obtained from K(n, 3) by removing from its vertex set either

i. any number of color classes of type (a), or

ii. a color class of type (b), or

iii. two color classes, one of type (a) and one of type (b), or

iv. a color class of type (c).

Then, χ(G) = χ(K(n, 3)) = n − 4.
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Remark 4.2. Note that the bounds on MI given in the lemma for the four types of I are in a decreasing

order, namely, for all n ≥ 8, it holds that

(n−1
2 ) + (n−2

2 ) + (n − 4) > (n−1
2 ) + 4(n − 4) > (n−1

2 ) + 3(n − 4) + 1 > max
(

7n − 25, (n−1
2 ) + n

)
.

Before proving Lemma 4.1, we show how it is applied to prove the assertion of the theorem.

Recall that to get a contradiction to the assumption ℓ ≤ n − 5, it suffices to prove that

M − (n − 6) · (n
3) > 0. (9)

The number M of pairs (A, j) of a vertex A ∈ V and a color j ∈ [m] that it sees can be written as

M = ∑
I∈I

(
(n

3)− MI

)
. (10)

Our strategy to prove (9) is the following. If all the color classes I ∈ I are not seen by a relatively

‘few’ vertices and thus have ‘small’ values of MI (e.g., when all of them are of type (d)), then it

can be verified, using (10), that (9) holds. However, for the case where some of the color classes

I ∈ I have ‘large’ values of MI , we will provide a lower bound on the number m of the colors

of c, which will again allow us to derive the required inequality. For such a lower bound on the

number of colors, we will need the following lemma.

Lemma 4.3. For an integer r ≥ 0, let J ⊆ V be a union of r color classes of the coloring c : V → [m],

such that the graph G obtained from K(n, 3) by removing the vertices of J satisfies χ(G) = n − 4. Then,

m ≥ r + n − 3.

Proof: The restriction of the coloring c to the vertex set V \ J of G forms a proper coloring of G

with locality at most ℓ and with m − r colors. By assumption, we have ℓ ≤ n − 5 < n − 4 = χ(G).

However, every proper coloring of a graph G with locality strictly smaller than χ(G) must use

more than χ(G) colors, since otherwise one could avoid one of the colors by assigning to each

vertex of that color some color different from those of its neighbors, resulting in a proper coloring

of G with less than χ(G) colors. It thus follows that the number of colors used by c in G is larger

than its chromatic number, that is, m − r > n − 4, yielding that m ≥ r + n − 3, as desired.

Equipped with Lemmas 4.1 and 4.3, we prove (9) by considering the following four cases.

• Suppose that there are r ≥ 2 color classes in I of type (a). By Item i of Lemma 4.1, the

chromatic number of the graph obtained from K(n, 3) by removing these r color classes is

n − 4. By Lemma 4.3, we have m ≥ r + n − 3, so there are at least n − 3 color classes in I of

types (b), (c) or (d). This implies, using Lemma 4.1, that there are r ≥ 2 color classes I ∈ I

that satisfy MI ≤ (n−1
2 ) + (n−2

2 ) + (n − 4) and at least n − 3 other color classes I ∈ I that

satisfy MI ≤ (n−1
2 ) + 4(n − 4) (see Remark 4.2). By (10), this implies that

M − (n − 6) · (n
3) ≥ 2 ·

(
(n

3)−
[
(n−1

2 ) + (n−2
2 ) + (n − 4)

])

+ (n − 3) ·
(
(n

3)−
[
(n−1

2 ) + 4(n − 4)
])

− (n − 6) · (n
3)

= n3

3 − 11n2

2 + 181n
6 − 45.

A simple calculation shows that the above is positive for all n ≥ 8, as required for (9).
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• Suppose next that there is exactly one color class in I of type (a).

If there is at least one color class in I of type (b), then by Item iii of Lemma 4.1, the chromatic

number of the graph obtained from K(n, 3) by removing the color class of type (a) and one

color class of type (b) is n − 4. By Lemma 4.3, there are at least n − 3 other color classes in I

of types (b), (c) or (d). This implies, using Lemma 4.1, that there is a color class I ∈ I that

satisfies MI ≤ (n−1
2 ) + (n−2

2 ) + (n − 4), and there are at least n − 2 other color classes I ∈ I

that satisfy MI ≤ (n−1
2 ) + 4(n − 4) (see Remark 4.2). By (10), this implies that

M − (n − 6) · (n
3) ≥ 1 ·

(
(n

3)−
[
(n−1

2 ) + (n−2
2 ) + (n − 4)

])

+ (n − 2) ·
(
(n

3)−
[
(n−1

2 ) + 4(n − 4)
])

− (n − 6) · (n
3).

The above can be only larger than what we have got in the previous case, so we are done.

If, however, there is no color class in I of type (b), then by Item i of Lemma 4.1, the chromatic

number of the graph obtained from K(n, 3) by removing the single color class of type (a) is

n − 4. By Lemma 4.3, there are at least n − 3 color classes in I of types (c) or (d). Combin-

ing (10) with Lemma 4.1 (see Remark 4.2), we obtain that

M − (n − 6) · (n
3) ≥ 1 ·

(
(n

3)−
[
(n−1

2 ) + (n−2
2 ) + (n − 4)

])

+ (n − 3) ·
(
(n

3)−
[
(n−1

2 ) + 3(n − 4) + 1
])

− (n − 6) · (n
3)

= n3

6 − 3n2 + 113n
6 − 30.

A simple calculation shows that the above is positive for all n ≥ 8, as required for (9).

