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Counterexamples to Gerbner’s Conjecture on Stability of
Maximal F-free Graphs

Jian Wang*  Shipeng Wang! Weihua Yang!

Abstract

Let F be an (r + 1)-color critical graph with » > 2, that is, x(¥) = r+1 and there
is an edge e in F' such that x(F — e) = r. Gerbner recently conjectured that every
n-vertex maximal F-free graph with at least (1 — %)%2
induced complete r-partite graph on n — o(n) vertices. Let Fs ) be a graph obtained

T+l .
—o(n) edges contains an

from s copies of Co1 by sharing a common edge. In this paper, we show that for all
k > 2 if G is an n-vertex maximal Fj j-free graph with at least n?/4 — o(n%) edges,
then G contains an induced complete bipartite graph on n — o(n) vertices. We also
show that it is best possible. This disproves Gerbner’s conjecture for r = 2.

1 Introduction

A graph is called F-free if it does not contain F' as a subgraph. The extremal number
ex(n, F) is defined as the maximum number of edges in an F-free n-vertex graph. Let
T (n) be the complete r-partite graph on n vertices with partition classes of size |2 | or [%]
and let ¢,.(n) be the number of edges in T}.(n). The classical Turdn Theorem [7] shows that
ex(n, Ky4+1) = t,(n) and T,(n) is the unique graph attaining it. Since then the problem
of determining ex(n, F') becomes a central topic in extremal graph theory, which has been
extensively studied.

In the past decades, many stability extensions to extremal problems were also well-
studied. The stability phenomenon is that if an F-free graph is “close” to extremal in
the number of edges, then it must be “close” to the extremal graph in its structure. The
famous stability theorem of Erdds and Simonovits [2] [5] implies the following: if G is a
K, 1-free graph with ¢.(n) — o(n?) edges, then G' can be made into a copy of T}.(n) by
adding or deleting o(n?) edges.

A graph G is called mazimal F-free if it is F-free and the addition of any edge in
the complement G creates a copy of F. Tyomkyn and Uzzel [§] considered a different
kind of stability problems: when can one guarantee an ‘almost spanning’ complete 7-
partite subgraph in a maximal K, 1-free graph G with ¢,.(n) — o(n?) edges? They showed
that every maximal Ky-free graph G with ¢3(n) — c¢n edges contains a complete 3-partite
subgraph on (1 — o(1))n vertices. Popielarz, Sahasrabudhe and Snyder [4] completely
answered this question.
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Theorem 1.1 ([4]). Let r > 2 be an integer. FEvery mazimal K,i1-free on n vertices
r+1
with at least t.(n) — o(n + ) edges contains an induced complete r-partite subgraph on

(1 —o(1))n vertices.

Let f(F,n,m) be the maximum integer ¢ such that every maximal F-free graph with
at least ex(n, F') — t edges contains an induced complete (x(F') — 1)-partite subgraph on
n — m vertices. Popielarz, Sahasrabudhe and Snyder [4] give constructions to show that

f(Kr41,n,0(n)) = o(nTtl). In [9], Theorem [[I] was extended to maximal Coyyi-free

graphs.

3
2

Theorem 1.2 ([9]). For every k > 1, f(Cori1,n,0(n)) = o(n

).

We say that a graph F is (r 4+ 1)-color-critical, if x(F') = r 4+ 1 but there is an edge e
in it such that x(F — e) = r. Recently, Gerbner proposed the following conjecture.
Conjecture 1.3 ([1]). Let 7 > 2 be an integer and F' be an (r 4 1)-color critical graph.

r+1

Then f(F,n,o(n)) > o(n ).
He verified Conjecture [[3] for some special 3-color-critical graphs.

Theorem 1.4 ([1]). Let F be a 3-color-critical graph in which every edge has a vertex
that is contained in a triangle. Then f(F,n,o(n)) > o(n%).

