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Abstract. We study the powers of Hamiltonian cycles in randomly augmented Dirac
graphs, that is, n-vertex graphs G with minimum degree at least p1{2` εqn to which some
random edges are added. For any Dirac graph and every integer m ě 2, we accurately
estimate the threshold probability p “ ppnq for the event that the random augmentation
GYGpn, pq contains the m-th power of a Hamiltonian cycle.

§1. Introduction

In this paper we continue the study of powers of Hamiltonian cycles in randomly
augmented Dirac graphs initiated by Bohman, Frieze, and Martin in [2] and developed in
[1, 5, 9] and [3]. For m P N the m-th power Fm of a graph F is defined as the graph on the
same vertex set whose edges join distinct vertices at distance at most m in F . The m-th
power of a path or a cycle will be often called an m-path or, respectively, an m-cycle. Note
that the m-cycle on v vertices has vm edges, while the v-vertex m-path has vm´

`

m`1
2

˘

edges.
A Hamiltonian cycle in a graph G is a cycle which passes through all vertices of G.

Extending the celebrated result of Dirac [4], Komlós, Sárközy, and Szemerédi in [7, 8]
proved that for large n every graph G with n vertices and minimum degree δpGq ě k

k`1n

contains the k-th power of a Hamiltonian cycle.

1.1. Thresholds and over-thresholds. For an integer k ě 0, a sequence of n-vertex
graphs G “ Gpnq is k-Dirac if δpGq ě

`

k
k`1 ` ε

˘

n for a constant ε ą 0 and all n ě n0, for
some n0 P N. For integers m ą k ě 1, a pk,mq-Dirac threshold was defined in [1, Def. 1.1]
with α “ k{pk ` 1q ` ε as, roughly, the smallest function dpnq such that with probability
approaching 1, for every k-Dirac sequence of graphs Gpnq and every p “ ppnq ě Cdpnq,
where C “ Cpε, kq ą 0, the union GpnqYGpn, pq contains the m-th power of a Hamiltonian
cycle. If existed, such a threshold function was denoted by dk,mpnq. The main feature of
that definition was that it was independent of the constant ε (or α) – only the multiplicative
constants depended on ε.
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For k “ 0, the threshold d0 “ n´1 has been established in [2]. In [5] it was proved that
dk,k`1pnq “ n´1 for all k ě 1. This was substantially extended in [1] to cover many other
pairs pk,mq. In particular, it turned out that dk,mpnq “ n´1 for all m ď 2k ` 1. (This
result was independently obtained by Nenadov and Trujić in [9].) For m “ 2, Böttcher,
Parczyk, Sgueglia, and Skokan in [3] extended this result to a more general setting when
δpGq ě αn, for all values of α P p0, 1q.

However, a vast majority of pairs pk,mq were still unaccounted for. In this paper we
consider the case k “ 1 only and solve the problem for all values of m. Along the way it
turned out, however, that we had to come up with a new notion of threshold.

Looking back at the results in [1] for just k “ 1, it is perhaps surprising that only the
values of m P t2, 3, 4, 5, 8u are covered. Indeed, Theorem 1.2 in [1] established the bound
d1,mpnq ď n´2{` where ` “ mint`1 ď m : `1 ě pm ´ `1qpm ´ `1 ` 1qu. On the other hand,
Theorem 1.3 therein yielded the lower bound d1,mpnq ě n´2{ptm{2u`1q, and these bounds
coincide only for m “ 2, 3, 4. For m “ 8 they leave a gap n´2{5 ď d1,8pnq ď n´1{3 which
was closed by showing that d1,8pnq “ n´1{3 (see [1, Theorem 1.5]).

The case m “ 5, treated only as a concluding remark in [1], was exceptional in that
it escaped the notion of threshold as defined there. Indeed, in Claims 9.1 and 9.2 in [1]
the exponent of n depends on ε. More precisely, for each ε ą 0 there exist two constants
c1 “ c1pεq and c2 “ c2pεq such that the transition from limiting probability zero to one
takes place somewhere between n´1{2´c1 and n´1{2´c2 . Moreover, both c1 and c2 converge
to 0 with εÑ 0. (For more discussion on thresholds for up to m “ 10, see Section 6 II.)

Back then viewed rather as an eccentricity, the case m “ 5 has now become an enlighten-
ing indication of the truth in full generality. Indeed, it turns out that for all m R t2, 3, 4, 8u,
the threshold behavior is similar to that for m “ 5. As our goal has been to determine a
threshold function independent of ε, we are in need of a new notion of a threshold. So, one
might view the four “typical” cases solved in [1, 5] as the tip of an iceberg which, however,
in its depths looks quite different than what the tip might have suggested.

Inspired by the case m “ 5, we now define a new type of threshold. For future references,
we do it for all k ě 1, although this paper is exclusively devoted to the classical Dirac case
of k “ 1. For integers m ě 1 and n ě m` 2, the family (or property) Cmn consists of all
n-vertex graphs G that contain the m-th power of a Hamiltonian cycle.

We say that a function dpnq is a pk,mq-Dirac over-threshold if

(i) for every ε ą 0 there exists µ ą 0 such that for all n-vertex graphs G with
δpGq ě p k

k`1 ` εqn and all p “ ppnq ě dpnqn´µ

lim
nÑ8

PpGYGpn, pq P Cmn q “ 1,
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and
(ii) for every real µ ą 0, there exists ε ą 0 and a sequence of n-vertex graphs Gε “ Gεpnq

with δpGεq ě
`

k
k`1 ` ε

˘

n such that for every p “ ppnq ď dpnqn´µ

lim
nÑ8

PpGε YGpn, pq P Cmn q “ 0.

If exists, the pk,mq-Dirac over-threshold is denoted by d̄k,mpnq. Obviously, the existence of
the over-threshold d̄k,mpnq excludes the existence of the pk,mq-Dirac threshold dk,npnq. The
prefix “over” is meant to remind us that the abrupt change in behavior of the probability in
question happens just “below” the function dpnq. The main difference between the pk,mq-
Dirac threshold as defined in [1] and the new notion above is that now the dependence on
ε is much more substantial. As a drawback, however, for any given ε we do not obtain a
threshold in the classical sense, but a pair of functions bounding it from both sides.

1.2. Main results. The thresholds obtained in [1] were related to the density of the so
called braid graphs (see Definition 4.2 and Fig. 4.2). Given a graph G, let vG “ |V pGq|
and eG “ |EpGq|. For a graph G with vG ą 1, by density and, respectively, maximum
density, we mean

dG “
eG

vG ´ 1 and mG “ max
HĎG,vHą1

dG.

The parameter dG is often called 1-density.
Roughly speaking, for 0 ď r ď `, a braid graph consists of an ordered collection of

`-cliques such that any two consecutive cliques are joined by a structure called an r-
bridge having exactly

`

r`1
2

˘

edges (see Definition 4.1 and Fig. 4.1). It was crucial for the
construction used in the proof in [1] that

m “ k`` r, (1.1)

so that when k ` 1 braids are intertwined and all `-cliques at distance at most k, one from
each braid, are fully connected to each other, each vertex has exactly k`` r “ m neighbors
ahead of itself (and, by symmetry, also behind itself). That is, such a structure forms an
m-path.

The cases of k and m covered in [1] were, with the exception of p1, 8q and p2, 14q, exactly
those for which one could find integers ` ě 2 and r ě 0 with rpr ` 1q ď ` and such that
pk ` 1qp`´ 1q ď m ď k`` r (the R-H-S inequality is due to the monotonicity of m-path
containment with respect to m). The lower bound on ` implied that the densest subgraph
of a braid was an `-clique and, consequently, the exponent in the pk,mq-Dirac threshold
equalled the negated reciprocal of the density dK`

of the `-clique, that is, ´2{`. The reason
was that for p ě n´2{` there are in Gpn, pq plenty of copies of the braid (c.f., [1, Proposition
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5.8], an immediate corollary of [1, Theorem 2.2]), a fact which was a crucial building block
in the proof therein.