• Suppose next that no color class of I is of type (a) and that there is at least one color class of

type (b) or (c). By Items ii and iv of Lemma 4.1, the chromatic number of the graph obtained

from K(n, 3) by removing the vertices of one such color class is n − 4. By Lemma 4.3, there

are at least n − 2 color classes in I . Combining (10) with Lemma 4.1 (see Remark 4.2), we

obtain that

M − (n − 6) · (n
3) ≥ (n − 2) ·

(
(n

3)−
[
(n−1

2 ) + 4(n − 4)
])

− (n − 6) · (n
3)

= 1
6 · (n − 2)(n − 9)(n − 10).

The obtained bound is clearly non-negative for all integers n ≥ 8. In fact, it can be seen that

the above inequality is strict for every such n. To see this, observe that either the number of

color classes in I is strictly larger than n − 2 or at least one of them is not of type (b), because

every color class of this type includes only two vertices, whereas for all n ≥ 8 it holds that

(n
3) > 2 · (n − 2). We therefore derive the required inequality (9).

• We are left with the case where all the color classes of I are of type (d). By Lemma 4.3,

applied with r = 0, the number of color classes of I is at least n − 3. Combining (10) with

Lemma 4.1, we obtain that

M − (n − 6) · (n
3) ≥ (n − 3) ·

(
(n

3)− max
(
7n − 25, (n−1

2 ) + n
))

− (n − 6) · (n
3)

= 1
2 · min

(
n2 − 3n + 6, n3 − 17n2 + 94n − 150

)
.

A simple calculation shows that the above is positive for all n ≥ 8, as required for (9).
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It remains to prove Lemma 4.1.

Proof of Lemma 4.1: For Item 1, let I be a color class of type (a). Since |I| ≥ 2, I includes two

vertices of the form A1 = {i1, i2, i3}, A2 = {i1, i2, i4} for distinct i1, . . . , i4 ∈ [n], where all the

vertices of I include both i1 and i2. The vertices of K(n, 3) that do not see the color class of I must

intersect both A1 and A2 and thus must include i1 or i2 or both i3 and i4. It thus follows that

MI ≤ (n−1
2 ) + (n−2

2 ) + (n − 4).

We turn to prove Item i. Suppose that the coloring c has r color classes of type (a). The vertices of

every such color class share a pair of common elements. Observe that these r pairs are pairwise

disjoint, because otherwise one could merge two color classes into one to obtain a proper coloring

with fewer colors and yet locality at most ℓ, in contradiction to the minimality of m. Now, notice

that the graph K(n, 3) is isomorphic to the one obtained by applying a permutation of [n] to the

elements of its vertices. Recall that the Schrijver graph S(n, 3) is the subgraph of K(n, 3) induced

by the vertices that include no two consecutive elements modulo n. By considering a permutation

of [n] that maps each of the pairwise disjoint r pairs to consecutive elements modulo n, it follows

that the graph obtained from K(n, 3) by removing the color classes of type (a) contains a subgraph

isomorphic to S(n, 3). Since the chromatic number of the latter is n− 4, the removal of the vertices

does not change the chromatic number, as required.

For Item 2, let I be a color class of type (b), so I includes precisely two vertices of the form

A1 = {i1, i2, i3} and A2 = {i1, i4, i5} for distinct i1, . . . , i5 ∈ [n]. The vertices that do not see the

color of I are those that include i1 or intersect both {i2, i3} and {i4, i5}. Hence,

MI = (n−1
2 ) + 2 · 2 · (n − 5) + 4 = (n−1

2 ) + 4(n − 4).

To prove Item ii, observe that by applying a permutation of [n] to the elements of the vertices of

K(n, 3), one can ensure that each of A1 and A2 includes consecutive elements (say, by a permuta-

tion that maps ij to j for all j ∈ [5]). Hence, by removing the vertices of I from K(n, 3) we get a

graph that contains a subgraph isomorphic to S(n, 3), so its chromatic number is n − 4.

For Item iii, we claim that given two color classes of c, I1 of type (a) and I2 of type (b), the

graph obtained from K(n, 3) by removing the vertices of I1 ∪ I2 has chromatic number n − 4. To

see this, denote by i1 and i2 the two common elements of the vertices of I1, and denote by {i3, i4, i5}

and {i3, i6, i7} the vertices of I2 which intersect only at i3. Note that none of i1 and i2 belongs to

both these sets, and thus i3 /∈ {i1, i2}, since otherwise one could merge the color classes I1 and I2

into one to obtain a proper coloring with fewer colors and yet locality at most ℓ, in contradiction

to the minimality of m. Hence, it can be assumed, without loss of generality, that i4, i6, i7 are all

different from i1. Applying a permutation of [n] that maps i1 to 1, i2 to 2, and ij to j for each j ∈ [7]

such that ij /∈ {i1, i2}, it follows that all the vertices of I1 ∪ I2 include consecutive elements, hence

by removing them from K(n, 3) we still have a subgraph isomorphic to S(n, 3), so the chromatic

number is n − 4.

For Items 3 and iv, let I be a color class of type (c), so |I| ≥ 3 and there exists a single element

i1 ∈ [n] that belongs to all of its vertices. Consider the following three possibilities.

• Suppose that the maximum size of a union of three vertices of I is 4. Here, every two vertices

of I intersect at two elements, which implies that I includes precisely three vertices of the
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form A1 = {i1, i2, i3}, A2 = {i1, i2, i4}, and A3 = {i1, i3, i4} for distinct i1, . . . , i4 ∈ [n]. The

vertices that do not see the color of I are those that include i1 or at least two elements of

{i2, i3, i4}, hence MI = (n−1
2 ) + 3(n − 4) + 1. By applying a permutation of [n] that maps ij

to j for all j ∈ [4], it follows that all the vertices of I include consecutive elements, hence by

removing them from K(n, 3) we still have a subgraph isomorphic to S(n, 3), so the chromatic

number is n − 4.