Let F,j be a graph obtained from s copies of Cy;41 by sharing a common edge. It
is easy to see that Fyj is 3-color-critical. Note that each vertex of Fy; is contained
in a triangle, and so f(Fs1,n,0(n)) > o(n%) by Theorem [[4l Actually, one can show
that f(Fs1,n,0(n)) = o(n 3) by a similar construction in [4]. Since Fyj, = Copyi,
f(F1k,n,0(n)) has been determined in Theorem []

In this paper, we extend the two results above and determine f(Fjj,n,o(n)) for all
k > 2 and s > 2, and this disproves Conjecture [[.3] for r = 2.

Theorem 1.5. For k > 2 and s > 2,

s+2

f(Fsk,n,0(n)) = o(ns+1).

We prove Theorem by the following two lemmas.

Lemma 1.6. Fork,s >2, 0<a < % and n > Sk;52, there is a maximal Fj-free graph
with e > n? _ QkSQn% such that any induced complete bipartite subgraph of G has
G with e(G) = 7 y P P grap

at most (1 — a®)n vertices.

Lemma 1.7. Let k,s > 2. For sufficiently large n and 0 < a < 1, if G is an n-vertex
+
maximal Fy-free graph with at least n?/4 — ans+1 edges, then G contains an induced

complete bipartite graph on n — 4 - (12sk)*3an vertices.

In the rest of the paper, we prove Lemma in Section 2 and prove Lemma [I.7] in
Section 3. We follow standard notation throughout. Let G be a graph. Denote by G
the complement of G. For v € V(G), we use Ng(v) to denote the set of neighbors of
v in G and let degg(v) = |Ng(v)|. Denote by §(G) the minimum degree of G. Let S
be a subset of V(G). We use Ng(v,S) to denote the set of neighbors of v in S and let
degq (v, S) = |Ng(v,S)|. Denote by G[S] and G — S the subgraphs of G induced by S and
V(G)\ S, respectively. When S = {v}, we simply write G — v for G — {v} . Denote by



ec(S) the number of edges of G with both ends in S. For zy € E(G), let G + zy be the
graph obtained from G by adding zy. For zy € E(G), let G — zy be the graph obtained
from G by deleting xy. For any two disjoint subsets X,Y of V(G), let G[X, Y] denote the
bipartite subgraph of G with the partite sets X,Y and the edge set

{zye E(G):x e X andy e Y}.

Denote by eg(X,Y) the number of edges in G[X,Y]. We also use E[X,Y] and E[X,Y]
to denote the edge set of G[X,Y] and G[X,Y], respectively. We often omit the subscript
when the underlying graph is clear. We also omit the floor and ceiling signs where they
do not affect the arguments.

2 Proof of Lemma

In this section, we give a construction to show that for every small ¢ > 0, there is a
maximal Fj j-free graph with at least %2 — an% edges, from which a positive fraction
of vertices has to be deleted to obtain an induced complete bipartite subgraph. First we
introduce a function about the t-ary representations of positive integers, which will be
used in our construction.

Definition 2.1. For every integer s,t > 2 and z € [0,t° — 1], = can be expressed uniquely
as follows:
&= Q1"+ qeot® 2+ .. 4 qit + qo,

where qo, q1,...,¢s—1 € [0,t—1]. We define the function b; s(z,p) = ¢, forp=0,1,...,s—1.
We construct a class of graphs, which contains the desired graph.

Definition 2.2. Given k£ > 2, s > 2, 0 < a < % and n > %. Let t = omﬁ and let
Gs k.a(n) be a class of graphs as follows. A graph G on n vertices is in G, o(n) if V(G)
can be partitioned into subsets

X07 s 7th—1aXtS7}/07' .. 7}/;55—17}/;55

and

Z070, ey ZO,t—h ZLO? c. 721,15—17 ey Zs—l,O; ey Zs—l,t—l

such that:

(i) Foreachp=0,...,s—1land ¢=0,...,t -1, |Z,, =2k — 1 and G[Z, 4] contains a

path of length 2k — 2, say z;qziq e zzf“q*l.