In this paper we allow the opposite case, namely ` ă rpr ` 1q (for k “ 1). It turns out
that now the densest subgraph of a braid is the braid itself (see Proposition 4.3). Moreover,
another corollary of [1, Theorem 2.2], namely Proposition 4.4 below, implies that, again,
there are plenty of copies of braids in Gpn, pq with appropriately adjusted p (the exponent
of n is now the negated reciprocal of the density of the braid).

We aim at finding an optimal value of ` for which the (asymptotic) density of the braid
determines the p1,mq-Dirac over-threshold. For this sake we introduce a pivotal quantity
fmp`q. For integers m ě 2 and ` P rms, let

fmp`q “
1
`

ˆˆ

`

2

˙

`

ˆ

m´ `` 1
2

˙˙

“ ``
m2 `m

2` ´m´ 1.

Note that for k “ 1, (1.1) becomes m “ `` r. Thus, for ` ě m{2, fmp`q equals the average
number of edges adjacent to the vertices of the first `-clique in the braid and, consequently,
it equals the asymptotic density of the braid as the number of cliques tends to infinity (see
Section 4 for details).

Observe that for ` ą 0

fmp`q “

ˆ

?
`´

?
2m2 ` 2m

2
?
`

˙2

`
?

2m2 ` 2m´m´ 1 ě
?

2m2 ` 2m´m´ 1.

Thus, the function f “ fm has a unique global minimum on the real interval p0,ms at

λm “

?
2m2 ` 2m

2 .

Hence, for each integer ` P rms we have fp`q ě min tfptλmuq, fprλmsqu. Let

`m P ttλmu, rλmsu be such that fp`mq “ min tfptλmuq, fprλmsqu . (1.2)

As a convention, when tλmu ‰ rλms but fptλmuq “ fprλmsq, we always set `m “ tλmu. For
example, λ20 “

?
210, tλ20u “ 14, rλ20s “ 15, and fp14q “ 8 “ fp15q, so we set `20 “ 14.

In general, λm ě m{2 for all m, and `m ě λm ´ 1 ě m{2 for m ě 4.
We are ready to state the main results of this paper. From now on we abbreviate

p1,mq-Dirac (over-)threshold to just m-Dirac (over-)threshold and use d̄mpnq for d̄1,mpnq.

Theorem 1.1. For every integer m ě 2 and a real µ ą 0, there exists ε ą 0 and
a sequence of n-vertex graphs Gε “ Gεpnq with δpGεq ě p1

2 ` εqn such that for every
p “ ppnq ď n´1{fp`mq´µ

lim
nÑ8

PpGε YGpn, pq P Cmn q “ 0.
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m 2 [5] 3 [1, 9] 4 [1] 5 [1] 6 7 8 [1] 9 ě 10
αm 1 1 3

2 2 9
4

13
5 3 7

2 fp`mq

Table 1. The negated reciprocals αm of the exponents of n in the m-Dirac
thresholds (m P t2, 3, 4, 8u) and over-thresholds (all other m ě 2).

Theorem 1.1 implies that, if an over-threshold exists, d̄mpnq ě n´1{fp`mq. Below we provide
an upper bound.

Theorem 1.2. For all integersm and ` such thatm{2 ď ` ď m´1 and ` ă pm´`qpm´``1q
and for all ε ą 0 there exists µ ą 0 such that for all n-vertex graphs G with δpGq ě p1{2`εqn
and all p “ ppnq ě n´1{fp`q´µ

lim
nÑ8

PpGYGpn, pq P Cmn q “ 1.

Theorem 1.2 implies that, if exists, d̄mpnq ď n´1{fp`q.
Remember that in [1,5] the m-Dirac thresholds for m P t2, 3, 4, 8u, as well as the 5-Dirac

over-threshold, have been already established. The next result states that for all other
m, except 6 and 9, the parameter `m from Theorem 1.1 satisfies the restriction on ` from
Theorem 1.2.

Proposition 1.3. For m “ 7 and any integer m ě 10 we have

`m ă pm´ `mqpm´ `m ` 1q.

We defer the simple proof of Proposition 1.3 to Appendix A.
Theorems 1.1 and 1.2 together with Proposition 1.3 determine them-Dirac over-threshold

in almost all cases.

Corollary 1.4. For m “ 7 and every integer m ě 10,

d̄mpnq “ n´1{fp`mq.

The remaining cases (m “ 6 and m “ 9) are treated separately in the next theorem. It
is worth mentioning that here the over-threshold differs from n´1{fp`mq.

Theorem 1.5. We have

d̄6pnq “ n´4{9 and d̄9pnq “ n´2{7.

Thereby, we have obtained the complete collection of m-Dirac thresholds and over-
thresholds. They are summarized in Table 1.
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§2. Lower bound – The proof of Theorem 1.1

The proof of Theorem 1.1 relies on two lemmas. The first one is a simple observation
about random graphs.

Lemma 2.1. For each integer m ě 2, let `m be as defined in (1.2). For every µ ą 0, if

p ď n´1{fp`mq´µ,

then a.a.s. Gpn, pq contains no copy of Km`1.

Proof. Clearly, PpGpn, pq Ą Km`1q “ O
´

nm`1pp
m`1

2 q
¯

“ op1q, whenever p “ opn´2{mq.
Thus, all we need to show is the inequality fp`mq ď m{2. For m P t2, 3u this can be
checked by computing directly fptλmuq and fprλmsq. Indeed, we have λ2 “

?
3 and λ3 “

?
6,

so `2 “ `3 “ 2 and fp`2q “ 1{2 ă 1, while fp`3q “ 1 ă 3{2. Assume now that m ě 4. It
can be easily verified (by solving a quadratic inequality) that fp`mq ď m{2 is equivalent to
`m ě m{2. Finally, recall that `m ě

?
2m2`2m

2 ´ 1 ě m{2 for m ě 4. �

The proof of the second lemma, which is fully deterministic, will be given in Section 3.
Recall that by an m-path we mean the m-th power of a path.

Lemma 2.2. Let m ě 2 and let P be an m-path with V pP q “ AY B, AX B “ ∅, such
that there are no m` 1 consecutive vertices in P either all belonging to A or all belonging
to B. Then,

|EpP rAsq| ` |EpP rBsq| ě fp`mq|V pP q| ´ 2m2,

where `m is defined in (1.2).

Lemma 2.2 is the key novelty compared to [1] and might be of independent interest, as it
provides structural information about a graph commonly arising in the study of randomly
augmented graphs.

Let us now define this crucial graph. It has been first used in [2] to prove a lower bound
on d0, and then in many other papers in the same context, e.g., [1, 3, 5, 9].

Definition 2.3. For ε ą 0 and even n, let G be an n-vertex complete bipartite graph with
bipartition classes X Y Y , where |X| “ |Y | “ n{2. Fix two subsets U Ă X and W Ă Y

with |U | “ |W | “ tεnu. The graph Gε is obtained from G by adding two complete bipartite
graphs with bipartitions pU,X r Uq and pW,Y rW q.

Now we are ready to give a short proof of Theorem 1.1.

Proof of Theorem 1.1. Given m and µ, let ε ą 0 be any constant such that ε ď 1{6 and
1
ε
ą

6m2

pfp`mqq2µ
`

6m2

fp`mq
. (2.1)
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(Note that ε decreases when µ does.)
Let Gε be as in Definition 2.3. Let p ď n´1{fp`mq´µ and suppose that GεYGpn, pq contains

the m-th power of a Hamiltonian cycle C. After removing the vertices of U YW from Gε

(and thus from C), we obtain a collection of at most 2tεnu m-paths in pX rUq Y pY rW q,
hence at least one of them must be of length at least

n´ 2tεnu

2tεnu
ě

1
2ε ´ 1 ě 1

3ε.

Fix such a path P of length L “ r 1
3εs and consider its edgewise intersection with Gpn, pq.

Setting A “ V pP q XX and B “ V pP q X Y , by the construction of Gε and the removal of
U YW ,

Gpn, pq X P “ P rAs Y P rBs.

Let M “ rfp`mqLs´ 2m2. By Lemma 2.2, either Gpn, pq Ą Km`1 or there are no m` 1
consecutive vertices in P either all belonging to A or all belonging to B, and thus

|EpP rAsq| ` |EpP rBsq| ěM.