• Suppose that the maximum size of a union of three vertices of I is 5. First, observe that I

includes two vertices with intersection size 1, A1 = {i1, i2, i3} and A2 = {i1, i4, i5} for distinct

i1, . . . , i5 ∈ [n], because as above, if every two vertices of I intersect at two elements then the

total number of elements in the vertices of I cannot exceed 4. Since the maximum size of

a union of three vertices of I is 5, using |A1 ∪ A2| = 5, the vertices of I cannot include

any element outside of A1 ∪ A2. By |I| ≥ 3, I includes, without loss of generality, a vertex

of the form A3 = {i1, i2, i4}. Other than that, it might include some of the other subsets

of {i1, . . . , i5} that include i1, i.e., {i1, i2, i5}, {i1, i3, i4}, and {i1, i3, i5}. The vertices that do

not see the color of I must intersect each of A1, A2, and A3, hence they must include i1 or

intersect each of {i2, i3}, {i4, i5} and {i2, i4}. This implies that

MI ≤ (n−1
2 ) + 3(n − 4) + 1.

By applying a permutation of [n] that maps ij to j for all j ∈ [4] and i5 to n, it follows that

all the vertices of I include consecutive elements modulo n, hence by removing them from

K(n, 3) we still have a subgraph isomorphic to S(n, 3), so the chromatic number is n − 4.

• Now, suppose that the maximum size of a union of three vertices of I is 6, and that there is

an element of [n] that belongs to all but one of the vertices of I. As in the previous case, I

includes two vertices with intersection size 1, A1 = {i1, i2, i3} and A2 = {i1, i4, i5} for distinct

i1, . . . , i5 ∈ [n]. Since the maximum size of a union of three vertices of I is 6, its vertices

should include an additional element i6 ∈ [n] different from i1, . . . , i5 ∈ [n], so without loss

of generality suppose that it includes the vertex A3 = {i1, i2, i6}. By assumption, it follows

that all the other vertices of I contain {i1, i2}. Since the vertices that do not see the color of I

intersect each of A1, A2, and A3, their number satisfies

MI ≤ (n−1
2 ) + 2(n − 4) + 1 + 2 = (n−1

2 ) + 2n − 5 ≤ (n−1
2 ) + 3(n − 4) + 1,

where the last inequality clearly holds for all n ≥ 8. By applying a permutation of [n] that

maps ij to j for all j ∈ [5], it follows, as before, that the graph obtained from K(n, 3) by

removing the vertices of I has chromatic umber n − 4.

Finally, for Item 4, let I be a color class of type (d). It satisfies |I| ≥ 3, and we consider the

following three possibilities.

• Suppose that there exists a single element i1 ∈ [n] that belongs to all vertices of I, that the

maximum size of a union of three vertices of I is 6, and that there is no element of [n] that

belongs to all but one of the vertices of I. As explained in the previous case, I includes

three vertices of the form A1 = {i1, i2, i3}, A2 = {i1, i4, i5}, and A3 = {i1, i2, i6} for distinct

i1, . . . , i6 ∈ [n]. Since there is no element of [n] that belongs to all but one of the vertices of I,
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we must have another vertex in I that does not include i2. This vertex includes i1 and since

the size of its union with A1 ∪ A2 cannot exceed 6, it must include an element from {i3, i4, i5}.

Without loss of generality, we consider the following three cases.

– If I includes the vertex A4 = {i1, i3, i4} then the number of vertices that do not see the

color of I, and in particular intersect each of A1, A2, A3, and A4, satisfies

MI ≤ (n−1
2 ) + (n − 3) + 1 + 2 = (n−1

2 ) + n.

– If I includes a vertex of the form A4 = {i1, i3, i7} for i7 /∈ {i1, . . . , i5} then we must have

i6 = i7, because otherwise we would have |A2 ∪ A3 ∪ A4| = 7. The vertices that do not

see the color of I intersect each of A1, A2, A3, and A4, hence

MI ≤ (n−1
2 ) + 4 + 2 = (n−1

2 ) + 6 ≤ (n−1
2 ) + n.

– If I includes a vertex of the form A4 = {i1, i4, i7} for i7 /∈ {i1, . . . , i5}, where i7 might

and might not be equal to i6, then it follows that

MI ≤ (n−1
2 ) + (n − 3) + 1 + 2 ≤ (n−1

2 ) + n.

• Suppose that there exists a single element i1 ∈ [n] that belongs to all vertices of I, and that

the maximum size of a union of three vertices of I is 7. Here, I includes three vertices of the

form A1 = {i1, i2, i3}, A2 = {i1, i4, i5}, and A3 = {i1, i6, i7} for distinct i1, . . . , i7 ∈ [n]. The

vertices that do not see the color of I must include i1 or intersect each of {i2, i3}, {i4, i5}, and

{i6, i7}. Hence, their number satisfies MI ≤ (n−1
2 ) + 8 ≤ (n−1

2 ) + n.

• Suppose that the vertices of I do not share any common element. We consider the following

two cases.

– If there is a pair of vertices in I with intersection size 1, denote such vertices by A1 =

{i1, i2, i3} and A2 = {i1, i4, i5} for distinct i1, . . . , i5 ∈ [n]. The collection I must include

a set that does not include i1, which can be denoted, without loss of generality, by

A3 = {i2, i4, i6} for i6 /∈ {i1, i2, i4}. Every vertex of K(n, 3) that does not see the color

of I must intersect each of the sets A1, A2, A3. The number of vertices that do not see

the color of I and include i1 is at most 3n − 9; the number of those that do not include

i1 but include i2 is at most 2n − 7; the number of those that do not include i1 and i2
but include i4 is at most n − 4. And, finally, we should count the vertices that do not

include i1, i2, i4 and yet do not see the color of I. If i6 /∈ {i3, i5} then there is at most

one such vertex, and otherwise there are at most n − 5 such vertices. This implies that

MI ≤ (3n − 9) + (2n − 7) + (n − 4) + max(1, n − 5) = 7n − 25, as required.