(ii) For each i =0,1,...,t°—1,
1
1Xi] = |¥i] = nor.
and Xis, Yys is a balanced partition of
v\ J xuv)\ U %

0<i<ts—1 0<p<s—1
0<q<t—1

(iii) For each i = 0,...,t* — 1, G[X;,Y;] is empty and G[X;s, Y;s] is complete. For each
i,j €{0,...,t°} with i # j, G[X;, Y]] is complete.



(iv) Let I(t,s,p,q) = {i € [0,t° — 1] : by 5(i,p) = ¢q}. For each p =0,...,s — 1 and each

q=0,...,t—1, z;g is adjacent to every vertex in
U x
1€I(t,s,p,q)
and 212)]2_1 is adjacent to every vertex in

U x

i€l(t,s,p,q)

When refer to vertex classes of a graph in G, i, we use X, Y, Z, and Z to denote

Ux Uy U Zead U 2.
0<i<ts  0<i<ts  0<g<t—1 0<p<s—1
0<g<t—1

respectively.

Proposition 2.3. If G is the graph in Gs i o(n) with minimum number of edges, then G
is Fy p-free.

Proof. Suppose not, let H be a copy of Fy, in G. By Definition (i), G|Zp 4] is a path
of length 2k — 2 forp=0,1,...,s—1and ¢ =0,1,...,f — 1. Note that z}’;q is the middle
vertex on the path G[Z,,]. Let

{ Zp=A{2p s v <kandrisodd} U{z :r >k andris even},

z2,=A{z) ;v <kandriseven}U{z) : 7>k and r is odd}.

Clearly, Z, , = Z;,q U Z§7qu {z£7q}. By Definition (iv), Zz%,q is not adjacent to any vertex
in Y and zzz)ff]_l is not adjacent to any vertex in X. It follows that both X U Ziq and
YU Z;q are independent sets of G. Let

0 k 1 1 2 2
Z2°={zf :0<p<s—1,0<qg<t—1}, Z' = U Z)  and Z* = U Z2 .
0<p<s—1 0<p<s—1
0<q<t—1 0<q<t—1

Then Z°, X UZ? and YU Z! are all independent sets of G. Let xy be the common edge of
s cycles in H, and let P°, P! ... P! be s paths of H — xy. Since degy(z) =s+1> 2,
degy(y) = s +1 > 2 and degg(z),) = 2 for every p € [0,'3 — 1] and ¢ € [0,t — 1],
we have {z,y} N Z° = ). Since G — Z; is bipartite and P! + zy is an odd cycle for
i=0,1,...,5—1, we see that |[V(P*)NZ° > 1, and let z]],thi € V(PN Z". By Definition
(1), GlZp,.q;] = Z117i7(IiZ127i7(Ii e zgﬁgil is a subpath of P’. Then there are exactly two

vertices on P’ + zy that are not in Z,, ,,. By Definition (iv), all the neighbors of Z;i,%’
except Zzz)i,qi are in X \ Xzs and all the neighbors of zgﬁ;il except zgﬁq_iz are in Y\ Y;s. Hence
V(P" + xy) has one vertex in X \ Xjs, one vertex in Y \ Y;s and all the other vertices in
Zpiq; foreach 1 =0,1,...,s — 1.

For distinct 4,5 € {0,1,...,s—1}, we claim that p; # p; or ¢; # ¢;. Otherwise, we have
V(P +zy) NV (P +2y) D Zp, 4, implying that |V (P! + zy) NV (P? + zy)| > 2k —1 > 3,
a contradiction. (Note that here is the only place we use k£ > 2 in the proof and explain

that the construction fails for £ = 1.) Thus Z,, ,, and Z,, .. are disjoint, implying that

4



Zpiais Zpjq; C V(H) \ {z,y}. Moreover, one of z,y is the common neighbor of z;, and

iqi
1 : : 2k—1 2k—1 " :
Zpi s and the other is the common neighbor of z;7 * and Zprg; By Definition (iv),

{z,y} € (X \ X4s) U (Y \ Yss). Without loss of generality, we may assume that © € X,
and y € Y, with a,b € [0,¢* — 1]. Since zy is an edge in H, we have a # b.

