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Abstract

Results on the existence of various types of spanning subgraphs of
graphs are milestones in structural graph theory and have been diver-
sified in several directions. In the present paper, we consider “local”
versions of such statements. In 1966, for instance, D.W. Barnette
proved that a 3-connected planar graph contains a spanning tree of
maximum degree at most 3. A local translation of this statement is
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that if G is a planar graph, X is a subset of specified vertices of G such
that X cannot be separated in G by removing 2 or fewer vertices of G,
then G has a tree of maximum degree at most 3 containing all vertices
of X .

Our results constitute a general machinery for strengthening state-
ments about k-connected graphs (for 1 ≤ k ≤ 4) to locally spanning
versions, i. e. subgraphs containing a set X ⊆ V (G) of a (not necessar-
ily planar) graph G in which only X has high connectedness. Given a
graph G and X ⊆ V (G), we say M is a minor of G rooted at X , if M
is a minor of G such that each bag of M contains at most one vertex
of X and X is a subset of the union of all bags. We show that G has a
highly connected minor rooted at X if X ⊆ V (G) cannot be separated
in G by removing a few vertices of G.

Combining these investigations and the theory of Tutte paths in the
planar case yields to locally spanning versions of six well-known re-
sults about degree-bounded trees, hamiltonian paths and cycles, and
2-connected subgraphs of graphs.

AMS classification: 05C83, 05C40, 05C38.

Keywords: Minor, rooted minor, connectedness, spanning subgraph.

1 Introduction and X-spanning Subgraph Results

In the present paper, we consider simple, finite, and undirected graphs; V (G)
and E(G) denote the vertex set and the edge set of a graph G, respectively.
For graph terminology not defined here, we refer to [5]. For a graph G and
a set X ⊆ V (G) of specified vertices, we say that a subgraph H of G is an
X-spanning subgraph of G if H contains X. As usual, H is spanning in the
case of X = V (G). For a positive integer t, a t-tree is a tree with maximum
degree at most t.

This paper aims to constitute a general machinery for strengthening state-
ments about k-connected graphs to locally spanning versions. In particular,
we translate well known results about spanning subgraphs to propositions
about X-spanning subgraphs. As a starting point, we list six famous results.
Local versions of all these statements will be proved later; the forthcoming
Theorems 1 and 2 capture these results.

To prove the above mentioned strengthening, we develop a new result on the
existence of highly connected rooted minors (see Theorem 3 in Section 2).
Moreover, the proofs will draw tools from the theory of Tutte paths in 2-
connected plane graphs.
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For 3-connected planar graphs, Barnette, Biedl, and Gao proved the follow-
ing Statements 1 and 2, where Statement 1 is best possible since there are
3-connected planar graphs without a hamiltonian path.

Statement 1 (D. W. Barnette [2], T. Biedl [3]). IfG is a 3-connected
planar graph and uv ∈ E(G), then G has a spanning 3-tree, such that u and
v are leaves of that tree.

Statement 2 (Z. Gao [7]). A 3-connected planar graph G contains a 2-
connected spanning subgraph of maximum degree at most 6.

In [1], it is shown that the constant 6 in Statement 2 cannot be replaced
with 5.

Tutte [17] proved that every 4-connected planar graph has a hamiltonian
cycle, and Thomassen [16] generalized this result by showing that every 4-
connected planar graph has a hamiltonian path connecting every given pair
of vertices. Eventually, Sanders [13] extended the results of Thomassen and
of Tutte and proved the following statement.

Statement 3 (D. P. Sanders [13]). Every 4-connected planar graph G
has a hamiltonian path between any two specified vertices u and v and
containing any specified edge other than uv.

In [8], it is shown that Statement 3 is best possible in the sense that there
are 4-connected maximal planar graphs with three edges of large distance
apart such that any hamiltonian cycle misses one of them.

We know that 4-connected planar graphs are hamiltonian, that means that
they have a cycle through all vertices. An immediate consequence of State-
ment 3 is that every 4-connected planar graph even has a cycle containing all
but one vertex. This raises the natural question whether those graphs have
a cycle through all but two vertices. An affirmative answer was conjectured
by Plummer [12]. Thomas and Yu gave a proof and showed Statement 4.

Statement 4 (R. Thomas, X. Yu [14]). A graph obtained from a 4-
connected planar graph G on at least 5 vertices by deleting 2 vertices is
hamiltonian.

Clearly, if three vertices of a 4-separator of a 4-connected planar graph are
removed, then the resulting graph does not contain a hamiltonian cycle,
thus, Statement 4 is best possible.

For not necessarily planar graphs, Statements 5 and 6 hold.
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Statement 5 (K. Ota, K. Ozeki [10]). Let t ≥ 4 be an even integer and
let G be a 3-connected graph. If G has noK3,t-minor, then G has a spanning
(t− 1)-tree.

For a surface Σ, the Euler characteristic χ is defined by χ = 2 − 2g if Σ is
an orientable surface of genus g, and by χ = 2 − g if Σ is a non-orientable
surface of genus g. Ellingham showed the following result.

Statement 6 (M. Ellingham [6], [11]). Let G be a 4-connected graph
embedded on a surface of Euler characteristic χ < 0. Then G has a spanning
⌈10−χ

4 ⌉-tree.

In the sequel, X-spanning versions of all six statements listed above are given
in Theorem 1 and Theorem 2. Considering that, we define the connectedness
of a set X ⊆ V (G) in a graph G first. A set S ⊂ V (G) is an X-separator
of G if at least two components of G − S obtained from G by removing S
contain a vertex of X.

Let κG(X) be the maximum integer less than or equal to |X| − 1 such that
the cardinality of each X-separator S ⊂ V (G) — if any exists — is at least
κG(X). It follows that κG(X) = |X| − 1 if G[X] is complete, where G[X]
denotes the subgraph of G induced by X; however, if X is a proper subset of
V (G), then the converse need not be true. If κG(V (G)) ≥ k for a graph G,
then we say that G is k-connected, and a V (G)-separator of G is a separator

of G. This terminology corresponds to the commonly used definition of
connectedness, e. g. in [5].

In Theorem 1, local versions of Statements 1, 2, and 5 are presented. The
proof follows almost immediately from the statements and Theorem 3 from
Section 2. A detailed proof is given in Section 4.

Theorem 1.
(i) If G is a planar graph, X ⊆ V (G), and κG(X) ≥ 3, then G contains

an X-spanning 3-tree T . Moreover, if x1x2 ∈ E(G[X]), then T can be
chosen such that x1 and x2 are leaves of T .

(ii) If G is a planar graph, X ⊆ V (G), and κG(X) ≥ 3, then G contains a
2-connected X-spanning subgraph H of maximum degree at most 6.

(iii) If t ≥ 4 is an even integer, X ⊆ V (G) for a graph G, κG(X) ≥ 3, and
G has no K3,t-minor, then G has an X-spanning (t− 1)-tree.

Note that the local version of Barnette’s result, which was stated in the
abstract, follows in case |X| ≥ 4 from Theorem 1 (i), whereas the case
|X| ≤ 3 is trivial.
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Theorem 2.
(i) If G is a planar graph, X ⊆ V (G), κG(X) ≥ 4, x1, x2 ∈ X, E′ ⊆

E(G[X]), |E′| ≤ 1, and x1x2 /∈ E′, then G contains an X-spanning
path P connecting x1 and x2 with E′ ⊆ E(P ).

(ii) If G is a planar graph, X ⊆ V (G), κG(X) ≥ 4, and Y is a set of
at most two vertices of G, then G− Y contains an (X \ Y )-spanning
cycle.

(iii) Let G be a graph embedded on a surface of Euler characteristic χ < 0,
X ⊆ V (G), and κG(X) ≥ 4. Then G has an X-spanning (⌈10−χ

4 ⌉+1)-
tree.