The former event, by Lemma 2.1, does not hold a.a.s.. The latter, in turn, implies the
existence in Gpn, pq of a subgraph with L vertices and M edges. The expected number
of such subgraphs, abbreviating f “ fp`mq and using our bound on p and (2.1), can be
crudely bounded from above by
ˆ

`

L
2

˘

M

˙

nLpM ď O
`

nL´p1{f`µqM
˘

“ O
´

nL´p1{f`µqpfL´2m2q
¯

“ O
´

n2m2{f`2m2µ´µf{p3εq
¯

“ op1q.

Hence, a.a.s. Gε YGpn, pq cannot contain such a path P , and thus a.a.s.

Gε YGpn, pq R Cmn .

�

§3. Proof of Lemma 2.2

This section is entirely devoted to the proof of our main lemma, namely Lemma 2.2.

Proof of Lemma 2.2. The ordering of the vertices on P defines a partition of AYB into
segments S1, S2, . . . , St, which consist of maximal sets of consecutive vertices of P lying
entirely in A or entirely in B. Thus, A “ S1 Y S3 Y . . . and B “ S2 Y S4 Y . . . . We will
first show that in order to bound the number of edges in P rAs Y P rBs we can consider
a different m-path P 1 on the same set of vertices, but with a new partition A1YB1 “ AYB

and new segments S 11, S12, . . . , S 1t1 which alternate between A1 and B1, and such that
(a) for all i “ 1, . . . , t1, |S 1i| ď m, and
(b) for all i “ 1, . . . , t1 ´ 1, |S 1i| ` |S 1i`1| ě m.
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Condition (a) implies that neither P 1rA1s, nor P 1rB1s, contains a copy of Km`1, while
condition (b) guarantees that all edges in EpP 1rA1sq Y EpP 1rB1sq connect only vertices
lying in consecutive segments of A1 or consecutive segments of B1. The second condition
simplifies the computation of the number of relevant edges as, given (b), the number of
edges between segment S 1i and all segments lying to the right will depend only on the
size of S 1i`1. In the end, we will bound the size of EpP rAsq Y EpP rBsq by the size of
EpP 1rA1sqYEpP 1rB1sq minus a correcting additive term, cf. (3.1). Then the latter, owing to
properties (a) and (b), will be minimized by fp`mq|V pP 1q|`Op1q, a quantity corresponding
to the case when P 1rA1s and P 1rB1s have both a braid-like structure.

The path P 1 and the partition A1YB1 are constructed from the path P and the partition
A Y B iteratively. In each step we can shift a number of vertices between the partition
classes, thus changing the partition. Moreover, once we shift a vertex from one class to
another, say we shift a vertex v from A1 to B1, we delete all edges going from v to vertices
in A1, and we join v with those vertices in B1 which lie at distance at most m from v in
P 1. Another valid operation is shifting the first vertex u of a segment S 1i`1 at the end of
segment S 1i´1. Here we don’t change the partition, but we change the ordering of vertices
in P 1 and we need to adjust the edges so that u is connected only with vertices in the same
partition class and lying at distance at most m from it in the new ordering.
Initiation: Initially P 1 “ P , A1 “ A, B1 “ B and S 1i “ Si for i “ 1, 2, . . . , t. If |S 11| ą m,

we leave the first m vertices in S 11 and shift the remaining ones to S 12. Note that this
operation changes the partition, as the shifted vertices move from A1 to B1, but it cannot
increase the number of edges. Indeed, if T is the segment we shift from S 11 to S 12, then for
k ď r|T |{2s the number of edges incident with the k-th vertex from the left in T , which we
have to remove, is at least as large as the number of edges incident with the k-th vertex
from the right, which have to add.

Now, let j be the largest index for which |S 11| ` |S 12| ` . . .` |S 1j| ă m. If j “ 0 or j “ 1
we do nothing. If j ě 2 and, say, S 1j Ă A1, we merge all vertices from S 11 Y S 12 Y . . . Y S 1j

into one class and place it in A1. That is we redefine S 11 :“ S 11 Y S 12 Y . . . Y S 1j and
S 1i :“ S 1i`j´1, i ě 2. Note that this will increase the number of edges in P 1rA1s Y P 1rB1s by
at most pm´ 1q2{4. Indeed, if x and y are the numbers of vertices of S 11 Y S 12 Y . . .Y S 1j
in, respectively, A1 and B1, then, since x` y ă m, after the change the number of edges
increases by xy ď xpm´ 1´ xq ď pm´ 1q2{4. Note that after this initial step, regardless
of what the value of j was, we have |S 11| ď m.
Iteration: We then scan P 1 from left to right and check whether the segments S 1i,

i “ 1, . . . , t1, satisfy conditions (a) and (b). If not, then we move some of the vertices,
changing the ordering of P 1 or changing the partition A1 YB1. Suppose that the segments
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S 1i´1

S 1i

S 1i`1

S, |S| “ m T

deleted edges

S 1i´1

S 1i :“ S

S 1i`1 :“ S 1i`1 Y T

added edges

B1

A1

B1

A1

Figure 3.1. When |S 1i| ą m, the last |S 1i| ´ m vertices of S 1i are shifted
to S 1i`1.

S 11, S
1
2, . . . , S

1
i´1 of P 1 satisfy (a) and (b). In view of above, we may assume that i ě 2. If

S 1i´1 was the last segment, then we are done and, if not, we proceed by considering four
cases. In each case we make suitable modifications of P 1 and the partition V pP 1q “ A1YB1

and bound the change of the number of edges in P 1rA1s YP 1rB1s. It turns out that it never
increases except in case 3 where it can increase by at most pm´ 1q2{4.
Case 0: If |S 1i| ď m and |S 1i´1| ` |S

1
i| ě m then segments S 11, S12, . . . , S 1i satisfy (a) and

(b) and we can move to the next segment S 1i`1.
Case 1: If |S 1i| ą m, we leave the firstm vertices unchanged and move the remaining ones

into S 1i`1, thus changing the partition (as the moved vertices change the side, see Fig. 3.1).
If before this operation S 1i was the last segment, then we simply create a new segment S 1i`1.
Notice that after this step segments S 11, S12, . . . , S 1i satisfy (a) and (b), since now |S 1i| “ m,
and we can move to the next segment S 1i`1.

Let S be the sequence of the first m vertices of S 1i on P 1 before the change and let T
be the sequence of the remaining vertices of S 1i. Notice that in this step we can only add
or delete edges with exactly one endpoint in T . We delete edges between T and vertices
on the left, and we add edges between T and some vertices on the right. Using the same
argument as in the initiation we see that after this step the number of edges can either
remain the same or drop.
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Case 2: If |S 1i´1| ` |S
1
i| ă m and S 1i`1 ‰ ∅, we shift the first vertex in S 1i`1 to the end

of S 1i´1 (see Fig. 3.2). Notice that after this operation segments S 11, S12, . . . , S 1i´1 still satisfy
(a) and (b). Moreover, if before the shift |S 1i`1| “ 1 while S 1i`2 ‰ ∅, then, after the shift,
we merge S 1i :“ S 1i Y S

1
i`2 and renumber S 1h :“ S 1h`2 for h ě i` 1. We then check again if

the assumption of Case 2 still holds for the new segments S 1i´1, S
1
i, S

1
i`1.

W.l.o.g. we may assume that S 1i`1 Ă A1. Let u be the first vertex in S 1i`1 (before the
shift). Since the distance on P 1 between any two vertices v, w P A1 r tuu does not change,
the only edges of P rA1s affected by the shift are those incident with u. Owing to the
assumptions |S 1i´2|` |S

1
i´1| ě m when i ą 2, and |S 1i´1|` |S

1
i| ă m, the number of neighbors

of u to the left remains unchanged by the shift (in fact, it is precisely |S 1i´1|). On the other
hand, the distance on P 1 between u and any vertex in A1 lying to the right increases (by
|S 1i|) after the shift, so the number of edges incident with u can only drop.