. . 1 1 1 .
Then z is the common neighbor of z, ..z, .,...,2, ., , and y is the common
neighbor of 2'12)5,50172’;2)?,;11, . 7235:11,%_1' By Definition (iv), we have a € I(t,s,pi, q;)

and b € I(t,s,p;, q;), implying that b; s(a,p;) = ¢; and by 5(b,p;) = ¢g; for i =0,1,...,s—1.
If p; = p; for some i # j, then ¢; = by s(a,p;) = by s(a,p;) = g;, contradicting the fact that
pi # pj or ¢; # qj. Thus po,p1,...,ps—1 is a permutation of {0,1,...,s—1}. Without loss
of generality, we assume that p; =4 for ¢ =0,1,...,s — 1, then

a=qs 1t g ot 2+ .. Fqt+q =0,
a contradiction. Therefore, G is F j-free. O
Now we are in a position to prove Lemma

Proof of Lemma L6 By Proposition 2.3, we may choose a maximal Fj j-free graph G in
gs,k,a(n)-

Claim 1. Both X and Y are independent sets in G.

Proof. By Definition (iii), G[X, Y;s] is complete bipartite. Note that

n— 2] - X\ Xee| - Y\ Ve

X] > Vi .

 n—st(2k—1) — 2T

N 2
1 1. 1

~ n—sans+1(2k — 1) — 2(ans+1)°ns+

N 2

> g — ksanlerl —a’n.

Note that s > 2,a < % and n > %i”g. Then
n ksn% n n% 2
| X| > |Yes| > 5 5 "1 > I(ns — 2ks) > 2sk > |V (Fs )|

If there is an edge e in G[X], then it is easy to find a copy of Fyj in G[X UY}s] because
F 1, is 3-color-critical. Thus X is an independent set of G. Similarly, Y is an independent
set of G. ]

Claim 2. Fori=0,1,...,t° — 1, G[X;,Y;] is empty.
Proof. Suppose not, and let xy be an edge with = € X; and y € Y;. Assume that

i = o1t qeat* 2+ .+ @it + qo.

2k—1 52k—1
0,90 7" %s—=1,gs—1

have a common neighbor y. It follows that G[Zp 4 U ... U Zs_14, , U {x,y}] contains a

By Definition 2.2 (iv), z&qo, VN z;_l’qkl have a common neighbor x, and z

copy of Fj 1, contradicting the fact that G is Fj ;-free. O



By Claims 1 and 2, we have

t5—1
e(GIX UY]) = [X[[Y| = > [Xi|lYi|
1=0

N <n - (2/;;— 1)st>2 e <n?)2

1\ 2
— (2k — 1)sans+1 ) s 5 2
— ns+1ns+1

2

s5+2

<n 1\2
> <§ — ksoms+1> — a’nstl
n2
4
n2
4

s+2 s+2

> — ksanst1 — a’ns+1

s+2

— 2ksans+1. (2.1)

>

In the following, we shall show that any induced complete bipartite subgraph of G has
at most (1— §)n vertices. Assume that H is a largest induced complete bipartite subgraph
of G with vertex classes A and B. Note that each vertex of X; (or Y;) plays the same role
in G. If there is a vertex in X; (or Y;) belongs to V(H), then by the maximality of H,
every vertex of X; (or Y;) belongs to V(H).

Suppose first that X N (AU B) =0 or Y3 N (AU B) = (). Then

[ Al + 1B < n — min{[ Xy |, [Yzs [}
n—|Z] - [ X\ X | = [V \ Vs

=n
2
_nA 2]+ [ X\ X[ + [V \ Ve
2

1 1 1
~ n+sans+1(2k — 1) + 2(ans+1 ) ns+l
- 2

n 1

<3 + ksans+T 4+ a’n
<(1-a%)n. (2.2)