Theorem 2 (i) extends Statement 3 showing that there exists an X-spanning
path connecting two vertices from X. We want to add here that Theo-
rem 2 (i) does not hold if x1 ∈ V (G) \X: take a planar graph H containing
X such that κH(X) ≥ 4. Let x2 ∈ X and let G be obtained from H by
adding a pending path P connecting x1 and x2. Clearly, κG(X) ≥ 4 but
every path in G connecting x1 and x2 is P .

In contrast to the setting of Statement 3, Theorem 2 (i) does not imply that
there exists an X-spanning cycle. This case is covered by Theorem 2 (ii)
showing that planar graphs with κG(X) ≥ 4 contain cycles through all
vertices of X, all but one and all but two vertices. The set Y of at most
two vertices of G can be chosen arbitrarily (not necessarily from X). If Y
is a set of two vertices from X, this can be considered as an extension of
Statement 4.

Finally, Theorem 2 (iii) is a local version of Statement 6. We will see later
in its proof that we use minors to build a base tree. Then, we will connect
all missed vertices from X to the base tree within the bags of the minor.
That can lead in some cases to an increase of vertex degrees by 1, resulting
in the “+1” in Theorem 2 (iii) in contrast to Statement 6.

The paper is organized as follows. In Section 2, we introduce the concept of
X-minors of G for X ⊆ V (G) and formulate Theorem 3 as the main result
of the present paper. This statement is proved in Section 3 and is used later
as an auxiliary result for the proof of parts of Theorem 1 and of Theorem 2;
however, Theorem 3 itself is an interesting contribution to the theory of
rooted minors of graphs. In Section 4, the proofs of Theorems 1 and 2 are
presented by making use of Theorem 3 and the theory of Tutte paths in
2-connected plane graphs.
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2 X-Minors

Let G be a graph and M be a family of pairwise disjoint subsets of V (G)
such that these sets — called bags — are non-empty and for each bag A ⊆
V (G) the subgraph G[A] induced by A in G is connected. Let the bags
of M be represented by the vertex set V (M) of a graph M , then we say
M = (Vv)v∈V (M) is an M -certificate and M is a minor of G if there is an
edge of G connecting two bags Vu and Vv of M for every uv ∈ E(M). As
an equivalent definition (see [5]), a graph M is a minor of a graph G if it
is isomorphic to a graph that can be obtained from a subgraph of G by
contracting edges.

In this section, we want to keep a set X ⊆ V (G) of root vertices alive in the
minors. Therefore, we extend the concept of minors and introduce rooted

minors.
For adjacent vertices v, y ∈ V (G), let G/vy denote the graph obtained
from G by removing y and by adding a new edge vz for every z such that
yz ∈ E(G) and vz /∈ E(G). That is, the edge vy is contracted into the vertex
v stated first (multiple edges do not occur); this is different from the standard
notion of contraction, where a new artificial vertex zvy is introduced as to
replace both v and y. We call an edge vy of G X-legal if y /∈ X. While this
distinguishes vy from yv, both notions refer to the same undirected edge.

A graph M is a minor of G rooted at X or, shortly, an X-minor of G if it
can be obtained from a subgraph of G containing X by a (possibly empty)
sequence of contractions of X-legal edges. Lemma 1 shows that there is an
equivalent definition of a minor of G rooted at X by using certificates:

Lemma 1. Let G be a graph and X ⊆ V (G). If M is a graph with X ⊆
V (M) and there is an M -certificate M = (Vv)v∈V (M) of G, then M is an
X-minor of G if and only if v ∈ Vv for all v ∈ V (M).

Proof of Lemma 1.
SupposeM andM fulfil v ∈ Vv for all v ∈ V (M). Then G′ = G[

⋃
v∈V (M) Vv]

is a subgraph of G. We obtain a subgraph G′′ of G′ by removing all edges
between Vv and Vw for all distinct v,w ∈ V (M) with vw /∈ E(M). Starting
with G′′ and repeatedly contracting X-legal edges vy with v ∈ V (M) and
y ∈ Vv \ {v} ⊆ V (G) \ X as long as there is v ∈ V (M) with |Vv| ≥ 2, we
obtain M . Hence, M is an X-minor of G.
Now, let M be an X-minor of G obtained from a subgraph G′ of G by
contracting edges. We partition V (G′) by defining Vv for every v ∈ V (M).
Let Vv = {v} and iteratively add back all vertices y ∈ V (G′) to Vv if wy
was contracted to w ∈ Vv. Then M = (Vv)v∈V (M) is an M -certificate,
X ⊆ V (M), and v ∈ Vv for v ∈ V (M). �

6



Note that an ∅-minor of G is a minor of G in the usual sense whereas a
minor of G is isomorphic to some ∅-minor of G. In this paper the set X is
never empty.

If for an X-minor M of G there is an isomorphism ϕ from a subdivision of
M into a subgraph of G such that all vertices of M are fixed by ϕ, then M
is called a topological X-minor of G.

In the remainder of this section, we deal with the question whether, for a
given graph G and X ⊆ V (G), G has a highly connected X-minor or even a
highly connected topological X-minor if κG(X) is large. An answer is given
by the forthcoming Theorem 3; its proof can be found in Section 3.

Theorem 3.
Let k ∈ {1, 2, 3, 4}, G be a graph, and X ⊆ V (G) such that κG(X) ≥ k.
Then:

(i) G has a k-connected X-minor.

(ii) If 1 ≤ k ≤ 3, then G has a k-connected topological X-minor.

In the next three observations, we present examples showing that this the-
orem is best possible.

Observation 1. Theorem 3 (i) is best possible, because there are infinitely
many (planar) graphs G with the property that G contains X ⊆ V (G) such
that κG(X) = 6 and G has no 5-connected X-minor.

Figure 1: The graph G7.

Proof.

For an integer t ≥ 7, the graph G7 of Figure 1 can be readily generalized to
a plane graph Gt containing a set X of t white vertices of degree 6 forming
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a t-gon of Gt and 4t black vertices of degree 4 such that κGt(X) = 6.
That κGt(X) = 6 can be seen since any two nonadjacent vertices of X are
connected by two subpaths of the outer cycle, two paths that use subpaths of
the middle cycle, and two paths that cross the middle cycle and use subpaths
of the inner cycle. The assertion is proved, if there is no 5-connected X-minor
M of Gt.

Assume that M exists and that M is obtained from a subgraph H of Gt

by contractions of X-legal edges. If |V (Gt) \ V (H)| = b, then we can say
that M is obtained from Gt by a number a of contractions of X-legal edges
and by b removals of vertices not belonging to X. If an X-legal edge vy
is contracted or a vertex z /∈ X is removed, then the degree of a vertex
distinct from v, y or distinct from z, respectively, does not increase. Since
Gt has 4t vertices of degree 4 and the minimum degree δ(M) of M is at
least 5, each black vertex either must be removed or an incident edge must
be contracted. Thus, it follows 2a + b ≥ 4t implying a + b ≥ 2t. Because
n = |V (M)| = |V (Gt)| − (a+ b) = 5t− (a+ b), we obtain n ≤ 3t.

Note that M , as an X-minor of a planar graph, is planar. Since M is 5-
connected, it has, up to the choice of the outer face, a unique embedding
into the plane. It is clear (consider the drawing of G7 in Figure 1) that the
vertices of X remain boundary vertices of a t-gon α of such an embedding of
M into the plane. For a vertex x ∈ X, let NM (x) be the set of neighbors of x
in M , |NM (x)| ≥ 5. Furthermore, |N∗(x)| ≥ 3 for N∗(x) = NM (x) \X and
x ∈ X, because otherwise the boundary cycle of α has a chord incident with
x and the end vertices of this chord form a separator of M , contradicting the
3-connectedness, and therefore also the 5-connectedness of M . If N∗(x1) ∩
N∗(x2) 6= ∅ for non-adjacent x1, x2 ∈ X, then S = {x1, x2, u} with u ∈
N∗(x1) ∩N∗(x2) is a separator of M , a contradiction. For the same reason
|N∗(x1)∩N

∗(x2)| ≤ 1 for adjacent x1, x2 ∈ X, and ifN∗(x1)∩N
∗(x2) = {u},

then x1, x2, and u are the boundary vertices of a 3-gon of M . It follows

n = |V (M)| ≥ |X|+ |
⋃

x∈X

N∗(x)| ≥ t+
∑

x∈X

(|N∗(x)| − 1) ≥ 3t.