As for the edges in P rB1s affected by the shift, we need to consider only those edges vw for
which shifting u in front of S 1i has changed the distance between v and w on P 1. Therefore,
such edges need to be incident with S 1i. Notice that since |S 1i´1| ` |S

1
i| ă m, before the

shift each vertex in S 1i was adjacent to some vertex in S 1i´2, and, since |S 1i´2| ` |S
1
i´1| ě m,

there were no other edges incident with S 1i and going to the left. Hence, after the shift the
distance between S 1i and S 1i´2 increases by 1 and the number of edges between S 1i and S 1i´2

drops by |S 1i|. As for the edges incident with S 1i and going to the right, since after shifting
u the distance between vertices in S 1i and vertices to the right decreases by one, we have to
add at most |S 1i| new edges. Therefore, again, the total number of edges in P 1rA1s Y P 1rB1s
can only drop. (The merging of S 1i and S 1i`2 in the case when |S 1i`1| “ 1 does not alter any
edges of P .)
Case 3 (Termination): If |S 1i´1| ` |S

1
i| ă m and S 1i`1 “ ∅, we merge S 1i´1 :“ S 1i´1YS

1
i

and finish the procedure. By doing so we have to add all edges between S 1i´1 and S 1i and,
similarly as in the initiation step, the number of such edges is at most pm´ 1q2{4.

Summing up, in the initiation step we added at most pm ´ 1q2{4 edges, then in each
step we haven’t increased the number of edges until maybe at the termination where we
added at most pm´ 1q2{4 edges. Thus

|EpP rAsq| ` |EpP rBsq| ě |EpP 1rA1sq| ` |EpP 1rB1sq| ´
pm´ 1q2

2 . (3.1)

It remains to bound the number of edges in P 1rA1s Y P 1rB1s. Suppose that the number
of segments corresponding to the partition A1 YB1 is q and let x1, x2, . . . , xq be the sizes
of consecutive segments. We first count the number of edges in each segment. By (a) for
each i “ 1, 2, . . . , q we have xi ď m, hence each segment induces in P 1rA1s Y P 1rB1s exactly
`

xi

2

˘

edges. Next, we count the number of edges with endpoints in two different segments.
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S 1i´2

S 1i´1

S 1i

S 1i`1u

ă m

ě m

S 1i´2

S 1i´1

S 1i

S 1i`1u

ě m` 1

B1

A1

B1

A1

Figure 3.2. When |S 1i´1| ` |S
1
i| ă m, the first vertex in S 1i`1 is shifted at

the end of S 1i´1.

By (b) for each i “ 2, 3, . . . , q ´ 1 we have xi´1 ` xi ě m and xi ` xi`1 ě m. Therefore if
we consider the edges incident with S 1i´1 and going to the right, then each such edge can
be incident only with S 1i`1. Moreover, the number of such edges is

pm´ xiq ` pm´ xi ´ 1q ` . . .` 1 “ pm´ xiqpm´ xi ` 1q
2 .

Hence

|EpP 1rA1sq| ` |EpP 1rB1sq| “
q
ÿ

i“1

ˆ

xi
2

˙

`

q´1
ÿ

i“2

pm´ xiqpm´ xi ` 1q
2

ě

q
ÿ

i“1

ˆˆ

xi
2

˙

`
pm´ xiqpm´ xi ` 1q

2

˙

´m2
“

q
ÿ

i“1
xifpxiq ´m

2

ě

q
ÿ

i“1
xifp`mq ´m

2
“ fp`mq|V pP q| ´m

2.

Finally, by (3.1),

|EpP rAsq| ` |EpP rBsq| ě fp`mq|V pP q| ´ 2m2.

�



12 S. ANTONIUK, A. DUDEK, AND A. RUCIŃSKI

Figure 4.1. The 4-bridge.

Figure 4.2. The Bp5, 3, 4q braid (consisting of 4 ordered cliques K5 joined
by 3-bridges).

§4. Upper bound – The proof of Theorem 1.2

The proof of Theorem 1.2 is similar to that of [1, Theorem 1.2] (with k “ 1) and therefore
we will only discuss the necessary amendments. In turn, the proof of [1, Theorem 1.2]
followed a general outline of the proof of [5, Theorem 1.1] which was based by nowadays
standard method of absorption. We suggest the readers read Section 2 in [5] and Section
4 in [1] before delving into the rest of this section. In our proof all four pillars of the
absorbing method: the Connecting Lemma, the Reservoir Lemma, the Absorbing Lemma,
and the Covering Lemma, are exactly the same as, respectively, Lemmas 6.2, 4.2, 4.3, 4.4
in [1], except for the assumption on p.

To describe this fundamental change with respect to the proof in [1], we begin by recalling
the notions of a bridge and a braid graph which played a crucial role therein.

Definition 4.1. For r ě 2, two sequences of vertices á
v “ pv1, v2, . . . , vrq and á

u “

pu1, u2, . . . , urq of a graph G are said to form an r-bridge (or just a bridge if the value of r
is clear from the context) if for each i “ 1, 2, . . . , r, the vertex vi is adjacent in G to all
u1, u2, . . . , ui.

Definition 4.2. For t ě 1, ` ě 2, and 1 ď r ď `, let Bp`, r, tq be the braid graph consisting
of t vertex-disjoint `-cliques Kp1q

` , K
p2q
` , . . . , K

ptq
` , with vertices ordered arbitrarily, where

for each i “ 1, . . . , t´ 1, the last r vertices of Kpiq
` and the first r vertices of Kpi`1q

` form an
r-bridge. We write shortly Bt “ Bp`, r, tq and for any s ě 1, we denote by sBt, the union
of s vertex disjoint copies of Bt.

See Fig. 4.1 and 4.2 for examples of a bridge and a braid.
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As already mentioned above, the proof in [1] is based on the standard absorbing method
whose four main ingredients, Connecting, Reservoir, Absorbing, and Covering Lemmas,
all claim the existence of certain m-paths in G Y Gpn, pq, either of finite length 2`t for
some t ě 2, or easily assembled from such. Each m-path of length 2`t can be decomposed
or embedded into the union of an `-blow-up P2tp`q of a path of length 2t and the pair of
braids 2Bt, where r “ m ´ ` (see [1, Prop. 5.5]). The proofs of the four crucial lemmas
consist of a deterministic part and a probabilistic part, the former building several copies
of P2tp`q in G, the latter, based on [1, Prop. 5.8], a.a.s., complementing at least one of
them with a suitable copy of 2Bt (or its subgraph) coming from Gpn, pq. And only the
latter part of that proof has to be changed.

We now describe this change and its consequences. Recall the definitions of the density
parameters dG and mG from Section 1.2. Clearly, as 2Bt is a disjoint union of two copies
of Bt, we have m2Bt “ mBt . In the course of the proof of [1, Prop. 5.8] it was shown that
if ` ě rpr` 1q, r ě 1, then for all t ě 1, the maximum density in a braid is obtained by an
`-clique, hence mBt “ dK`

“ `{2. As a result, the assumption p ě Cn´2{` was sufficient in
[1] to carry on the whole proof. Now, under the opposite assumption ` ă rpr`1q, the braid
graph itself achieves the maximum density among all its subgraphs, that is mBt “ dBt .

Proposition 4.3. For all t ě 2 and 1 ď r ď ` satisfying

` ă rpr ` 1q,

we have mBt “ dBt.

We defer the proof of Proposition 4.3 to the end of this section.
In view of Proposition 4.3, setting dt “ dBt , our assumption on p relaxes to p ě Cn´1{dt .

Most importantly, dt is close to (but smaller than) fp`q. Indeed, recall that

fp`q “

`

`
2

˘

`
`

r`1
2

˘

`
.

On the other hand,

dt “
t
`

`
2

˘

` pt´ 1q
`

r`1
2

˘

t`´ 1 ,

which can be rewritten as

dt “ fp`q ´
p`´ 1qprpr ` 1q ´ `q

2`pt`´ 1q .

Hence, for ` ă rpr ` 1q, dt is a strictly increasing function of t and

lim
tÑ8

dt “ fp`q. (4.1)
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Next, we prove an analog of [1, Proposition 5.8] which reflects the change in mBt

stemming from Proposition 4.3. For a graph G with at least one edge, set

ΨG “ nvGpeG and ΦG “ min
HĎG,eHą0

ΨH .