– If there is no pair of vertices in I with intersection size 1, then it includes two vertices of

the form A1 = {i1, i2, i3} and A2 = {i1, i2, i4} for distinct i1, . . . , i4 ∈ [n], and since there

is no element that is common to all the vertices of I, it has to include the vertices A3 =

{i2, i3, i4} and A4 = {i1, i3, i4} as well. A vertex of K(n, 3) that does not see the color of

I must intersect each of these four vertices, and thus must include at least two of the

elements of {i1, i2, i3, i4}. This implies that MI ≤ (4
2) · (n − 4) + 4 = 6n − 20 ≤ 7n − 25.

Therefore, for every color class I of type (d), it holds that MI ≤ max
(

7n − 25, (n−1
2 ) + n

)
.

The proof of the theorem is completed.
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5 Hardness of Determining the Local Orthogonality Dimension

In this section we consider, for any integer k and a field F, the computational problem of deciding

whether an input graph G satisfies ξ l(G, F) ≤ k. We first observe that the problem is tractable for

k ∈ {1, 2} and then prove our NP-hardness result for k ≥ 3, confirming Theorem 1.8.

5.1 Local Orthogonality Dimension at Most Two

Notice, first, that for a graph G and a field F, ξ l(G, F) = 1 if and only if G is edgeless. The

following simple lemma characterizes the graphs G satisfying ξ l(G, F) ≤ 2.

Lemma 5.1. For every graph G and a field F, χ(G) ≤ 2 if and only if ξ l(G, F) ≤ 2.

Proof: Let G be a graph and let F be a field. If χ(G) ≤ 2 then it easily follows, by (4), that

ξ l(G, F) ≤ χl(G) ≤ χ(G) ≤ 2. For the other direction, suppose that χ(G) > 2, which implies

that G contains a cycle of odd length. To complete the proof, it suffices to show that for every odd

integer r ≥ 3, it holds that ξ l(Cr, F) > 2, where Cr is the cycle on r vertices.

Suppose in contradiction that there exists an orthogonal representation of Cr with locality at

most 2 assigning the vectors u1, . . . , ur of Ft to its vertices along the cycle. Put W = span(u1, u2).

Since u1 and u2 are not self-orthogonal and satisfy 〈u1, u2〉 = 0, it follows that dim(W) = 2. By

locality, the subspace span(u1, u2, u3) spanned by the vectors of the closed neighborhood of the

second vertex has dimension 2, hence u3 ∈ W. Write u3 = α · u1 + β · u2 for some α, β ∈ F, and

consider the inner product of both sides of this equality with u2. Since 〈u1, u2〉 = 〈u2, u3〉 = 0 and

〈u2, u2〉 6= 0, it follows that β = 0, hence u1 and u3 are proportional, that is, there exists α ∈ F for

which u3 = α · u1. Similarly, by considering the closed neighborhood of the third vertex, it follows

that u2 and u4 are proportional. Proceeding this way, it follows that all the vectors ui with odd i

are proportional and all the vectors ui with even i are proportional. In particular, since r is odd,

the vectors u1 and ur are proportional, in contradiction to the fact that they are orthogonal but are

not self-orthogonal.

As is well known, the 2-colorability problem can be decided in polynomial running-time. We

thus derive from Lemma 5.1 the following.

Proposition 5.2. For every k ∈ {1, 2} and for every field F, it is possible to decide whether an input graph

G satisfies ξl(G, F) ≤ k in polynomial running-time.

5.2 Hardness Proof

We turn to prove now that for every field F, it is NP-hard to decide whether an input graph G sat-

isfies ξ l(G, F) ≤ 3. This is shown by a reduction from the standard satisfiability problem SAT. The

reduction, presented in Section 5.2.1 below, combines the reductions that were used by Peeters [23]

and by Osang [22] to prove the hardness of determining, respectively, the orthogonality dimension

and the local chromatic number. After proving the completeness and soundness of the reduction,

in Sections 5.2.2 and 5.2.3 respectively, we derive Theorem 1.8 in Section 5.2.4.
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5.2.1 The Reduction

Our reduction from SAT to the problem of deciding whether the local orthogonality dimension of

a graph over any field F is at most 3 is performed in two steps.

Let ϕ be an instance of SAT, i.e., a CNF formula, and denote its variables by x1, . . . , xk. In the

first step of the reduction, we construct a graph G as follows. The graph G consists of two adjacent

vertices for every variable xi, representing its two literals xi and xi. These 2k vertices are connected

to another vertex denoted by w. We connect this vertex w to two other vertices denoted by t and f

and connect them by an edge (see Figure 1). Then, for every clause of the formula ϕ, we construct

a chain of OR gadgets. The OR gadget, given in Figure 2, consists of a triangle, where one of its

vertices is adjacent to the vertex w and is referred to as the top vertex of the gadget, and the other

two are adjacent to some other two vertices that are referred to as the base vertices of the gadget.

The base vertices of the first OR gadget of a given clause are those of its first two literals. The base

vertices of the second OR gadget are the top vertex of the first OR gadget and the vertex of the

third literal of the clause. Similarly, the base vertices of the third OR gadget are the top vertex of

the second OR gadget and the vertex of the fourth literal of the clause. Proceeding this way, we

get from a clause that consists of r literals, a chain of r − 1 OR gadgets, and we identify the top

vertex of the last one with the vertex t. Note that the top vertex of every OR gadget is adjacent to

the vertex w.