All together, n = 3t, V (M) = X ∪
⋃

x∈X N∗(x), |N∗(x)| = 3 for x ∈ X,
|N∗(x1) ∩N∗(x2)| = 0 for non-adjacent x1, x2 ∈ X, |N∗(x1) ∩N∗(x2)| = 1
for adjacent x1, x2 ∈ X, and if N∗(x1) ∩ N∗(x2) = {u} in this case, then
x1, x2, and u are the boundary vertices of a 3-gon of M .
For v ∈

⋃
x∈X N∗(x), it holds |NM (v) ∩ X| ≤ 2, thus, |NM (v) ∩ (V (M) \

X)| = |NM (v) ∩ (
⋃

x∈X N∗(x))| ≥ 3 and it is checked readily that v has a
neighbor w ∈ N∗(x′) such that x 6= x′ and {x, x′, v, w} is a separator of M ,
a contradiction to the 5-connectedness of M . ♦
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Observation 2. Theorem 3 (ii) is best possible, because for an arbitrary
integer ℓ, there is a (planar) graph G and X ⊆ V (G) with κG(X) ≥ ℓ such
that every topological X-minor of G is not 4-connected.

ℓ ℓ ℓ ℓ ℓ

ℓ

Figure 2: The graph Fℓ (number of white vertices is larger than ℓ).

Proof.

For ℓ ≥ 4 consider the graph Fℓ of Figure 2 and let X be the set of white
vertices of Fℓ with |X| ≥ ℓ + 1. The vertices of X have degree ℓ ≥ 4 and
all black vertices have degree at most 3 in Fℓ. Moreover, it is easy to see
that κFℓ

(X) = ℓ. Suppose, to the contrary, that there is a 4-connected
topological X-minor M of Fℓ and an isomorphism ϕ from a subdivision of
M into a subgraph H of Fℓ. Then each vertex v ∈ V (M) is a vertex of H
and has degree at least 4 in H and, therefore, also in Fℓ, thus, v ∈ X. Since
X ⊆ V (M) it follows X = V (M). The vertices of X are boundary vertices
of a common face in Fℓ, hence, also in M . Consequently, M is a simple
outerplanar graph implying δ(M) = 2, a contradicting δ(M) ≥ 4. ♦

This shows also, that there cannot be any integer ℓ such that κG(X) ≥ ℓ
implies the existence of a 4-connected topological X-minor.

By the first example, it remains open whether an integer ℓ exists — it
must be at least 7 — such that every graph G containing X ⊆ V (G) with
κG(X) ≥ ℓ has a 5-connected X-minor. We conclude this section by showing:

Observation 3. There cannot be any integer ℓ such that κG(X) ≥ ℓ implies
the existence of a 6-connected X-minor.

Proof.

Let ℓ ≥ 6 and consider the planar graph Hℓ of Figure 3. It contains a set X
of ℓ+ 1 white vertices of degree ℓ and further ℓ2(ℓ+ 1) black vertices. It is
easy to see that κHℓ

(X) = ℓ. An arbitrary X-minor M of Hℓ is also planar
and, since it contains X, it has at least ℓ+ 1 ≥ 7 vertices. It is known that
planar graphs are not 6-connected. ♦
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ℓ ℓ ℓ ℓ

ℓ

ℓ · (ℓ+ 1)

Figure 3: The graph Hℓ.

3 Proof of Theorem 3

In this section, we prove Theorem 3. The following Lemma 2 — as a con-
sequence of Menger’s Theorem [4, 9] — and Lemma 3 will be used several
times.

Lemma 2. Let G be a graph, X ⊆ V (G), k ≥ 1, and |X| ≥ k + 1.
Then κG(X) ≥ k if and only if for every x, y ∈ X with xy /∈ E(G) there are
k internally vertex disjoint paths connecting x and y.

Let S be an X-separator of G, the union F of the vertex sets of at least one
but not of all components of G−S is called an S-X-fragment, if both F and
F := V (G−S) \F contain at least one vertex from X. In this case, F is an
S-X-fragment, too.
For an S-V (G)-fragment F , we again drop the V (G) in the notion; thus, F
is an S-fragment for a separator S of G. We say that some set Y ⊆ V (G)
is X-free if Y ∩X = ∅.

Lemma 3. Let G be a graph, S ⊂ V (G) be a separator of G, and F be an
X-free S-fragment of G. Furthermore, let G′ be the graph obtained from
G[F ∪ S] by adding all possible edges between vertices of S (if not already
present).
Then κG′(X) ≥ κG(X).

Proof of Lemma 3.
If G′[X] is complete, then κG′(X) = |X| − 1 ≥ κG(X), hence, Lemma 3
holds in this case.
Consider x1, x2 ∈ X such that x1 and x2 are non-adjacent in G′. Since
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S forms a clique in G′, we may assume that x2 /∈ S (possibly x1 ∈ S).
According to Lemma 2, we have to show that there are at least κG(X)
internally vertex disjoint paths in G′ connecting x1 and x2. Note that x1
and x2 are also non-adjacent in G and, again using Lemma 2, consider a set
P of κG(X) internally vertex disjoint paths of G connecting x1 and x2.
If some P ∈ P is not a path of G′, then P contains at least one subpath Q on
at least 3 vertices connecting two vertices u, v ∈ S such that V (Q)∩V (G′) =
{u, v}. We obtain a path connecting x1 and x2 from P by removing all inner
vertices of Q and adding the edge uv. Note that uv ∈ E(G′) and repeating
this procedure finally leads to a path P ′ of G′. If P ∈ P is a path of G′, we
put P ′ = P .
Since V (P ′) ⊆ V (P ) for all P ∈ P , the set P ′ = {P ′ | P ∈ P} is a set of
κG(X) internally vertex disjoint paths connecting x1 and x2. Since x1 and
x2 have been chosen arbitrarily, Lemma 3 is proved. �

First we prove Theorem 3 (ii).

Proof of Theorem 3 (ii).
Since X is connected in G, there is a component K of G containing all ver-
tices from X. If K is k-connected, then K itself is a k-connected topological
X-minor of G and (ii) is proved in this case.

Assume that (ii) is not true and let G be a counterexample with the smallest
number of vertices. Then G is connected and consider a smallest separator
S of G, |S| ≤ k − 1 ≤ 2. Since κG(X) ≥ k, there is an X-free S-fragment F
of G and X ⊆ F ∪ S.

Let G′ be obtained from G[F ∪ S] by adding all possible edges between
vertices of S (if not already present), then, by Lemma 3, κG′(X) ≥ k.
Since G′ has less vertices than G, G′ contains a subgraph H ′ isomorphic to
a subdivision of a k-connected X-minor M ′ of G′. Note that M ′ is also an
X-minor of G, since we can contract F into one of the at most two vertices
of S by performing only X-legal edge contractions.

If H ′ is also a subgraph of G, then this contradicts the choice of G. Thus,
k = 3, κG(V (G)) = 2, S = {u, v} and uv ∈ E(H ′)\E(G). In this case, let H
be obtained from H ′ by replacing uv with a path Q of G connecting u and
v such that V (Q) ∩ F = ∅. Then H is a subgraph of G and also isomorphic
to a subdivision of M ′, again a contradiction, and (ii) is proved. �

To prove Theorem 3 (i), we show the following lemma first. This will enable
us to find the desired minor in an iterative way.
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Lemma 4. Let G be a connected graph and X ⊆ V (G). If κG(X) ≥ 4,
then there exists an X-legal edge vy such that κG/vy(X) ≥ 4, unless G is
4-connected.

We start with proving the following claim.

Claim 1.
If vy is an X-legal edge of a graph G with X ⊆ V (G), then κG/vy(X) ≥
κG(X) or κG/vy(X) = κG(X) − 1 and the latter case holds if and only if
there exists an X-separator of G of size κG(X) containing v and y.