Proposition 4.4. Let t ě 1, r ě 1, ` ă rpr ` 1q, C ě 1, and p ě Cn´1{dt. Further, let
τ ą 0, s ě 1, B “ sBt, F Ă B, and F be a family of at least τnvF copies of F in Kn.
Finally, let X be the number of copies of F belonging to F which are present in Gpn, pq.
Then there exists a constant cF ą 0 such that

PpX ď τΨF {2q ď expt´τ 2cFCnu.

Proof. In view of [1, Theorem 2.2], setting cF “ 4´eF {8, it suffices to show that ΦF ě Cn.
First assume that F 1 Ă F is connected, in particular, F 1 Ă B. Since C ě 1, we have
npdt ě C ě 1. Thus,

ΨF 1 ě ΦBt “ min
HĂBt,eHą0

n
`

npdH
˘vH´1

ě n pnpmBt q “ n
`

npdt
˘

ě Cn,

where the middle inequality follows, since vH ě 2 and npdH ě npdt ě 1. On the other
hand, if F 1 “ F1YF2 Ă F , where F1, F2 are vertex disjoint and, say, F1 is connected, then,
by the above bound applied to F1,

ΨF 1 “ ΨF1ΨF2 ě CnΨF2 ą ΨF2 ,

so a disconnected F 1 does not achieve the minimum in ΦF . In summary, ΦF ě Cn and the
conclusion follows by [1, Theorem 2.2]. �

We are now in position to outline the proof of Theorem 1.2.

Proof of Theorem 1.2 (outline). We essentially repeat the entire proof of [1, Theorem 1.2]
with k “ 1 in which all applications of [1, Proposition 5.8] are replaced with applications
of Proposition 4.4.

The exponent in the threshold probability p is thus determined by the largest value of t
with which we apply Proposition 4.4. In [1], Proposition 5.8 has been applied four times (to
either 2Bt itself or to one of its subgraphs), namely, in the proofs of Lemma 6.2 (Connecting
Lemma) with t “ 4, Lemma 4.2 (Reservoir Lemma) again with t “ 4, Proposition 7.2 (part
of the proof of the Absorbing Lemma 4.3) twice with t “ 2, and, last but not least, Claim
8.2 (part of the proof of the Covering Lemma 4.4) with t “ 2M , where M ě 1{p4`γ3q by
inequality (13) in [1].

The parameter γ, which within the proof of the Covering Lemma alone, must satisfy
only the restriction γ ď ε{12, in the main proof of [1, Theorem 1.2], is subject to much
stronger restrictions, stemming from the other three main lemmas. Therefore, it would be
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very cumbersome and, in fact, not necessary for us, to determine the dependence of M on
ε explicitly. All we can say is that M Ñ 8 with εÑ 0.

To finish the proof, it thus suffices to assume that p ě n´1{d2M`ε (note that such a p
satisfies the assumption of Proposition 4.4), set µ “ 1{d2M ` ε´ 1{fp`q, so that the above
assumption on p becomes p ě n´1{fp`q´µ, and observe that, by (4.1), we have µÑ 0 with
εÑ 0 (as then M Ñ 8).

Now, the proof of [1, Theorem 1.2] can be repeated mutatis mutandis. �

We conclude this section with the proof of Proposition 4.3.

Proof of Proposition 4.3. We are going to prove a slightly stronger statement, namely that
Bt is strictly balanced, that is, for all proper subgraphs H of Bt we have dH ă dt. First,
consider the case when ` P tr, r ` 1u. Then, Bt “ Bp`, r, tq is P r

v , the r-th power of the
v-vertex path, v “ t`, and we have

dP r
v
“
vr ´

`

r`1
r

˘

v ´ 1 “ r ´

`

r
2

˘

v ´ 1 .

Note that dP r
v
is a strictly increasing function of v. Therefore, it is easy to see that powers

of paths are strictly balanced. Indeed, a proper subgraph H of P r
v is either the r-th power

of a path Pv1 , v1 ă v, or a proper spanning subgraph of the r-th power of a path Pv1 , v1 ď v,
so in each case dH ă dP r

v
.

From now on assume that ` ě r ` 2. Our proof is by induction on t. It is easy to check
that B1 “ K` is strictly balanced. Let t ě 2 and assume that Bt´1 is strictly balanced.
Recall that the vertex set V of Bt is split into t disjoint cliques Kp1q

` , . . . , K
ptq
` the vertices

of which are ordered (say, from left to right). Set Vi “ V pK
piq
` q, i “ 1, . . . , t.

Let H be a proper subgraph of Bt such that dH “ mBt and |V pHqXVt| is minimal. First
observe that |V pHq X Vt| ą 0, as otherwise H Ă Bt´1, and by the induction assumption
and the strict monotonicity of dt, we have mBt “ dH ď dt´1 ă dt. Let s be the largest
index such that V pHq Č Vs.

Claim 4.5. We have s ď t´ 1.

This claim will be proved in Appendix B using tedious but elementary calculations. We
now show that we can transform H into a subgraph H 1 with dH 1 “ dH and |V pH 1q X Vt| ă

|V pHq X Vt|, reaching a contradiction.
Clearly, H is an induced subgraph of Bt, so it is fully determined by its vertex set. Set

X “ V pHq X Vs and Y “ V pHq X Vt. W.l.o.g., we assume that Y is the leftmost subset of
Vt. Further, let W Ă Y be the rightmost subset of Y of size |W | “ minp|Y |, `´ |X|q ą 0,
as |Y | “ |V pHq X Vt| ą 0 and `´ |X| ą 0 by the choice of s. Moreover, let W 1 Ă Vs rX
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X “ V pHq X Vs

Vs`1, . . . , Vt´1Vs Vt

H:

H 1:

. . .

. . .

W 1, |W 1| “ |W |

Z

Z

W

Y “ V pHq X Vt

U, |U | “ |W 1| ~X, | ~X| “ |X|

Figure 4.3. Creating H 1 from H by replacing W with W 1. (Here |W | “
minp|Y |, `´ |X|q “ `´ |X|.)

be the rightmost subset of Vs rX with |W 1| “ |W |. We also set Z “ Y rW . We create
H 1 from H by replacing W with W 1. Observe that since |V pH 1q X Vt| ă |V pHq X Vt|, it
remains to show that epH 1q ě epHq.

We consider two cases with respect to the value of s. For a vertex v P V and two disjoint
subsets U and W of V we denote by epU,W q the number of edges of Bt with one endpoint
in U and the other in W , and we denote by degpv, Uq the number of edges of Bt of the
form vu, where u P U .
Case s “ t´ 1: Given the definition of W and W 1, we have

epH 1
q ´ epHq ě epW 1, X Y Zq ´ epW,X Y Zq.

We show that the latter is nonnegative. Let ~X be the rightmost subset of Vs with | ~X| “ |X|
and U be the rightmost subset of Vs r ~X of size |U | “ |W 1|. Then,

epW 1, X Y Zq ě epU, ~X Y Zq,

because U is further (or at the same distance) from the bridge between Vt´1 and Vt than
W 1 was. By the same reasoning,

epW, ~X Y Zq ě epW,X Y Zq.

It remains to show that
epU, ~X Y Zq ě epW, ~X Y Zq. (4.2)

To this end, set |U | “ |W | “ q and let U “ tuq´1, . . . , u0u and W “ tw0, . . . , wq´1u. Note
that the indices of vertices (which follow the order imposed on V ) grow away from the
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bridge. Obviously,

epU, ~X Y Zq “
q´1
ÿ

j“0
degpuj, ~X Y Zq and epW, ~X Y Zq “

q´1
ÿ

j“0
degpwj, ~X Y Zq.

Owing to the structure of the bridge, with x “ | ~X| “ |X| and z “ |Z|,

degpuj, ~XYZq “ minpmaxpx, r´jq, x`zq and degpwj, ~XYZq “ minpmaxpz, r´jq, x`zq.

Since x ě z, we thus have degpuj, ~X Y Zq ě degpwj, ~X Y Zq, j “ 0, . . . , q ´ 1, and (4.2)
follows.
Case s ď t´ 2: Now

epH 1
q ´ epHq ě epW 1, X Y Vs`1q ´ epW,Z Y Vt´1q,

and
epW 1, X Y Vs`1q ě epU, ~X Y Vs`1q ě epW,Z Y Vt´1q,

where the first inequality can be shown as above, and the second inequality follows from
|X| ě |Z|. This completes the proof. �

§5. Proof of Theorem 1.5

In order to obtain the upper bounds on d̄6pnq and d̄9pnq, it is enough to apply Theorem 1.2
with, respectively, m “ 6, ` “ 4, and m “ 9, ` “ 6.