Next, in the second step of the reduction, we construct a graph G′ from G by adding a gadget,

denoted by Hi,j, for each pair of vertices i ∈ {w, t, f} and j /∈ {w, t, f} in G. The graph Hi,j is

defined as a union of two triangles, whose vertices are {i, ai,j, bi,j} and {j, di,j , ci,j}, with a matching

connecting the vertices i, ai,j, bi,j to the vertices di,j, j, ci,j respectively (see Figure 3). Note that the

two vertices i, j of G are identified with the two vertices i, j of their gadget Hi,j in G′. This completes

the description of the output G′ of the reduction, which can clearly be constructed in polynomial

running-time.

w

ft

x1 x1 x2 xkx2 xk
· · ·

Figure 1: Basic gadget

a

b c

w

Figure 2: OR gadget

The top vertex is a; the

base vertices are b and c.

ai,j

di,j

j

i

bi,j ci,j

Figure 3: Hi,j gadget

5.2.2 Completeness

The completeness of the reduction is proved via the following two lemmas.

Lemma 5.3. If ϕ is satisfiable then χ(G) ≤ 3.

Proof: If ϕ is satisfiable then there exists an assignment to its variables that satisfies all of its

clauses, that is, every clause has a literal that is assigned ‘true’. The constructed graph G can
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be properly colored using the colors {w, t, f} as follows. We first color the vertices w, t, f by the

colors w, t, f respectively. Next, we color every vertex representing a literal (xi or xi, i ∈ [k]) by

t or f according to whether its truth value is ‘true’ or ‘false’ respectively. Now, observe that the

OR gadget satisfies that given arbitrary colors from {t, f} for its base vertices, one can extend the

coloring properly so that the top vertex is colored either t or f . Moreover, if at least one of the

base vertices is colored t, then it is possible to properly extend the coloring so that the top vertex is

colored t as well. By construction, since the given assignment satisfies the formula ϕ, the coloring

of the graph can be properly extended, so that the top vertex of the last OR gadget of every clause,

which is identified with the vertex t, is colored t. This implies that χ(G) ≤ 3, as required.

Lemma 5.4. If χ(G) ≤ 3 then χ(G′) ≤ 3.

Proof: Suppose that χ(G) ≤ 3. Recall that the graph G′ is obtained from G by adding the gad-

get Hi,j for certain pairs of vertices i, j of G. Hence, to prove that χ(G′) ≤ 3, it suffices to show

that the gadget Hi,j has a proper 3-coloring where the vertices i and j share the same color and

that it has a proper 3-coloring where they do not. The former follows from the color classes

{{i, j}, {ai,j , ci,j}, {bi,j, di,j}} and the latter from the color classes {{i, ci,j}, {ai,j , di,j}, {j, bi,j}}, so we

are done.

The following corollary summarizes the completeness of the reduction.

Corollary 5.5. For every field F, if ϕ is satisfiable then ξ l(G
′, F) ≤ 3.

Proof: By Lemmas 5.3 and 5.4, it follows that if ϕ is satisfiable then χ(G′) ≤ 3. In particular, for

every field F, it holds by (4) that ξ l(G
′, F) ≤ χl(G

′) ≤ χ(G′) ≤ 3, as required.

5.2.3 Soundness

The following lemma provides a crucial property of the gadget graph Hi,j.

Lemma 5.6. Let H = Hi,j = (V, E) be the graph given in Figure 3, and let F be a field. For an integer t,

let U be a subspace of Ft of dimension dim(U) = 3, and let (uv)v∈V be an orthogonal representation of H

over F such that uv ∈ U for every v ∈ V. Then, the vectors ui and uj of the vertices i and j of H satisfy

either 〈ui, uj〉 = 0 or ui = α · uj for some α ∈ F.

Proof: Consider the orthogonal representation (uv)v∈V of H over F given in the lemma. The vec-

tors of the vertices i, ai,j, bi,j are pairwise orthogonal over F, and since they are not self-orthogonal,

it follows that they are linearly independent over F. By the assumption dim(U) = 3, this implies

that U = span(ui, uai,j
, ubi,j

). It thus follows that they span each of the vectors of the other vertices

j, ci,j, di,j of H. Write

uj = α1 · ui + α2 · ubi,j
+ α3 · uai,j

for some coefficients α1, α2, α3 ∈ F. Since ai,j and j are adjacent in H, we have 〈uai,j
, uj〉 = 0, and

yet 〈uai,j
, uai,j

〉 6= 0. By considering the inner product of both sides of the above equality with uai,j
,

it follows that α3 = 0, hence

uj = α1 · ui + α2 · ubi,j
. (11)
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Similarly, for some coefficients β1, β2 ∈ F we have

uci,j
= β1 · ui + β2 · uai,j

, (12)

and for some coefficients γ1, γ2 ∈ F we have

udi,j
= γ1 · uai,j

+ γ2 · ubi,j
. (13)

Now, since j is adjacent in H to both ai,j and ci,j, it follows that 〈uj, uai,j
〉 = 〈uj, uci,j

〉 = 0. By (12),

it follows that 〈uj, β1 · ui〉 = 0. If 〈ui, uj〉 = 0, then we are done. Otherwise, we must have β1 = 0,

hence uci,j
= β2 · uai,j

where β2 6= 0.

Similarly, since di,j is adjacent in H to both i and j, it follows that 〈udi,j
, ui〉 = 〈udi,j

, uj〉 = 0.

By (11), it follows that 〈udi,j
, α2 · ubi,j

〉 = 0. If α2 = 0, then uj = α1 · ui and we are done. Otherwise,

we must have 〈udi,j
, ubi,j

〉 = 0.

We are left with the case where uci,j
= β2 · uai,j

and 〈udi,j
, ubi,j

〉 = 0. Since di,j is adjacent in H to

ci,j, it follows that 〈udi,j
, uci,j

〉 = 0, and thus 〈udi,j
, uai,j

〉 = 0. Using (13), this contradicts the fact that

udi,j
is not self-orthogonal, completing the proof.