Proof of Claim 1.

We assume κG/vy(X) < κG(X). Then (G/vy)[X] is not complete, because
otherwise |X| − 1 = κG/vy(X) < κG(X), contradicting κG(X) ≤ |X| − 1.
Let x1, x2 ∈ X and S ⊂ V (G/vy) be chosen such that |S| = κG/vy(X) and
S separates x1 and x2 in G/vy.
Then x1x2 /∈ E(G/vy) and it follows x1x2 /∈ E(G) because an edge in
E(G) \ E(G/vy) is incident with y. Since |S| = κG/vy(X) < κG(X), G− S
contains a path P connecting x1 and x2. If y /∈ V (P ), then P is also a path
of G/vy − S, contradicting the choice of S. If y ∈ V (P ) and v /∈ S, then
v ∈ V (G/vy), NG(y) \ {v} ⊆ NG/vy(v) and, in both cases v ∈ V (P ) and
v /∈ V (P ), it is easy to see that (G/vy)− S still contains a path connecting
x1 and x2, again a contradiction.
All together, v ∈ S and every path of G−S connecting x1 and x2 contains y.
It follows that S∪{y} separates x1 and x2 in G, hence, κG(X) ≤ |S∪{y}| =
κG/vy(X) + 1 ≤ κG(X).

If vy is an X-legal edge of G and there exists an X-separator of G of size
κG(X) containing v and y, then let x1, x2 ∈ X be chosen such that S
separates x1 and x2 in G. Each path that connects x1 and x2 in G contains
at least one vertex from S and, therefore, every path that connects x1 and
x2 in G/vy contains at least one vertex from S \ {y}. It follows that S \ {y}
is an X-separator of G/vy and κG/vy(X) ≤ |S \ {y}| = κG(X) − 1. By the
first statement of the claim, we get κG/vy(X) = κG(X)− 1. ♦

Proof of Lemma 4.
Suppose that κG(X) ≥ 4 and G is not 4-connected. Since |V (G)| ≥ |X| > 4,
there must exist a separator T with |T | ∈ {1, 2, 3}. Since at most one
component of G − T contains vertices from X, there exists an X-free T-
fragment F . Let t ∈ T and y ∈ NG(t) ∩ F , then ty is X-legal, and it turns
out by Claim 1 that κG/ty(X) ≥ 4 if G[X] is complete or if κG(X) ≥ 5.
Assume that |T | ∈ {1, 2}. For all x1, x2 ∈ X with x1x2 /∈ E(G), there are
four internally vertex disjoint paths in G connecting x1 and x2. If one of
these paths contains y, then this path, say P , also contains t and there is
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a path in G/ty connecting x1 and x2 using only vertices from P ; hence,
κG/ty(X) ≥ 4.
Therefore, if we assume that the statement of Lemma 4 does not hold, i. e.,
κG/vy(X) < 4 for every X-legal edge vy of G, then κG(V (G)) = 3 and
κG(X) = 4. Moreover, for every X-legal edge vy of G there is minimum X-
separator S with v, y ∈ S. For the remainder of the proof, we assume that
every considered separator T is minimum, i. e. |T | = 3, and for every X-legal
edge vy of G there is an X-separator S of G with v, y ∈ S and |S| = 4.

Claim 2.
Let S and S′ be separators in a graph G. For an S-fragment F and an
S′-fragment F ′, let T (F,F ′) := (F ∩ S′) ∪ (S′ ∩ S) ∪ (S ∩ F ′).
Then

(i) If F ∩F ′ 6= ∅, then T (F,F ′) is a separator of G separating F ∩F ′ from
the remaining graph,

(ii) |T (F,F ′)|+ |T (F,F ′)| = |S|+ |S′|.

Proof of Claim 2.

Since S and S′ are separators, NG(F ∩F ′) ⊆ S∪F and NG(F ∩F ′) ⊆ S′∪F ′.

Hence, NG(F∩F ′) ⊆ T (F,F ′). Since F∪F ′ 6= ∅, V (G) 6= T (F,F ′)∪(F∩F ′),
thus NG(F ∩F ′) is a separator of G; and so is T (F,F ′). This proves (i) and
easy counting leads to (ii). ♦

Now, let us go back to the situation that there is a separator T of G with
|T | = κG(V (G)) = 3. We want to show that there is no edge xy in G with
x, y ∈ T ; that is that T is an anticlique. Recall that an anticlique of G is a
set A of vertices of G such that G[A] is an edgeless graph.

Claim 3.
Let T be a separator of G with |T | = 3. Then

(i) T is an anticlique,

(ii) if F is an X-free T-fragment, t ∈ T , y ∈ F ∩NG(t), S is an X-separator
with t, y ∈ S with |S| = 4, and B is an S-X-fragment, then |B∩T | = 1.
Moreover, such an X-separator with t, y ∈ S always exists.

Proof of Claim 3.

Let F be an X-free T-fragment and t ∈ T . For y ∈ F ∩NG(t), the edge ty
is X-legal. Let S be an X-separator with t, y ∈ S and |S| = 4. Its existence
is ensured by Claim 1. Let B be an S-X-fragment. If T ∩ B = ∅, then
B ∩ F is not X-free and is separated by T (B,F ) from B (Claim 2 (i)). But
T (B,F ) = (B ∩T )∪ (T ∩S)∪ (S ∩F ) ⊆ S \ {y} has at most three vertices,
a contradiction to κG(X) = 4.
In the same vein, T ∩ B 6= ∅ and, because |T | = 3, it follows |B ∩ T | =
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|B ∩ T | = 1 and the two vertices in T \ {t} are non-adjacent. Since t has
been chosen arbitrarily from T , T is an anticlique in G. ♦

Claim 4.
Let T be a separator of G with |T | = 3 and F be an X-free T-fragment, then
|F | = 1.

Proof of Claim 4.

Let t ∈ T , y ∈ F ∩NG(t), S be an X-separator with t, y ∈ S with |S| = 4 (by

Claim 1), and B be an S-X-fragment. If |F ∩S| ≥ 2, then |T (B,F )| ≤ 3 and
|T (B,F )| ≤ 3, and both B∩F and B∩F are X-free, so that X ⊆ T ∪(F ∩S),
contradicting |X| ≥ 5. Hence F ∩ S = {y}. Let t′ be the unique vertex in
B ∩ T by Claim 3 (ii).
It follows that B∩F = ∅ for otherwise this set would be an {t, y, t′}-fragment
as T (B,F ) = {t, y, t′} is a separator of G by Claim 2 (i); but {t, y, t′} is not
an anticlique since ty ∈ E(G), which is a contradiction to Claim 3 (i).
Likewise, B∩F = ∅, so that F = {y}, and again, this holds for every X-free
T-fragment. ♦

Now, let T = {t, t′, t′′} be a separator of G, F = {y} be an X-free T-fragment
(Claim 4), and S be an X-separator with t, y ∈ S and |S| = 4. Then there
is an S-X-fragment B and unique vertices t′ and t′′ in B ∩ T and B ∩ T ,
respectively (by Claim 3 (ii)). There exists an X-separator S′ with t′, y ∈ S′

and |S′| = 4 by Claim 1 and we may take an S′-X-fragment B′ such that
t ∈ B′ and t′′ ∈ B′ (by Claim 3 (ii)). This situation is sketched in Figure 4.

y
t

t′

t′′

S′B′ B′

S

B

B

Figure 4:

Claim 5.
The following holds:

(i) B ∩B′ or B ∩B′ is X-free,
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(ii) B ∩B′ or B ∩B′ is X-free,

(iii) If B ∩B′ = ∅, then |T (B,B′)| ≥ 5.

Proof of Claim 5.