Let us then focus on the lower bounds. We are going to use a similar strategy as in
the proof of Theorem 1.1, where the existence of the m-th power of a Hamiltonian cycle
implied the existence of a too dense subgraph of Gpn, pq. Here, however, we have to bound
the number of edges more carefully.

The following terminology will be useful. Given an m-path P and a subset Z Ă V pP q,
we say that u, v P Z form a t-far ZZ-pair in P if there are in P exactly t´ 1 vertices from
Z between u and v. If tu, vu happens to be an edge of P , we then call it a t-far ZZ-edge
of P .

Case m “ 6: Given µ, let ε ą 0 be any constant such that ε ď 1{12 and
9

16ε ą
32
9µ ` 8. (5.1)

Let Gε be as in Definition 2.3, p “ n´4{9´µ, and H “ Gε Y Gpn, pq. We define three
events:

C – H contains the 6th power of a Hamiltonian cycle,
K – the number of copies of K5 in Gpn, pq is no more than n5{9,
S – there is in Gpn, pq a subgraph F with L “ r 1

4εs vertices and M “ r9L
4 s´ 8 edges.
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Clearly,
PpCq ď PpC XKq ` Pp Kq. (5.2)

The main step of the proof will be to show that C XK implies S. Taking this for granted,
one can quickly complete the proof. Indeed, as p “ opn´4{9q, the expected number of copies
of K5 in Gpn, pq is less than n5p10 “ opn5{9q, and so, by Markov’s inequality, Pp Kq “ op1q.
Similarly, using (5.1), the expected number of subgraphs of Gpn, pq with L vertices and M
edges can be bounded from above by

ˆ

`

L
2

˘

M

˙

nLpM “ O
´

nLnp´
4
9´µqp

9L
4 ´8q

¯

“ O
´

n
32
9 `8µ´ 9

4Lµ
¯

ď O
´

n
32
9 `8µ´ 9

16ε
µ
¯

“ op1q.

Thus, another application of Markov’s inequality yields PpSq “ op1q.
It remains to show the inclusion C X K Ă S. Let C be the 6th power of a Hamilton

cycle given by the event C. After removing from C all vertices from U YW , as well as at
least one vertex from each copy of at most n5{9 ď tεnu copies of K5 in Gpn, pq, we obtain
a subgraph of C of order at least n´ 3tεnu, which is a collection of at most 3tεnu 6-paths.
Hence, at least one of them must have at least

n´ 3tεnu

3tεnu
ě

1
3ε ´ 1 ě 1

4ε
vertices. (Here, the last inequality follows from the assumption ε ď 1{12.)

Fix one such 6-path P on L “ r 1
4εs vertices which we relabel as V pP q “ t1, 2, . . . , Lu in

the order of their appearance on P . Set A “ V pP q XX and B “ V pP q X Y , and notice
that F “ P rAs Y P rBs Ă Gpn, pq is K5-free. We are going to derive a few observations
regarding the structure of F .

First, observe that both P rAs and P rBs contain 2-paths as spanning subgraphs. Indeed,
let u, v P A, u ă v, be a t-far AA-pair, t P t1, 2u. As P is a 6-path, it suffices to show that
v´u ď 6. Suppose for contradiction that v´u ě 7. Then, there are at least 5 vertices in B
between u and v on P , and the first 5 of them, say w1, . . . , w5, as they satisfy w5 ´w1 ď 6,
induce a copy of K5 in P rBs, a contradiction. Hence, P rAs and (by symmetry) P rBs each
contain a spanning 2-path.

Since the 2-path on s vertices has precisely 2s´ 3 edges, we conclude that the number
of 1-far and 2-far edges in F is

p2|A| ´ 3q ` p2|B| ´ 3q “ 2L´ 6. (5.3)

Next, we are going to bound the number of 3-far edges in F . Let R be a segment of any 7
consecutive vertices from P . Since there is no K5 in F , either |RXA| “ 4 and |RXB| “ 3,
or |R X A| “ 3 and |R XB| “ 4. So, there is a 3-far AA-edge or 3-far BB-edge within R.
Since there are L´ 6 consecutive segments R on 7 vertices and a given 3-far edge may be
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contained in at most four such segments, we infer that the number of 3-far edges in F is at
least

L´ 6
4 ě

L

4 ´ 2. (5.4)

Estimate (5.4), together with (5.3), implies that |F | ě r9L
4 s´ 8 “M . Thus, the event S

holds which finishes the proof of Theorem 1.5 for m “ 6.

Case m “ 9: The proof is very similar to the previous case. Given µ ą 0, let p “ n´2{7´µ

and ε ą 0 satisfy
7
8ε ą

10
7µ ` 5. (5.5)

Let again Gε be as in Definition 2.3. This time we define events

C – H contains the 9th power of a Hamiltonian cycle,
K – the number of copies of K7 in Gpn, pq is no more than n{ log n,
S – there is in Gpn, pq a subgraph F with L “ r 1

4εs vertices and M “ r7L
2 s´ 5 edges.

An analog of (5.2) still holds. The expected number of copies of K7 in Gpn, pq is
Opn1´27µq “ opn{ log nq, so, by Markov’s inequality, Pp Kq “ op1q. Similarly, using (5.5),
on can show that also PpSq “ op1q. It remains to show that C XK implies S.

Suppose that GεYGpn, pq contains a subgraph C which is the 9th power of a Hamiltonian
cycle. As before, after removing from Gε YGpn, pq all vertices from U YW as well as at
least one vertex from each copy of K7 in Gpn, pq, we obtain a 9-path P on L “ r 1

4εs vertices.
Let A,B and F be as before and let the vertices of P be relabeled as V pP q “ t1, . . . , Lu.

Benefiting from the absence of K7 in F , it can be shown, similarly to the case m “ 6,
that both P rAs and P rBs contain spanning 3-paths. Indeed, let u, v P A, u ă v, be a t-far
AA-pair, t P t1, 2, 3u. Suppose that v ´ u ě 7. Then, there are at least 7 vertices in B
between u and v on P , and, consequently, a clique K7 in P rBs, a contradiction. Hence,
P rAs and (by symmetry) P rBs each contain a spanning 3-path. This yields 3L´ 12 t-far
edges in F with t ď 3. We are going to show that there are another L{2 edges in F (4-far
and 5-far).

Let R be a segment of any 10 consecutive vertices from P . Since there is no K7 in F , R
contains 5 vertices from each set A and B, or 6 vertices from one of them (and 4 from the
other). In either case there are two 4-far edges within R. As there are L´ 9 segments of
length 10 and each 4-far edge may belong to at most 6 of them, the total number w of
4-far edges in F satisfies

w ě
2pL´ 9q

6 “
L

3 ´ 3.

This is not quite enough, but there may also be 5-far edges in F . Let us denote their
number by z. Note that a very small value of z can boost our bounds of w` z even higher
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than a large one. In particular, it is easy to check that if z “ 0, then w “ L´ 9. So, we
have to optimize by relating w with z. Let wA, wB, zA, zB be the numbers of 4-far and
5-far edges in, resp., P rAs and P rBs.

Let u ă v be a 4-far AA-pair. The only reason for it not to be a 4-far edge is that
v ´ u ě 10, in which case there is a 5-far BB-edge u1v1 with u ă u1 ă v1 ă v. So, we
can map every 4-far AA-pair which is not an edge of P rAs to a 5-far BB-edge. Note
that in this mapping the pre-image of a fixed 5-far BB-edge has size at most 4. Thus,
|A| ´ 4 ´ wA ď 4zB, and, by a symmetric argument, |B| ´ 4 ´ wB ď 4zA. Summing
up, we get L ´ 8 ´ w ď 4z, and, taking into account the previous bound on w, we have
w ě maxpL{3´ 3, L´ 4z ´ 8q. In the end, we want to minimize the quantity

w ` z ě maxpL{3´ 3, L´ 4z ´ 8q ` z.