Now suppose that X;s N (AU B) # 0 and Yis N (AU B) # 0. Then Xys,Ys C
AU B. Without loss of generality, we assume that X;s C A and Y;s C B. Since G[X;, Y]]
(0 <i < t*—1) is empty, and both G[X;,Y;s] and G[X;s,Y;] are complete bipartite, it
follows that at most one of X; and Y; is in AU B. Hence H is missing at least t° of
X0, ., X4s_1,Yp,...,Ys_1 and so

1

JAUB| <n—t°ns+T =n—a’n=(1—-a’)n. (2.3)

This completes the proof. O

3 Proof of Lemma [1.7

In this section, we prove a stability theorem for maximal Fj ;-free graphs. We say that
a vertex of a graph G is color-critical, if deleting that vertex results in G with smaller

chromatic number. The following two results are needed.



Lemma 3.1 ([1]). Let F be a 3-chromatic graph with a color-critical vertex and n be
sufficiently large. Let w < e < W If G is an n-vertex F-free graph with
|E(G)| > ex(n,F) — en?, then there is a bipartite subgraph G' of G with at least (1 —
12|V (F)|e)n vertices, at least ex(n, F) — 13|V (F)|en? edges and minimum degree at least

: - m n such that every vertex of G' is adjacent in G to at most |V (F)| vertices

in the same partite set of G'.

Theorem 3.2 ([6]). Let F be an (r + 1)-color-critical graph. There exists an ng such that
if n > ng, then ex(n, F') = t.(n).

We find a large induced bipartite subgraphs with useful structures in maximal F j-free
graphs by the following lemma.

Lemma 3.3. Let G be an n-vertex mazximal Fy j-free graph with at least %2 — en? edges
and let h = |V (F)|. Then there is a partition (U,V,T) of V(G) such that

(i) (5= 1o5) 7 < ULIVI < (5 + 1) n and |T| < 30h%en;

(i) GIU U V] is an induced bipartite subgraph of G with partite sets U,V , minimum
degree (% — ﬁ) n and at least %2 — 25h%en? edges;

(iii) for every x € T, if x has neighbors in U (or V'), then it has at least h + 1 neighbors
inU(orV).

Proof. Since Fyj, is 3-color-critical, by Theorem we have ex(n, Fyj) = {"Tfj Since
F; 1, has two critical vertices, by Lemma [B.I] there is a bipartite subgraph G’ of G with
at least (1 — 12he)n vertices, at least %2 — 13hen? edges and minimum degree at least
(3 — 115 ) n- Let Uy, Vi be two partite sets of G’ and let Ty = V(G) \ V(G’). Clearly,
(3 — 5)n < |Uol, Vol < (3 + 137) n and |Ty| < 12hen.

Claim 3. Both Uy and Vj are independent sets in G, that is, G’ is induced.

Proof. By contradiction, we may assume, without loss of generality, that Uy is not an

independent set. Then there is an edge ujus in G[Up]. Since §(G’) > (3 — 15) n and

Vol < (3 + 137) n, each w;(i = 1,2) has at most 2% non-neighbors in Vp. It follows

that w1, ue have at least (% — %) n common neighbors in Vj. Let Vj be the set of the
1 1

common neighbors of uy,ug and Uj = Up \ {u1,u2}. By 6(G’) > (5 — 117) n and since n

is sufficiently large, we have

11 1 5 12 n? _(h+s—3)n
A - _9 ___Z - - —_
e(UO’VO)—%‘<<2 11h>" >> (2 11h>"<2 11h>"> 6 = 2

By Erdés-Gallai theorem [3], there is a path P on h + s — 1 vertices in G[U[, Vy]. We
truncate P into s vertex-disjoint paths with endpoints in V{ and each of length 2k — 2.
These paths together with uq,us form a copy of Fy j, a contradiction. ]

Let T =Ty, U = Uy and V = V. Now we remove a small amount of vertices from U to
T by a greedy algorithm. In each step, if there is a vertex = € T with 1 < deg(x,U) < h,
then we remove all the neighbors of x from U to T'. If every vertex in T either has at least
h 4+ 1 neighbors or no neighbors in U, then we stop. By Claim 3, Uy is an independent
set, then each vertex added in 7" has no neighbors in U. Moveover, if all the neighbors of
x € Ty have been removed from U to T', then = has no neighbors in the updated U. Hence



the algorithm will stop in at most |Tp| steps. Let U’ be the vertices removed from U to T
by the algorithm. It follows that

\U’| < h|Tp| < 12h%en.