To prove (i) assume that B ∩ B′ and B ∩ B′ are not X-free. Then, by

Claim 2, T (B,B′) and T (B,B′) both areX-separators and since |T (B,B′)|+
|T (B,B′)| = |S| + |S′| = 8, we have |T (B,B′)| = |T (B,B′)| = 4. But
T (B,B′) \ {y} is also an X-separator because y has no neighbor in B ∩ B′,
a contradiction.
By the same arguments, T (B,B′) \ {y} is an X-separator of size 3 if B ∩B′

and B ∩B′ both are not X-free, and (ii) is shown.
To see (iii), assume that B ∩B′ = ∅. Since t and t′ must have neighbors in
B and B′, respectively, which can only be in (S′∩B)\{t′} and (S∩B′)\{t},
respectively, T (B,B′) has at least five vertices. ♦

Claim 6.
Let T be a separator of G with |T | = 3. If B and B′ are an S-X-fragment

and an S′-X-fragment, respectively, as defined before, then B ∩B′ is X-free.
Moreover, T ∩X = ∅.

Proof of Claim 6.

Assume that B ∩ B′ is not X-free. Thus, B ∩ B′ is X-free by Claim 5 (ii)

and T (B,B′) is an X-separator by Claim 2 (i); therefore, |T (B,B′)| ≥ 4.
One checks that |B ∩ S′| ≥ |S ∩B′| and |B′ ∩ S| ≥ |S′ ∩B| (it follows from
|S| = 4 ≤ |T (B,B′)| = |S \ (S ∩ B′)| + |B ∩ S′| = |S| − |S ∩B′|+ |B ∩ S′|,
the other inequality follows similarly).
Furthermore, |T (B,B′)| ≤ 4 (Claim 2 (ii)) and by Claim 5 (iii), B ∩B′ 6= ∅,
so that T̂ = NG(B ∩ B′) = T (B,B′) \ {y} is a separator of size 3 in G. By
Claim 4, B ∩ B′ is a T̂ -fragment and its unique vertex b is adjacent to the
three vertices in T̂ . Let v be the unique vertex from T (B,B′) \ {t, t′, y}.
The situation is sketched in Figure 5.

If v ∈ S ∩ B′, then |T (B,B′)| ≥ 5 (since |B ∩ S′| ≥ |S ∩ B′| ≥ 2), which
implies that |T (B,B′)| ≤ 3. Because y ∈ T (B,B′) and y has no neighbour in
B ∩B′ (remember that NG(y) = {t, t′, t′′}), it follows that B ∩B′ is empty
(otherwise T (B,B′) \ {y} was a separator of size at most 2). Moreover,
|B ∩ S| = |B ∩ S′| = 1, and therefore B ∩ S′ = {t′}.
It follows that B = {b, t′} and t′ ∈ X, so that t′ has degree at least 4 and
must be adjacent to at least one of the two neighbors of b in S; this is not
possible as NG(b) = T̂ is an anticlique (Claim 3). Analogously, the assertion
v ∈ S′ ∩B is contradictory.
It follows that v ∈ S ∩ S′. Thus, |T (B,B′)| = |T (B,B′)| = 4 using |S| =
|S′| = 4, where y has no neighbors in B ∩B′ and B ∩B′, so that the latter
two sets are X-free. It follows that X ∩ B′ = {t} and t has degree at least
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Figure 5:

4. Since t is non-adjacent to the two neighbors of b in S′, it must have
a neighbor in B′ distinct from b, implying that B ∩ B′ is non-empty and,
consequently, consists of a single vertex c. Since t is not adjacent to the two
neighbors of c in S′, the only neighbors of t are b, c, and y, a contradiction.
Therefore, B ∩ B′ is X-free, and, in particular, t′′ /∈ X. By symmetry,
t, t′ /∈ X, so that X is disjoint from T . ♦

Let B,B′ as before and note that B ∩ B′ 6= ∅ is X-free (by definition and
by Claim 6). By symmetry we may assume that B ∩ B′ is X-free (see
Claim 5 (i)), so that B ∩X ⊆ S′ ∩ B. This implies that T (B,B′) is not a
separator in G of size 3 (since T (B,B′) is not X-free). Thus, |T (B,B′)| ≥ 4
and |T (B,B′)| ≤ 4 by Claim 2 (ii). By Claim 5 (iii), B ∩ B′ is non-empty,
and, as NG(B ∩ B′) = T (B,B′) \ {y} is a separator of size 3, we get by
Claim 4 that B ∩ B′ consists of a single vertex b adjacent to all vertices in
T (B,B′) \ {y}, and, hence b is adjacent to all vertices in B′ ∩ S; among
them, there is at least one vertex from B′ ∩X (since B ∩B′ and B ∩B′ are
X-free). This contradicts Claim 6 that NG(b) must be X-free; and Lemma 4
is proved. �

Proof of Theorem 3 (i).
If k ∈ {1, 2, 3}, then Theorem 3 (i) follows immediately from (ii), since a
topological X-minor is an X-minor. So let k = 4. We construct a sequence
of graphs G0 = G,G1, G2, . . . with |Gi|−1 = |Gi+1| ≥ |X|, X ⊆ V (Gi), and
κGi

(X) ≥ 4 for all i. We can assume that G is connected, otherwise we take
the unique component of G containing vertices of X as the graph G0. The
graph Gi+1 is obtained from Gi by contracting an X-legal edge vy such that
κGi/vy(X) ≥ 4. This edge vy exists by Lemma 4, unless Gi is 4-connected
and we stop building the sequence with Gi. The last graph of the sequence

16



is obtained from G by a sequence of X-legal edge contractions, i. e. it is an
X-minor of G, which is the desired 4-connected X-minor. �

4 Proofs of Theorems 1 and 2

In this section, we present the two missing proofs. Theorem 1 is a straight
consequence of the statements and Theorem 3 (ii) and will be presented
next. Note that a minor of a graph G does not contain a graph U as a
minor if already G does not contain U as a minor and that a minor of a
planar graph is also planar.

By defining X-spanning generalized cycles and paths, it is possible to adapt
the proof idea of Theorem 1 by using the result on X-rooted minors and
prove a slightly different version of Theorem 2. We will give a glimpse of this,
although the main part of this section focuses on the proof of Theorem 2,
which needs more effort and uses the theory of Tutte paths.

Proof of Theorem 1.
Let G be a graph and X ⊆ V (G) with κG(X) ≥ 3 and properties requested
as in Theorem 1. By Theorem 3 (ii), there is a 3-connected topological X-
minor M of G. If x1x2 ∈ E(G[X]) is an edge that is not present in M , then
we can add the edge x1x2 to M and M is still a 3-connected topological
X-minor of G. Let ϕ be an isomorphism from a certain subdivision of M
into a subgraph of G such that all vertices of M are fixed by ϕ. Applying
the suitable Statement 1, 2, or 5 on M , we obtain a spanning subgraphH of
M containing all vertices from X. Using the isomorphism ϕ, a subdivision
of H can be found in G which is X-spanning and has the properties in G
that H has in M . �

Given a graph G and X ⊆ V (G), a subgraph H of G is an X-spanning
generalized cycle of G ifH is the edge disjoint union of a cycle C of G and |X|
pairwise vertex disjoint paths P [xi, yi] of G connecting xi and yi (possibly
xi = yi) such that X∩V (P [xi, yi]) = {xi} and V (C)∩V (P [xi, yi]) = {yi} for
i = 1, . . . , |X|. An X-spanning generalized path P of G is defined similarly
if in the previous definition the cycle C is replaced with a path P of G.
Note that an X-spanning path or an X-spanning cycle is also an X-spanning
generalized path or an X-spanning generalized cycle, respectively, and we
observe:

Observation 4. Let X ⊆ V (G) for some graph G and M be an X-minor of
G. If M has an X-spanning path or an X-spanning cycle as a subgraph, then
G contains an X-spanning generalized path or an X-spanning generalized
cycle, respectively.
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Proof.
Let P be anX-spanning path ofM andM = (Vv)v∈V (M) be anM -certificate.
For each edge uv ∈ E(P ), there is an edge euv ∈ E(G) between a vertex in
Vu and a vertex in Vv. For each v ∈ V (P ) we define a set Ev of edges in Vv

as follows: If v is an end vertex of P or if, for uv, vw ∈ E(P ) with u 6= w,
the end vertices of euv and evw in Vv coincide, then Ev = ∅. Otherwise, the
end vertices of euv and evw in Vv can be connected by a path Q in G[Vv],
since G[Vv] is connected, and we put Ev = E(Q).
We obtain a path P ′ in G with E(P ′) = {euv | uv ∈ E(P )} ∪