We are ready to deduce the following.

Lemma 5.7. For every field F, if ξ l(G
′, F) ≤ 3 then χ(G) ≤ 3.

Proof: Let F be a field, and suppose that ξ l(G
′, F) ≤ 3. Then, there exists an orthogonal represen-

tation (uv)v∈V(G′) of G′ over F with locality at most 3. Since the vertices w, t, f form a triangle in

G′, their vectors are pairwise orthogonal over F. Since they are not self-orthogonal, this implies

that the subspace U = span(uw, ut, u f ) satisfies dim(U) = 3.

We claim that all the vectors of the given orthogonal representation lie in U. Before proving

it, we explain why this yields that χ(G) ≤ 3. Indeed, for every two vertices i ∈ {w, t, f} and

j /∈ {w, t, f} of G, the vectors of the corresponding gadget Hi,j in G′ lie in the subspace U, hence

by Lemma 5.6, their vectors ui and uj satisfy either 〈ui, uj〉 = 0 or ui = α · uj for some α ∈ F.

Hence, for every vertex v of G, the vector uv is a scalar multiple of precisely one of the pairwise

orthogonal vectors uw, ut, u f . This gives us a partition of the vertex set of G into three color classes

of a proper coloring of G, hence χ(G) ≤ 3.

It remains to show that all the vectors of the given orthogonal representation of G′ lie in U. To

this end, we say that a vertex of G′ spans U if the linear span of the vectors of its closed neigh-

borhood contains U. Observe that if a vertex spans U then all the vectors of its neighbors lie in

U, as otherwise we would get a contradiction to the locality 3 of the orthogonal representation.

The vertices w, t, f clearly span U. This implies that for each i ∈ [k], the vectors uxi
and uxi

lie

in U. Moreover, the literal vertices span U, because they belong to a triangle whose vertices are

assigned vectors of U. Observe further that if the two base vertices of an OR gadget span U then

so does the top vertex. Indeed, in this case the top vertex belongs to a triangle whose vertices are

adjacent to vertices that span U, hence each vertex of this triangle spans U. By the construction

of G, repeatedly applying this property of the OR gadget implies that all the vertices of G span

U. Finally, observe that if the vertices i and j of a gadget Hi,j in G′ span U then so do the rest of

the vertices of the gadget. Hence, all the vertices of G′ span U, and since every vertex of G′ has a

neighbor, it follows that all the vectors of the orthogonal representation lie in U, as desired.
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To complete the soundness proof, we need the following lemma.

Lemma 5.8. If χ(G) ≤ 3 then ϕ is satisfiable.

Proof: Suppose that χ(G) ≤ 3, that is, there exists a proper coloring of G with three colors, and

assume, without loss of generality, that the vertices w, t, f are colored by the colors w, t, f respec-

tively. By construction, every literal vertex is colored either t or f , where its color is different from

the color of its negation. This allows us to consider the assignment that assigns to every literal

whose vertex is colored t the value ‘true’ and to every literal whose vertex is colored f the value

‘false’. We claim that this assignment satisfies ϕ. To see this, suppose by contradiction that all the

literals of some clause of ϕ are assigned ‘false’. Observe that the OR gadget satisfies that if its two

base vertices are colored f then so is the top vertex. Repeatedly applying this observation, we get

that the top vertex of the last OR gadget of this clause is colored f . However, by the construction

of G, this vertex is identified with the vertex t whose color is t, contradicting our assumption.

The following corollary summarizes the soundness of the reduction and follows immediately

from Lemmas 5.7 and 5.8.

Corollary 5.9. For every field F, if ξ l(G
′, F) ≤ 3 then ϕ is satisfiable.

5.2.4 Proof of Theorem 1.8

Proof: Let F be a field. For k = 3, the NP-hardness result follows from the reduction presented in

Section 5.2.1, whose correctness follows from Corollaries 5.5 and 5.9.

For k ≥ 4, consider the reduction from SAT that given a CNF formula ϕ outputs the graph G′′

obtained from the graph G′, defined in Section 5.2.1, by adding to it a complete graph on k − 3

vertices and connecting them to all the vertices of G′. The graph G′′ can obviously be constructed

efficiently. We turn to prove the correctness of the reduction.

For completeness, recall that if ϕ is satisfiable, then by Lemmas 5.3 and 5.4, χ(G′) ≤ 3. A

proper coloring of G′ can be extended to a proper coloring of G′′ by assigning to the k − 3 vertices

of the added complete graph new distinct colors. It follows that χ(G′′) ≤ k, so in particular,

using (4), ξ l(G
′′, F) ≤ k.

For soundness, suppose that ξ l(G
′′, F) ≤ k, that is, there exists an orthogonal representation of

G′′ over F with locality at most k. Consider some vertex of G′′ that was added to G′, and let U be

the subspace spanned by the vectors of its closed neighborhood. By locality, we have dim(U) ≤ k.

Let W be the subspace of U that consists of all the vectors of U that are orthogonal to the k − 3

vectors of the vertices of the added complete graph. Since these vectors are pairwise orthogonal,

are not self-orthogonal, and belong to U, it follows that dim(W) ≤ k − (k − 3) = 3. In addition,

since the vertices of G′ are adjacent to the vertices of the added complete graph, it follows that

all of their vectors lie in W. Hence, the restriction of the given orthogonal representation to the

vertices of G′ yields that ξ l(G
′, F) ≤ dim(W) ≤ 3, so by Corollary 5.9, ϕ is satisfiable, and we are

done.

6 Local Orthogonality Dimension and Index Coding

We start this section with a brief background on the minrank parameter, whose study is motivated

by the linear index coding problem. We then review, in a generalized form, the connection given
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in [26] between the local chromatic number and the minrank parameter. Finally, we relate the local

orthogonality dimension of graphs to the minrank parameter and prove Theorem 1.9.