It is easy to check that the minimum is achieved at z “ L{6´ 5{4 and equals L{2´ 17{4 ě
L{2 ´ 5. Thus, F has in total at least 3L ` rL2 s ´ 5 edges and the event S holds. This
completes the proof of Theorem 1.5. �

§6. Concluding remarks

I. Recall that in order to determine the m-Dirac over-threshold d̄m, we established Theo-
rems 1.1 and 1.2. For a fixed ε ą 0 and a given n-vertex graph G with δpGq ě p1{2` εqn,
these theorems yield bounds on the ordinary threshold probability p̂ for the property
GYGpn, pq P Cmn (assuming it exists) namely

n´1{fp`q´µ1 ď p̂ ď n´1{fp`q´µ2 ,

where µ1 “ Θpεq, while µ2 “ µ2pεq is an implicit function of ε with limεÑ0 µ2pεq “ 0 – cf.
(2.1) and, respectively, the proof of Theorem 1.2. It would be nice, but probably extremely
difficult, to close the gap.

Problem 6.1. For all integers 2 ď ` ď m ´ 1 such that ` ă pm ´ `qpm ´ ` ` 1q and
for all ε ą 0 find a function µ “ µpεq ą 0 such that for all n-vertex graphs G with
δpGq ě p1{2` εqn

lim
nÑ8

PpGYGpn, pq P Cmn q “

$

&

%

1 if p " n´1{fp`q´µ,

0 if p ! n´1{fp`q´µ.

(Here an ! bn means an “ opbnq, while an " bn means bn “ opanq.)
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II. One may wonder what is so special about the cases m “ 2, 3, 4, 8 that just for them
we have obtained the standard Dirac-threshold dmpnq, while for all other values of m we
ended up with the Dirac over-threshold d̄mpnq. A humorous answer could be that it is
yet another instance of the Law of Small Numbers: whatever seems to be true for small
instances of a parameter, fails to hold in general. Still, in this subsection we attempt to
provide a more intelligent answer.

Altogether, we have had at our disposal four statements and one ad hoc technique to
deduce upper and lower bounds on the order of magnitude of p “ ppnq which guarantees
the presence of a Hamiltonian m-cycle in GYGpn, pq, where G is a Dirac graph: Theorems
[1, Theorem 1.2] and 1.2 for upper bounds, Theorems [1, Theorem 1.3] and 1.1 for lower
bounds, the latter sometimes strengthened by forcing some extra edges in Gpn, pq.

For m “ 2, 3, 4, the pair of theorems from [1] suffices to pinpoint the threshold dm. In
particular, the lower bounds follow by observing that a Hamiltonian m-cycle in GεYGpn, pq

must have a linear number of edges (m “ 2, 3) or triangles (m “ 4) in Gpn, pq alone which
is unlikely as p ď cn´1 (m “ 2, 3) or p ď cn´2{3 (m “ 4). For m “ 8, [1, Theorem 1.3]
does not apply, yet we have an ad hoc remedy: for p ď cn´1{3 there are a.a.s. no copies
of K6 in Gpn, pq which implies that there have to be long 3-paths with linear number of
extra 4-edges which, again, is very unlikely.

With three exceptions, for all otherm we have `m ă pm´`mqpm´`m`1q (c.f. Proposition
1.3) and the pair of Theorems 1.2 and 1.1 “squeezes out” an over-threshold d̄m. Why
not dm? On one hand, because for such `m the corresponding braids are balanced (c.f.
Proposition 1.3) and, on the other hand, because p has to be small enough to “eliminate”
dense paths from Gpn, pq (c.f. Lemma 2.2).

The three remaining cases (m “ 5, 6, 9), at least in principle, could go either way. Let
us focus on m “ 5 as the other two are quite similar (though a bit more involved). We
have `5 “ 4 and fp`5q “ 7{4, while fp3q “ 2 is the runner-up. Thus, Theorems 1.2 and 1.1
imply, respectively, that d̄5pnq ď n´1{2 and d̄5pnq ě n´4{7. At this point it is still possible
that for some 4{7 ă τ ă 1{2 we have a Dirac threshold d5pnq “ n´τ . However, it turned
out that the lower bound can be dramatically improved to match the upper bound and
thus to establish d̄5pnq “ n´1{2. Again, this improvement was possible by analyzing the
structure of Gε YGpn, pq and showing that in Gpn, pq alone either there are linearly many
copies of K4 or a long 2-path, both quite unlikely when p ď n1{2´µ. Finally, note that the
over-thresholds for m “ 5, 6, 9 are not of the form n´1{fp`mq.

For the convenience of the reader, we have summarized the above discussion in Table 2.
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m ` r fp`q fp`´ 1q Thm 1.2 [1] Thm 1.3 [1] Thm 1.2 Thm 1.1
Dense
structure
in Gpn, pq

Threshold

2 2 0 n/a n/a ď n´1 ě n´1 – – Θpnq edges
ě cn´1 d2 “ n´1

3 2 1 n/a n/a ď n´1 ě n´1 – – Θpnq edges
ě cn´1 d3 “ n´1

4 3 1 n/a n/a ď n´2{3 ě n´2{3 – – Θpnq triangles
ě cn´2{3 d4 “ n´2{3

5 4 1 7
4 2 ď n´1{2 – ď n´1{2´µ ě n´4{7´µ 2-path

ě n´1{2´µ d̄5 “ n´1{2

6 5 1 11
5

9
4 ď n´2{5 – ď n´4{9´µ ě n´5{11´µ

2-path,
3-far edges
ě n´4{9´µ

d̄6 “ n´4{9

7 6 1 8
3

13
5 ď n´1{3 – ď n´5{13´µ ě n´5{13´µ not needed d̄7 “ n´5{13

8 6 2 3 16
5 ď n´1{3 – ď n´5{16´µ ě n´1{3´µ

3-path,
4-far edges
ě cn´1{3

d8 “ n´1{3

9 7 2 24
7

7
2 ď n´2{7 – ď n´2{7´µ ě n´7{24´µ

3-path,
4-,5-far edges
ě n´2{7´µ

d̄9 “ n´2{7

10 8 2 31
8

27
4 ď n´1{4 – ď n´4{27´µ ě n´4{27´µ not needed d̄10 “ n´4{27

Table 2. Summary of all thresholds for 2 ď m ď 10. Here ` is the smallest
integer satisfying ` ě rpr` 1q, where r “ m´ `; circled fractions correspond
to `m; shaded boxes indicate which theorems and ad hoc techniques (column
“Dense structure in Gpn, pq”) determine the threshold.

III. This paper is exclusively devoted to the classical Dirac case k “ 1. However, as it was
already mentioned in Introduction, in [1, Theorems 1.3 and 1.5] the authors determined the
usual pk,mq-Dirac thresholds dk,m “ n´2{` for every k ě 1 and all m falling into the interval
pk ` 1qp` ´ 1q ď m ď k` ` p

?
4`´ 1 ´ 1q{2 (for a fixed k there is only a finite number

of feasible choices of m), as well as d1,8 “ d2,14 “ n´1{3. We believe that, as in the case
k “ 1 (c.f. discussion in Subsection II above), for all other pairs pk,mq, the pk,mq-Dirac
thresholds dk,m do not exist and should be replaced by the over-thresholds d̄k,m.

Problem 6.2. Determine the over-threshold d̄k,m for all pairs pk,mq, k ě 2, not covered
in [1].

We anticipate that the main difficulty in generalizing our results to arbitrary k ě 1
would be, again, to formulate and prove a k-analog of Lemma 2.2.
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reading of the manuscript and numerous invaluable comments which have led to a substantial
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m 7 10 11 12 13 14
λm 2

?
7
?

55
?

66
?

78
?

91
?

105
tλmu 5 7 8 8 9 10
rλms 6 8 9 9 10 11

fmptλmuq 13
5

27
7

17
4

19
4

46
9

11
2

fmprλmsq 8
3

31
8

13
3

14
3

51
10

61
11

`m 5 7 8 9 10 10
rm “ m´ `m 2 3 3 3 3 4
rmprm ` 1q 6 12 12 12 12 20

Table 3. Verifying inequality `m ă pm ´ `mqpm ´ `m ` 1q for m P

t7, 10, 11, . . . , 14u.

improvement of our submission. We would also like to thank Christian Reiher for quickly
rebutting a conjecture we used to have with respect to Problem 6.2.
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m ě 15, we will show that both

tλmu ă pm´ tλmuqpm´ tλmu` 1q (A.1)

and
rλms ă pm´ rλmsqpm´ rλms` 1q. (A.2)

Since tλmu ď λm, inequality (A.1) will follow from

λm ă pm´ λmqpm´ λm ` 1q.