⋃
v∈V (P )Ev,

which has non-empty intersection with Vv for all v ∈ V (P ). If x ∈ X is
not on P ′, then there is a path Px in Vx connecting x to the subpath of P ′

in G[Vx], i. e. X ∩ V (Px) = {x} and |V (P ′) ∩ V (Px)| = 1. Eventually, P ′

together with all paths Px for x ∈ X\V (P ′) forms anX-spanning generalized
path of G.
Using the same arguments, the existence of an X-spanning generalized cycle
of G can be proved if M contains an X-spanning cycle. �

Using Theorem 3 (i) and the previous Observation 4, Statements 3 and 4 can
be immediately translated to locally spanning versions if the formulations
“X-spanning path” and “(X \ Y )-spanning cycle” in Theorem 2 (i) and (ii)
for the case Y ⊆ X are replaced with “X-spanning generalized path” and
“(X \ Y )-spanning generalized cycle”, respectively. Theorem 2 (i) and (ii)
do not follow directly from Theorem 3 since Theorem 3 (ii) is not true in
case k = 4 (see Observation 2). We will use the theory of Tutte-paths in
2-connected plane graphs (see [13, 14, 15, 16, 17]) instead of Theorem 3 to
prove the strong locally spanning versions, stated in Theorem 2 (i) and (ii),
of Statements 3 and 4, respectively.

Furthermore, we show that Theorem 2 (iii) is a consequence of Statement 6
and Theorem 3 (i); thereby the upper bound on the maximum degree of the
desired tree increases by “+1” compared to the one of Statement 6 (observe
again that Theorem 3 (ii) does not hold in case k = 4).

Proof of Theorem 2.
In the following proof of Theorem 2, Observation 5 obtained from Lemma 3
is used several times.

Observation 5. Let G be a graph, S ⊂ V (G) be a separator of G, and F
be an X-free S-fragment of G. Furthermore, let G′ be the graph obtained
from G[F ∪ S] by adding all possible edges between vertices of S (if not
already present).
Then κG′(X) ≥ κG(X) and G′ is planar if all following conditions hold: G
is planar, |S| ≤ 3, and S is a minimal separator.
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Before we start to prove Theorem 2 (i), we introduce the concept of bridges
and Tutte paths [17], on which the proofs of Statements 3 and 4 are prin-
cipally based. We apply the widely used notation from [15] instead of the
terminology from the original paper [17] by Tutte. Therefore, let G be
a connected graph, H be a subgraph of G, V (G) \ V (H) 6= ∅, and K
be a component of G − V (H). If NG(K) ⊆ V (H) is the set of neigh-
bors of K in V (H), then the graph B with V (B) = V (K) ∪ NG(K) and
E(B) = E(K) ∪ {uv ∈ E(G) | u ∈ V (K), v ∈ V (H)} is a non-trivial bridge
of H, where NG(K) and V (K) are called the sets T (B) of attachments and
I(B) of inner vertices of B, respectively. (A trivial bridge is an edge of
G− E(H) whose two end vertices are contained in H.) Since we are inter-
ested in bridges containing a vertex of X as an inner vertex, all references
to bridges focus on non-trivial ones.

A path P of G on at least two vertices is a Tutte path of G if each bridge of
P has at most three attachments. Let H be a subgraph of G, then a path P
of G on at least two vertices is an H-Tutte path of G if each bridge of P has
at most three attachments and each bridge containing an edge of H has at
most two attachments. A Tutte cycle and an H-Tutte cycle are defined the
same way if in the previous definition the path P is replaced by an cycle.

In order to state Tutte’s original result from [17], we assume that G is a
2-connected graph embedded into the plane. The exterior cycle of G is the
cycle CG bounding the infinite face of G. Tutte proved that, for y, z ∈
V (CG) and e ∈ E(CG), G contains a CG-Tutte path from y to z containing
e. Thomassen [16] improved Tutte’s result by removing the restriction on
the location of z, and, eventually, Sanders ([13]) established the following
Lemma 5:

Lemma 5 (D.P. Sanders, 1997, [13]). IfG is a 2-connected plane graph,
e ∈ E(CG), and y, z ∈ V (G), then G has a CG-Tutte path from y to z con-
taining e.

The following lemma generalizes Tutte’s result. We write G ∪ H for the
union of two graphs G and H.

Lemma 6 (R. Thomas, X. Yu, 1994, [14]). If G is a 2-connected plane
graph with outer cycle CG, another facial cycle D, and e ∈ E(CG), then G
has an (CG∪D)-Tutte cycle C such that e ∈ E(C) and no C-bridge contains
edges of both CG and D.

The next lemma describes where the vertices from some X ⊆ V (G) of a
graph G are located relative to some Tutte path.
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Lemma 7. Let G be a 2-connected graph, X ⊆ V (G), κG(X) ≥ 4, and let
Q be an Tutte path of G. If X is not a subset of V (Q), then X ⊆ V (B) for
some bridge B of Q and, in this case, Q contains at most 3 vertices of X.

Proof.

Let x ∈ X \ V (Q), then there is a bridge B of Q containing x as an inner
vertex and B has at most three attachments on Q. Assume there is a
vertex x′ ∈ X \ V (B). Then the attachments T (B) form an X-separator
of G, contradicting κG(X) ≥ 4. Hence, X ⊆ V (B) and |X ∩ V (Q)| ≤
|V (B) ∩ V (Q)| = |T (B)| ≤ 3. ♦

Proof of Theorem 2 (i).
Suppose, to the contrary, that Theorem 2 (i) does not hold and let G be a
counterexample such that |V (G)| is minimum.

If G is not 2-connected, then, because κG(X) ≥ 4, X ⊆ V (K) for a block K
of G. Moreover, E′ ⊂ E(K) and, by Lemma 3, κK(X) ≥ κG(X) ≥ 4. Thus,
K is a smaller counterexample than G, a contradiction.

Assume that G has a separator S = {u, v} ⊆ V (G). Because κG(X) ≥ 4,
there is an S-fragment F , such that X ⊆ F ∪ S. Let G1 be obtained from
G[F ∪S] by adding the edge uv (if not already present). By Observation 5, it
follows X ⊆ V (G1), E

′ ⊂ E(G1), and κG1
(X) ≥ 4. Since G−F contains S,

there is a path Q of G−F with ends u and v. If G1 has a path P1 satisfying
Theorem 2 (i), then we can replace the edge uv (if uv ∈ E(P1)\E(G)) by Q
and in both cases this will give us the required path P in G. Therefore G1

has no such path, contradicting the minimality of G as a counterexample.

Hence, we may assume that G is 3-connected and consider two cases to
complete the proof of Theorem 2 (i).