6.1 Minrank

It was proved in [4] that the optimal length of a solution to the linear index coding problem over a

field F is precisely the minrank of the corresponding side information graph over F. The minrank

parameter is defined as follows.

Definition 6.1 (Minrank [11]). Let G = (V, E) be a graph on the vertex set V = [n] and let F be a field.

We say that a matrix M ∈ Fn×n represents G if Mi,i 6= 0 for every i ∈ V, and Mi,j = 0 for every distinct

non-adjacent vertices i and j. The minrank of G over F is defined as

minrkF(G) = min{rankF(M) | M represents G over F}.

We remark that the orthogonality dimension of a graph over a field F is closely related to the

minrank over F of the complement graph. To see this, consider a graph G on n vertices, and let us

interpret the rows of a matrix A ∈ Fn×t as an assignment of t-dimensional vectors to the vertices

of G. It follows that ξ(G, F) is the smallest integer t for which there exists a matrix A ∈ Fn×t

such that A · AT represents the complement G of G. On the other hand, Definition 6.1 implies that

minrkF(G) is the smallest integer t for which there exist two matrices A and B in Fn×t such that

A · BT represents G over F. With these definitions in mind, the only difference between ξ(G, F)

and minrkF(G) is in the requirement of A and B to be equal in the former. In particular, for every

graph G and every field F, minrkF(G) ≤ ξ(G, F).

Another characterization of the minrank parameter is given by the following lemma and relies

on the notion of independent representations of graphs (recall Definition 2.2). For a proof, see,

e.g., [1, Lemma 5].

Lemma 6.2. For every graph G and a field F, minrkF(G) is the smallest integer t for which there exists a

t-dimensional independent representation of G over F.

6.2 Local Chromatic Number and Minrank

The following statement shows how a proper coloring of a graph can be combined with an appro-

priate collection of vectors to obtain an upper bound on the minrank of the complement graph.

The proof relies on an idea of [26].

Proposition 6.3. Let G = (V, E) be a graph and let F be a field. Suppose that there exist a proper coloring

c : V → [m] of G and m vectors u1, . . . , um ∈ Ft, such that for every vertex v ∈ V the vectors of

{uc(v′) | v′ ∈ {v} ∪ N(v)},

that are indexed by the colors of the closed neighborhood of v, are linearly independent over F. Then,

minrkF(G) ≤ t.

Proof: Given a coloring c : V → [m] and vectors u1, . . . , um ∈ Ft as above, assign to each vertex

v ∈ V the vector uc(v). The assumption implies that for every vertex v ∈ V, the vector uc(v) of
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v does not belong to the linear span of the vectors of its neighbors in G. It thus follows that this

assignment forms a t-dimensional independent representation of G over F, hence by Lemma 6.2,

minrkF(G) ≤ t, as desired.

As an immediate application of Proposition 6.3, we obtain the following.

Proposition 6.4. Let G = (V, E) be a graph and let F be a field. Suppose that there exist a proper coloring

c : V → [m] of G with locality ℓ and m vectors in Ft such that every ℓ of them are linearly independent

over F. Then, minrkF(G) ≤ t.

It is well known that for all integers ℓ ≤ m and for every field F of size at least m, there exist m

vectors in Fℓ such that every ℓ of them are linearly independent over F. Indeed, let α1, . . . , αm ∈ F

be distinct elements of the field, and consider the vectors (1, αi, α2
i , . . . , αℓ−1

i ) ∈ Fℓ for i ∈ [m]. By

standard properties of Vandermonde matrices, every ℓ of these vectors are linearly independent

over F. Applying Proposition 6.4 with such collections of vectors, we derive the following.

Proposition 6.5. Let G be a graph on n vertices and let F be a field. If there exists a proper coloring

c : V → [m] of G with locality ℓ such that |F| ≥ m, then minrkF(G) ≤ ℓ. In particular, if |F| ≥ n, then

minrkF(G) ≤ χl(G).

As mentioned earlier, it was shown in [29] that there exist topologically t-chromatic graphs G

satisfying χ(G) = t and yet χl(G) = ⌈t/2⌉+ 1. By Proposition 6.5, it follows that they also satisfy

minrkF(G) ≤ ⌈t/2⌉+ 1 for every sufficiently large field F. This shows that the lower bound on the

minrank of the complements of topologically t-chromatic graphs, given in (2) and proved in [1], is

tight on these graphs.

However, if the field F is not sufficiently large, collections of vectors in Fℓ such that every ℓ of

them are linearly independent over F do not exist (see, e.g., [3]). Hence, given a graph G = (V, E),

a proper coloring c : V → [m] with locality ℓ, and a field F, one would like to apply Proposition 6.3

with a collection of m vectors u1, . . . , um ∈ Ft of as small dimension t as possible, such that the

vectors associated with the colors of every closed neighborhood are linearly independent over

F. Interestingly, the problem of minimizing the dimension t with respect to such constraints was

studied by Schulman [25] (see also [14]) in the context of economical constructions of sample

spaces of binary vectors with uniform restrictions to given sets of coordinates. The following

simple lemma is essentially given in [25], and we include here a quick proof for completeness.

Lemma 6.6 ([25]). Let H be a collection of h subsets of [m], of size at most ℓ each, and let F be a finite field

of size q. Put t = ℓ+ ⌈logq h⌉. Then, there exist vectors u1, . . . , um ∈ Ft such that for every H ∈ H, the

vectors of {ui | i ∈ H} are linearly independent over F.