Then we remove a small amount of vertices from V to T similarly. In each step, if there
is a vertex x € T with 1 < deg(x, V) < h, then we remove all the neighbors of x from V' to
T. Similarly, the algorithm will stop in at most |Tp|+|U’| steps. Since 6(G') > (3 — 137) n.
each z € U’ has at least ( l%h) n neighbors in Vj. It follows that each x € U’ has at
least (3 — 137 ) n— (|To| +|U’|)h > h+1 neighbors in V in the executing of the algorithm.
That is, the neighbors of vertices in U’ will not be removed in the algorithm. Hence, the
algorithm will stop in at most |Tp| steps. Let V/ be the vertices removed from V to T by

the algorithm. It follows that
[V'| < h|Ty| < 12h%en.

Let U,V,T be the resulting sets at the end of the algorithm. By Claim 3 and since
U C Uy, V C Vy, both U and V are independent sets. Let G be the bipartite subgraph
induced by U and V. Since both |U’| and |V’| have size at most 12h%en, we have

IT| < |To| + |U'| + |V'| < 12hen + 24h%en < 30h%en,

and
e(G") 2 e(G") — (JU'| +|V']) - max{|Up|, | Vo }
> %2 — 13hen? — 24h%en (1 - ﬁ)
> %2 — 25h2%en?,
and

1 1 1 1
N s s Ve (2 —|n—12n%en> (= — —
8(G") > §(G") — max{|U'|,|V"|} > <2 11h>” 12h%en = <2 10h>

11 11
Z_ < < _
(2 10h> n<|ULIVI< ( * 10h>

Moreover, for each x € T, x either has at least h + 1 neighbors or no neighbors in U, and

It follows that

x either has at least A + 1 neighbors or no neighbors in V. Thus the lemma holds. U

Lemma 3.4. Let G be a bipartite graph with partite sets U,V and let W be a subset of
UUV with [W| =h. If (-3 0 <ULV < G+ m)n 6G) > (3 - 1) n and
n > 10h, then the following holds.

(i) For every u € U,v € V and every odd integer | with 3 <1 < h, there is a uv-path P
of length 1 such that (V(P)\ {u,v}) N W = 0.

(ii) For every u,v € U and every even integer | with 2 <1 < h, there is a uv-path P of
length | such that (V(P)\ {u,v}) "W = 0.



Proof. For any u € Uyjv € V,1let A= N(v)\ (WU{u}) and B= N(u) \ (W U{v}). Then

11 11
Z —h—1< <(Z 44—
<2 10h>” h—-1<|4}1Bl < <2+10h>”

and the minimum degree of G[A, B] is at least

1 1 n
_ _ _ > (2o = _ (=
5(G) — max {|U| — |A|,|V| - |B|} > (2 10h> n— (g +h+1)

It follows that

1
e(A, B) = ) Z degG[A,B}(x)
r€AUB

2%((%—f%>n—h—Q(M%HBD

> % ((%_%> 10h—h—1> (14 +1B])
> 20141 +18)
> 222141+ ),

For any odd integer [ with 3 < [ < h, there is a path of length | — 2 in G[A, B] by
Erdés-Gallai Theorem [3], which together with w, v is our desired path.
If u,v e U, thenlet A=U\ (WU {u,v}) and B = N(u) N N(v)\ W. Clearly,

11
Al>(z-—=)n-n-2
| ‘—<2 10h>n h

and

[B| = [N(u) A N(v)| = h
> [N(u)| + [N@)| = [V]=h
11 11

>o(-- = Jn-(4+—)n-

= (2 10n)" <2+10h>n h
13

:<§—ﬂm>“‘”

The minimum degree of G[A, B] is at least

1 1 2n
— — - > PR B Th
(G) —max {|U| — |A|,|V|—|B|} > <2 10h> " <5h + h)



It follows that

> % ((%—%%—h) (JA| + |BJ)

> % <<% _ %) 10h—h> (4] +|B])

2 (14 +1B)

-1
2

>

> (|Al + |B]).