Case 1. |E′| = 1.
Let Q be a Tutte path of G connecting x1 and x2 such that E′ ⊂ E(Q)
(Lemma 5). If X ⊆ V (Q), then Q is the desired path P , contradicting the
choice of G. Otherwise, it follows |V (Q) ∩X| ≤ 3 by Lemma 7 and there is
a bridge B of Q such that X ⊆ V (B), I(B) ∩X 6= ∅. Since E′ consists of
one edge e from E(G[X]) and x1x2 /∈ E′, we may assume that e = x1u for
some vertex u ∈ X. Hence, T (B) = {x1, x2, u}.
If |V (Q)| ≥ 4 or Q has a second bridge distinct from B, then the graph G1

obtained from G[I(B)∪T (B)] by adding all possible edges between vertices
of T (B) (if not already present — see Lemma 3 with T (B) as separator)
fulfils X ⊆ V (G1), e ∈ E(G1), and κG1

(X) ≥ 4. If G1 has a path P1

satisfying Theorem 2 (i), then it contains the edge e = x1u and therefore
misses the edges x1x2 and x2u. The path P1 is also a path in G and is a
required path. Therefore G1 has no such path, contradicting the minimality
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of G as a counterexample.
Thus, G = G1 if x1x2 ∈ E(G) or G is obtained from G1 by removing x1x2
otherwise. Moreover, Q is the path of length 2 on vertices x1, u, x2. Let
G′ = G − x1 and assume that G′ is embedded in the plane. Note that G′

is 2-connected and therefore, there exists a face that contains the vertex x1
and a facial cycle C bounding this face. Then u ∈ V (C) and let e′ be an
edge of C other than ux2. By Lemma 5, there exists a C-Tutte path R of
G′ from u to x2 through the edge e′. If X \ {x1} ⊆ V (R), then the path
obtained from R by adding x1 and e = x1u would be a path of G containing
X and E′, a contradiction. Note that x1x2 /∈ E(R).
Otherwise, there is a bridge B′ of R such that I(B′) ∩ X 6= ∅. If the
component of G − R containing I(B′) contains x1, i. e. the bridge B′ is
adjacent to x1 if we put x1 back, then I(B′) contains a vertex of the facial
cycle C and, therefore, the bridge B′ contains edges of C. Thus, B′ has at
most two attachments and T (B′)∪{x1} is a 3-separator in G. By Lemma 7,
X \ {x1} ⊆ V (B′) and therefore T (B′) = {u, x2}. The graph G2 obtained
fromG[V (B′)∪{x1}] by adding all possible edges between vertices of T (B′)∪
{x1} (if not already present — see Lemma 3 with T (B′)∪{x1} as separator)
fulfils X ⊆ V (G2), e ∈ E(G2), and κG2

(X) ≥ 4. Since e′ 6= ux2, |V (G2)| <
|V (G)| and by the minimality of G, the graph G2 contains an X-spanning
path P2 connecting x1 and x2 with e ∈ E(P2). Moreovere, x1x2 /∈ E(P2).
Because G2 is a subgraph of G∪{x1x2}, it follows that P2 is a desired path
of G.
If the component of G−R containing I(B′) does not contain x1, then T (B′)
is also a 3-separator in G. This separator separates a vertex from X ∩ I(B′)
from x1, a contradiction to κG(X) ≥ 4.

Case 2. E′ = ∅.
Choose an arbitrary edge e = uv of G such that {u, v} ∩ {x1, x2} = ∅. To
see that e exists, assume that each edge of G is incident with x1 or with x2.
Then G− {x1, x2} is edgeless, a contradiction to κG(X) ≥ 4 and |X| ≥ 5.
Now consider a Tutte path Q from x1 to x2 through e. Since X ⊆ V (Q)
contradicts the choice ofG, there exists a bridgeB ofQ such thatX ⊆ V (B).
It follows X ∩ I(B) 6= ∅ and x1, x2 ∈ T (B). Since |V (Q)| ≥ 4, the graph G1

obtained from G[I(B)∪T (B)] by adding all possible edges between vertices
of T (B) (if not already present), fulfils X ⊆ V (G1) and κG1

(X) ≥ 4. If G1

has a path P1 satisfying Theorem 2 (i), then it misses the edge x1x2. We can
replace in P1 the other two edges of G1[T (B)] (if they exist) by subpaths of
Q and this will give us a required path P in G. Therefore G1 has no such
path, contradicting the minimality of G as a counterexample. �
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Proof of Theorem 2 (ii).
Suppose, to the contrary, that Theorem 2 (ii) does not hold and let G be
a counterexample such that |V (G)| is minimum. Moreover, we assume that
the counterexample G with X,Y maximizes |Y |+ |Y ∩X|.

If G is not 2-connected, then, as in the proof of Theorem 2 (i), there is a
block K of G with X ⊆ V (K) and κK(X) ≥ 4. Thus, K − Y contains an
(X \ Y )-spanning cycle by the minimality of G.

Case A: First we consider the case Y = {y1, y2} ⊆ X.
Assume that G is embedded in the plane such that y1 is incident with the
outer face and consider G − {y1, y2}. Since |X| ≥ 5 (because κG(X) ≥ 4)
and κ(G−{y1,y2})(X \{y1, y2}) ≥ 2, there is a block H containing X \{y1, y2}
of G− {y1, y2}.

Assume there is a component K of G − ({y1, y2} ∪ V (H)) and let NG(K)
be the neighbors of K in G. Because H, as a block of G − {y1, y2}, is a
maximal 2-connected subgraph, it follows |NG(K) ∩ V (H)| ≤ 1. Obviously,
NG(K) \ V (H) ⊆ {y1, y2} and, therefore, |NG(K)| ≤ 3.
Consider the graph G1 obtained from G by removing V (K) and adding all
edges between the vertices of NG(K) (if not already present). Then G1 is
planar since |NG(K)| ≤ 3 and, furthermore, κG1

(X) ≥ 4 (see Observation 5).
By the choice of G, there is a cycle C of G1 containing all vertices of X
except y1 and y2. Evidently, C misses all new edges between the vertices
of NG(K), thus, C is also a cycle of G, a contradiction. We conclude that
H = G− {y1, y2}.

For i = 1, 2, there are (not necessarily distinct) faces αi of H containing the
vertex yi in G and let Ci be the facial cycle of αi in H. Because of the choice
of the embedding of G, α1 is the outer face of H, thus, CH = C1. We follow
the proof in [14].

Case 1: C1 = C2.
If α1 6= α2, then H = C1 and C1 is the desired cycle. Otherwise, the vertices
of V (C1) can be numbered with v1, v2, . . . , vk according to their cyclic order
in a such way that y2 is not adjacent to vertices v2, v3, . . . , vℓ−1 and y1 is not
adjacent to vertices vℓ+1, vℓ+2, . . . , vk for some integer ℓ with 3 ≤ ℓ ≤ k − 1
(note that y1 and y2 have degree at least 4 in G). We apply Lemma 5 and
consider a C1-Tutte path Q of H from v1 to v2 containing vℓvℓ+1 which can
be joined by v1v2 to a cycle.
Since G is a counterexample, there is x ∈ X \ (V (Q)∪{y1, y2}) and a bridge
B of Q in H containing x as an inner vertex.
If I(B) ∩ V (C1) = ∅, then NG(y1) ∩ V (B) ⊆ T (B) and T (B) separates x
from y1 in G, contradicting κG(X) ≥ 4.
Otherwise, there is v ∈ I(B) ∩ V (C1). Then the edge uv, where u is a
neighbor of v in C1, belongs to B. Especially, u ∈ V (B) and B has exactly
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two attachments s and t in V (Q) and s, t ∈ V (C1). Thus, the subpath P of
C1 from s to t containing v is a path of B. Because of planarity, the bridge
cannot intersect C1 outside the subpath P and we obtain (I(B) ∩ V (C1)) \
V (P ) = ∅.

Furthermore, v1, vℓ /∈ I(B) and (I(B) ∩ V (C1)) ∩ NG(yi) = ∅ for one i ∈
{1, 2}. But then NG(yi)∩V (B) ⊆ T (B) and T (B)∪{y3−i} separates x from
yi, contradicting κG(X) ≥ 4.

Case 2: C1 6= C2.
By Lemma 6, there is an (C1 ∪ C2)-Tutte cycle C.
Since G is a counterexample, there is x ∈ X \ (V (C)∪{y1, y2}) and a bridge
B of C containing x as an inner vertex and, by Lemma 6, not simulta-
neously edges from both cycles C1 and C2. Hence, I(B) ∩ V (C1) = ∅ or
I(B) ∩ V (C2) = ∅, and in both cases T (B) separates x from y1 or y2 in G,
contradicting κG(X) ≥ 4.