Observe that, since λm “
?

2m2 ` 2m{2, we have

pm´ λmqpm´ λm ` 1q ´ λm “
ˆ

3m
2 ´

a

2mpm` 1q
˙

pm` 1q.

Thus, since 3m
2 ´

a

2mpm` 1q ą 0 for m ě 9, the inequality (A.1) holds.
Next, since rλms ă λm ` 1, inequality (A.2) will follow from

λm ` 1 ď pm´ λm ´ 1qpm´ λmq.

Again, after some calculations, we get that

pm´ λm ´ 1qpm´ λmq ´ λm ´ 1 “
ˆ

3m
2 ´

a

2mpm` 1q ´ 1
2

˙

m´ 1.

Due to the arithmetic-geometric mean inequality we obtain that
a

mpm` 1q ď p2m` 1q{2.
Consequently,

ˆ

3m
2 ´

a

2mpm` 1q ´ 1
2

˙

m´ 1 ě
ˆ

3m
2 ´

?
2 ¨ 2m` 1

2 ´
1
2

˙

m´ 1

“

ˆ

3
2 ´

?
2
˙

m2
´

?
2` 1
2 m´ 1.

One can easily check that the latter quadratic function of m is positive for m ě 15. This
completes the proof of (A.2). �

§Appendix B. Proof of Claim 4.5

We can assume that r ă ` ´ 1, as the case ` P tr, r ` 1u was already discussed at the
beginning of the proof of Proposition 4.3. Recall that t ě 2. Suppose that s “ t, that is
Vi Ă H for i “ 1, 2, . . . , t´ 1, and set x “ |V pHq X Vt|. Notice that the maximum number
of edges with at least one endpoint in V pHq X Vt is achieved when all x vertices form the
leftmost subset of Vt. Therefore, we assume this throughout.
Case 0 ď x ď r: Our aim is to show that

dt “
t
`

`
2

˘

` pt´ 1q
`

r`1
2

˘

t`´ 1 ą
pt´ 1q

`

`
2

˘

` pt´ 2q
`

r`1
2

˘

` rx

pt´ 1q`` x´ 1 “ dH ,



POWERS OF HAMILTONIAN CYCLES IN RANDOMLY AUGMENTED GRAPHS 25

where the second equality uses the fact that by our assumptions H consists of t´ 1 copies
of K`, such that each consecutive two of them are joined by an r-bridge and there is an
additional x-tuple of vertices in Vt in which each vertex has exactly r neighbours to the
left of it in H.

Consider the function

fp`, r, t, xq “

ˆ

t

ˆ

`

2

˙

` pt´ 1q
ˆ

r ` 1
2

˙˙

ppt´ 1q`` x´ 1q

´

ˆ

pt´ 1q
ˆ

`

2

˙

` pt´ 2q
ˆ

r ` 1
2

˙

` rx

˙

pt`´ 1q .

If we show that for `, r, t, x satisfying our assumptions fp`, r, t, xq ą 0, we will be done.
Notice that fp`, r, t, xq is a linear function with respect to x, hence it is enough to verify
that fp`, r, t, 0q ą 0 and fp`, r, t, rq ą 0. We have

fp`, r, t, 0q “
ˆ

t

ˆ

`

2

˙

` pt´ 1q
ˆ

r ` 1
2

˙˙

p`t´ `´ 1q

´

ˆ

pt´ 1q
ˆ

`

2

˙

` pt´ 2q
ˆ

r ` 1
2

˙˙

p`t´ 1q

“ ´

ˆ

`

2

˙

`

ˆ

r ` 1
2

˙

p`´ 1q “ `´ 1
2 prpr ` 1q ´ `q ą 0,

since rpr ` 1q ą `. Similarly, since 1´ t ă 0 and 1 ď r ă `´ 1, we get

fp`, r, t, rq “

ˆ

t

ˆ

`

2

˙

` pt´ 1q
ˆ

r ` 1
2

˙˙

p`t´ `` r ´ 1q

´

ˆ

pt´ 1q
ˆ

`

2

˙

` pt´ 2q
ˆ

r ` 1
2

˙

` r2
˙

p`t´ 1q

“

ˆ

`

2

˙

prt´ 1q `
ˆ

r ` 1
2

˙

prt` `´ r ´ 1q ´ `r2t` r2

“
1
2
`

`2rt´ `2
´ `rt` `` r3t` `r2

´ r3
´ r2

` r2t` `r ´ r2
´ r ´ 2`r2t` 2r2˘

“
1
2
`

p`r2
´ r3

q ` p´`r2t` r3tq ` p`2rt´ `r2tq ` p´`rt` r2tq ` p´`2
` `rq ` p`´ rq

˘

“
`´ r

2
`

r2
´ r2t` `rt´ rt´ `` 1

˘

“
`´ r

2
`

r2
p1´ tq ` p`´ 1qrt´ `` 1

˘

ą
`´ r

2 pp`´ 1qrp1´ tq ` p`´ 1qrt´ `` 1q

“
`´ r

2 p`´ 1qpr ´ 1q ě 0.
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Case r ` 1 ď x ď `´ 1: This time we would like to show that

dt “
t
`

`
2

˘

` pt´ 1q
`

r`1
2

˘

t`´ 1 ą
pt´ 1q

`

`
2

˘

` pt´ 1q
`

r`1
2

˘

`
`

x
2

˘

pt´ 1q`` x´ 1 “ dH ,

where the second equality uses the fact that by our assumptions H consists of t´ 1 copies
of K` and one copy of Kx, and since x ě r` 1 each two consecutive cliques in H are joined
by an r bridge.

Consider the function

gp`, r, t, xq “

ˆ

t

ˆ

`

2

˙

` pt´ 1q
ˆ

r ` 1
2

˙˙

ppt´ 1q`` x´ 1q

´

ˆ

pt´ 1q
ˆ

`

2

˙

` pt´ 1q
ˆ

r ` 1
2

˙

`

ˆ

x

2

˙˙

pt`´ 1q .

Once again we will show that gp`, r, t, xq ą 0 for `, r, t, x satisfying our assumptions.
Before we proceed, notice that

gp`, r, t, xq “

ˆ

`

2

˙

ptx´ 1q `
ˆ

r ` 1
2

˙

pt´ 1qpx´ `q ´
ˆ

x

2

˙

p`t´ 1q

“
1
2
`

p`2tx´ `2
´ `tx` `q

` pr2tx´ `r2t´ r2x` `r2
` rtx´ `rt´ rx` `rq

` p´`tx2
` x2

` `tx´ xq
˘

“
1
2
`

p`2tx´ `tx2
q ` p´`r2t` r2txq ` p`r2

´ r2xq ` p´`rt` rtxq

` p´`2
` `xq ` p`r ´ rxq ` p´`x` x2

q ` p`´ xq
˘

“
`´ x

2
`

`tx´ r2t` r2
´ rt´ `` r ´ x` 1

˘

.

Hence, it is enough to show that

hp`, r, t, xq “ `tx´ r2t` r2
´ rt´ `` r ´ x` 1 ą 0.

As before, the function h is linear with respect to x. Furthermore, since `t ´ 1 ą 0 this
function is increasing with respect to x and so hp`, r, t, xq ě hp`, r, t, r` 1q. Thus, one only
needs to check whether hp`, r, t, r ` 1q ą 0. Since r ď `´ 2 and 1´ t ă 0, we have

hp`, r, t, r ` 1q “ `tpr ` 1q ´ r2t` r2
´ rt´ `

“ p`´ 1qrt` r2
p1´ tq ` `pt´ 1q

ě p`´ 1qrt` p`´ 2qrp1´ tq ` `pt´ 1q

“ pr ` t´ 1q`` rpt´ 2q ą 0.
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This completes the proof of Proposition 4.3. �
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