Proof: The required m vectors u1, . . . , um ∈ Ft are chosen one by one in m steps as follows. For

every j ∈ [m], the vector uj is chosen to be any vector of Ft such that for every H ∈ H with j ∈ H,

uj does not lie in the linear span of the vectors of {ui | i ∈ H, i < j}. Note that the vectors of such

a set span a subspace of dimension at most ℓ− 1. Hence, the total number of forbidden vectors

in every step is at most h · qℓ−1 < qt, where the inequality follows from the definition of t. This

ensures that the m vectors can be chosen successfully, satisfying the required condition.

Now, by combining Proposition 6.3 with Lemma 6.6, we reprove the result of [26] for the binary

field (with a slightly better multiplicative constant).
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Corollary 6.7 ([26]). For every graph G on n vertices, minrkF2
(G) ≤ χl(G) + ⌈log2 n⌉.

Proof: Let G = (V, E) be a graph n vertices, and put ℓ = χl(G). Then, for some integer m there

exists a proper coloring c : V → [m] of G with locality ℓ. Let H be the collection of the n sets

of colors of the closed neighborhoods of the vertices of G. By locality, the size of every such set

is at most ℓ, hence by Lemma 6.6, there exist vectors u1, . . . , um ∈ Ft
2 for t = ℓ + ⌈log2 n⌉, such

that the vectors of {ui | i ∈ H} are linearly independent over F2 for every H ∈ H. Applying

Proposition 6.3, it follows that minrkF2
(G) ≤ t. The proof is completed by switching the roles of

G and of its complement.

6.3 Local Orthogonality Dimension and Minrank

We finally prove Theorem 1.9, showing that the local chromatic number in Corollary 6.7 can be

replaced by the local orthogonality dimension over F2. The proof uses a probabilistic argument.

We first prove the following lemma.

Lemma 6.8. For a finite field F and integers t and m, let D ⊆ Ft be a set of linearly independent vectors

over F, and let A ∈ Fm×t be a uniformly chosen random matrix over F. Then, the vectors A · w with

w ∈ D are distributed uniformly and independently over Fm.

Proof: Let D = {w(1), . . . , w(r)} ⊆ Ft be a set of r linearly independent vectors over F, and let

A ∈ Fm×t be a uniformly chosen random matrix over F. It is clear that for every i ∈ [r], the

vector w(i) is nonzero, hence the vector A · w(i) is uniformly distributed over Fm. To prove that the

vectors A · w(i) with i ∈ [r] are distributed independently, it suffices to show that the number of

matrices A ∈ Fm×t satisfying A ·w(i) = b(i) for all i ∈ [r] for an r-tuple of vectors b(1), . . . , b(r) ∈ Fm

is independent of the choice of the r-tuple.

To do so, fix such b(1), . . . , b(r) ∈ Fm and let a(1), . . . , a(m) denote the m random rows of the

matrix A. Notice that for every i ∈ [r], it holds that A · w(i) = b(i) if and only if

〈a(j), w(i)〉 = b
(i)
j (14)

for all j ∈ [m]. Since the vectors of D are linearly independent over F, it follows that for every

j ∈ [m], the vectors a(j) satisfying (14) for all i ∈ [r] form an affine subspace over F of dimension

t − r, hence their number is precisely |F|t−r . This implies that the number of matrices A satisfying

A · w(i) = b(i) for all i ∈ [r] is |F|m·(t−r), independently of the vectors b(1), . . . , b(r), as required.

We are ready to prove the following theorem, which confirms Theorem 1.9.

Theorem 6.9. For every graph G on n vertices and a finite field F of size q,

minrkF(G) ≤ ξ l(G, F) + ⌈logq n⌉.

Proof: For a graph G = (V, E) on n vertices and a finite field F of size q, put ℓ = ξ l(G, F) and

m = ℓ+ ⌈logq n⌉. Then, for some integer t, there exists a t-dimensional orthogonal representation

(wv)v∈V of G with locality ℓ. Let A ∈ Fm×t be a uniformly chosen random matrix over F. For

every vertex v ∈ V, define w̃v = A · wv ∈ Fm. We turn to show that, with positive probability, the

vectors (w̃v)v∈V form an m-dimensional independent representation of G.
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To this end, for a vertex v ∈ V, let B(v) ⊆ N(v) be a collection of vertices whose vectors

{wu | u ∈ B(v)} in the given orthogonal representation form a basis of span({wu | u ∈ N(v)}).

Since the locality of the given orthogonal representation is ℓ, it follows that the dimension of this

subspace is at most ℓ− 1, and thus |B(v)| ≤ ℓ− 1. Now, for each vertex v ∈ V, let Lv denote the

event that

w̃v ∈ span({w̃u | u ∈ N(v)}).

By the definition of the set B(v), it follows that

span({w̃u | u ∈ N(v)}) = span({w̃u | u ∈ B(v)}). (15)

Moreover, by |B(v)| ≤ ℓ − 1, the dimension of this subspace is at most ℓ− 1, hence its size is at

most qℓ−1. Since the vectors wu with u ∈ {v} ∪ B(v) are linearly independent over F, Lemma 6.8

implies that the corresponding vectors w̃u = A · wu are distributed uniformly and independently

over Fm. Hence, for every choice of the vectors w̃u with u ∈ B(v), the probability that the vector

w̃v, which is distributed uniformly and independently of them, lies in the subspace they span is at

most qℓ−1/qm. This yields, using (15), that

Pr [Lv] ≤
qℓ−1

qm
=

qℓ−1

qℓ+⌈logq n⌉
≤

1

qn
.

By the union bound, the probability that there exists a vertex v ∈ V for which the event Lv occurs

does not exceed n · 1
qn = 1

q < 1. This implies that there exists an m-dimensional independent rep-

resentation of G over F, so by Lemma 6.2, minrkF(G) ≤ m. The proof is completed by switching

the roles of G and of its complement.
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