Case B: Now we consider the case that Y = {y1, y2} and |Y ∩X| ≤ 1.
Among all possible choices for the counterexample G, choose the one max-
imizing dG(y1) + dG(y2). Note that the maximum exists because |V (G)| is
already determined.

Let G be embedded into the plane. If y ∈ {y1, y2} is incident with a face of
G which has a vertex z at its boundary that is not a neighbour of y, then
G+yz is still planar. It follows κ(G+yz)(X) ≥ 4 and, because of the choice of
the counterexample, (G+ yz)− {y1, y2} = G− {y1, y2} has a desired cycle,
a contradiction. Hence, if y ∈ {y1, y2} is incident with a face of G, then
all vertices at its boundary are neighbours of y. Thus, since G is simple,
|NG(y)| ≥ 3 for y ∈ {y1, y2}.

Next we show that G is 3-connected. Let S = {u, v} be a separator of
G. Because κG(X) ≥ 4, there is an S-fragment F such that X ⊆ F ∪ S.
Let G1 be obtained from G[F ∪ S] by adding the edge uv (if not already
present). By Observation 5, it follows X ⊆ V (G1) and κG1

(X) ≥ 4. If
uv ∈ E(G), then G1 − Y contains an (X \ Y )-spanning cycle, which is also
a desired cycle in G, a contradiction. Suppose first that {y1, y2} ⊂ V (G1).
As before G1 −Y contains an (X \Y )-spanning cycle C, which would be an
(X \ Y )-spanning cycle of G if uv /∈ E(C). It follows that uv ∈ E(C) and
thus, u, v /∈ Y . There is a path Q of G − F with ends u and v that does
not contain any vertex from Y . We can replace the edge uv in C by Q and
obtain an (X \ Y )-spanning cycle of G− Y , a contradiction.

What follows is that, say, y1 /∈ V (G1). Since |NG(y1)| ≥ 3, we have |V (G1)|+
1 < |V (G)|. Let G2 be obtained from G[F ∪S] by adding a path on vertices
u, z, v between u and v. Remember that the edge uv is not present in G.
It is straightforward to check that Lemma 3 also holds if paths (instead of
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edges) between two vertices are inserted (if there is no edge between those
two vertices). Thus κG2

(X) ≥ κG(X) ≥ 4, G2 is planar, X ⊆ V (G2), and
|V (G2)| = |V (G1)|+1 < |V (G)|. Let Y2 = (Y ∩V (G1))∪{z}. Then G2−Y2

contains an (X \ Y2)-spanning cycle C, which is an (X \ Y )-spanning cycle
of G− Y (because V (C) ⊆ F ∪ S), a contradiction. Hence, we may assume
that G is 3-connected.

If κG(Z) ≥ 4 for Z = X ∪ {y} where y ∈ {y1, y2} \ X, then G − Y has a
(Z \ Y )-spanning cycle by the initial choice of G, a contradiction because
Z \ {y1, y2} = X \ {y1, y2}. Hence, κG(Z) ≤ 3 and, because κG(X) ≥ 4, it
follows that for y ∈ {y1, y2} \X, there is as 3-separator S separating y from
X.

Assume from now on that y1 /∈ X. There is a 3-separator S = {u, v, w} of
G and a minimal S-fragment F , such that X ⊆ F ∪ S and y1 ∈ F . Let
G1 be obtained from G[F ∪ S] by adding a new vertex (also named) y1 and
three edges uy1, vy1, and wy1. Let Y1 = Y ∩ V (G1). If G1 − Y1 contains an
(X \ Y1)-spanning cycle C, then C is a cycle of G[F ∪ S] and, therefore, an
(X \ Y )-spanning cycle of G− Y , a contradiction. Hence, G1 does not have
such a cycle and is a smaller counterexample unless G1 = G.

It follows that G[F ∪ S] = G − {y1}. We have argued in the beginning of
Case B that for an embedding of G, all vertices of the facial cycle of the face
of G − {y1} that is incident with y1 are adjacent to y1. Thus, NG(y1) = S
and G[S] is a cycle. Let G′ = G[F ∪ S]. By Observation 5, it follows G′ is
planar, X ⊆ V (G′) and κG′(X) ≥ 4. Hence, G′ −{y2} contains an (X \ Y )-
spanning cycle, which is an (X \Y )-spanning cycle in G−Y , a contradiction.
Hence, |Y | < 2 and this is the last case to be considered in order to complete
the proof of Theorem 2 (ii).

Case C: |Y | < 2.
If there is a vertex z ∈ V (G)\ (X ∪Y ), then let Y ′ = Y ∪{z}. By the choice
of G, G − Y ′ contains an (X \ Y ′)-spanning cycle, which is an (X \ Y )-
spanning cycle in G− Y , too.
Hence, V (G) = X ∪ Y . If Y ⊆ X, then G is 4-connected and contains
an (X \ Y )-spanning cycle by an immediate corollary of Statement 3 (since
|Y | ∈ {0, 1}).

It remains to consider the case Y = {y1} and y1 /∈ X. By the same argu-
ments as in Case B (omitting y2 everywhere), it follows thatG[X] = G−{y1}
and for S := NG(y1), it is |S| = 3 and G[S] is a cycle. Hence, G[X] is 4-
connected and, therefore, contains a hamiltonian cycle, which is an (X \Y )-
spanning cycle of G. �
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Proof of Theorem 2 (iii).
Note that any minor of G is also embeddable on a surface of Euler charac-
teristic χ. Using Theorem 3 (i) and Statement 6, let M be a 4-connected
X-minor of G, M = (Vv)v∈V (M) be an M -certificate of G, and T be a span-

ning tree of M of maximum degree at most ⌈10−χ
4 ⌉.

For each edge e = uv ∈ E(T ), let e′ ∈ E(G) be an arbitrary edge between a
vertex in Vu and a vertex in Vv. Furthermore, set V ′

v = Vv ∩ (
⋃

e∈E(T ) V (e′))

for v ∈ V (T ). Moreover, for v ∈ V (T ) and w ∈ V ′
v , let f(w) = |{e ∈ E(T ) |

w is incident with e′}|.
Since

∑
w∈V ′

v
f(w) = dT (v), it follows 1 ≤ f(w) ≤ dT (v) − |V ′

v | + 1 for all

w ∈ V ′
v . Since G[Vv ] is connected for v ∈ V (T ), the following Observation 6

can be seen readily by induction on |V ′
v |.

Observation 6. For v ∈ V (T ), G[Vv ] contains a V ′
v -spanning tree TV ′

v
such

that, for all w ∈ V (TV ′

v
), dTV ′

v
(w) ≤ |V ′

v | − 1 if w ∈ V ′
v and dTV ′

v
(w) ≤ |V ′

v |,

otherwise.

Let T ∗ be the tree of G with

V (T ∗) =
⋃

v∈V (T )

V (TV ′

v
) and

E(T ∗) = (
⋃

v∈V (T )

E(TV ′

v
)) ∪ {e′ | e ∈ E(T )}.

Since f(w) ≤ dT (v) − |V ′
v | + 1 and dTV ′

v
(w) ≤ |V ′

v | − 1, it follows dT ∗(w) =

f(w) + dTV ′
v
(w) ≤ dT (v) for w ∈ V ′

v and v ∈ V (T ). If w ∈ (Vv \ V
′
v) ∩ V (T ∗)

for some v ∈ V (T ), then dT ∗(w) = dTV ′
v
(w) ≤ |V ′

v | ≤
∑

u∈V ′

v
f(u) = dT (v).

All together, the maximum degree of T ∗ is at most ⌈10−χ
4 ⌉.

Clearly, X ⊆
⋃

v∈V (T ) Vv and |X∩Vv| ≤ 1 for v ∈ V (T ). For every v ∈ V (T )
and x ∈ X ∩ (Vv \ V (TV ′

v
)), let P be a path of G[Vv ] connecting x with a

vertex y of TV ′

v
such that V (P ) ∩ V (TV ′

v
) = {y} and add P to T ∗. The

resulting graph is the desired X-spanning (⌈10−χ
4 ⌉+ 1)-tree of G. �
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