For any even integer [ with 2 <[ < h, there is a path of length [ in G[A, B] by Erdds-
Gallai Theorem [3], say z122 ... x141. If 21,2111 € A, then uxs ... zv is the desired path.
If 1,231 € B, then uxs ...z 10 is the desired path. This completes the proof. O

We need some definitions in the proof of Lemma [[L7l Let F,G be two graphs. A
homomorphism from F to G is a mapping ¢ : V(F) — V(G) with the property that
{p(u), p(v)} € E(G) whenever {u,v} € E(F). A homomorphism from F' to G is also called
an F'-homomorphism in G. If ¢ is injective, then ¢ is called an injective homomorphism. If
¢ is both injective and surjective, then ¢ is called an isomorphism. Now we prove Lemma
[L7 by a delicate vertex-deletion process.

Proof of Lemma[I.7. Let G be an n-vertex maximal Fy p-free graph with at least %2 —en?

edges and let h = |V (Fy 1)|. By Lemmal[3.3] there is a partition (U, V,T') of V(G) satisfying
conditions (i), (ii) and (iii) of Lemma B3l Let G’ = G[U, V]. We are left to delete vertices
in G’ until the resulting graph is complete bipartite.

We write F instead of Fjj, for simplicity. For any non-edge zy of G’ with x € U and
y € V, G + xy contains at least one copy of I since G is maximal F-free. Let I, be one
of such copies and let ¢,, be the isomorphism from F' to Fj,. Let

Q={zy:2x€U, yeV and zy ¢ E(G")}.
Claim 4. For each zy € Q, Np, (z) N T # () and Ng,, (y) NT # 0.

Proof. By contradiction, we may suppose that Np,, (z) NT = () without loss of generality.
Let yo = y,y1,--.,¥yp be the neighbors of x in F},. Then y1,...,y, are all in V because U
is an independent set. Since the maximum degree of F, is s+ 1, it follows that p < s. By
Lemma B3] (ii), we have 6(G') > (3 — 1&)n and (3 — 157)n < [U| < (3 + 13;) n, then
each y; (1 =0,1,...,p) has at most g non-neighbors in U. Note that

h=s2k—-1)+2>35s4+2>25s+3>2p+3

as k > 2 and s > p. Therefore, the number of common neighbors of yo,y1,...,y, in U is
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at least

Thus, there is a vertex 2’ € U such that 2’ ¢ V(F,,) and z'y; € E(G) for i =0,1,...,p.
Then by replacing z with 2’ in Fy, we obtain a copy of F' in G, contradicting the fact that
G is F-free. O

Let a, b be the vertices of degree s+ 1 in F and let act ... c’ékflb (i=1,...,s) be those
paths in F' — ab. Now we partition {2 into three classes as follows:

O = {ay € Q: ¢y (2), 05y (v) € V(F) \ {a, b} },
Oy = {my e Q: {¢;y1(x)7¢;y1(y)} = {a7 b}} ’
Q3 = {2y € Q: [{dgy (@), 05y ()} N{a, b} =1}.

We delete a small amount of vertices from U UV to destroy all non-edges in €2 in the
following three steps.
Step 1. We can find U; C U and V; C V such that |U \ Uy| + [V \ V1| < 160h3en? and
E[Uy, V1] N Qq = 0. That is, by deleting at most 160h3en vertices from U UV we destroy
all non-edges in £2;.

Proof. If Q1 = (), we have nothing to do. So assume that €; # (), then there is a non-edge
xy in 0y with z € U and y € V. By definition of €21, we see that both x and y have degree
two in Fyy. By Claim @, Np, (2) NT # () and N, (y) N T # 0. Let 2* € Np, (2) N T
and y* € Npg,, (y) NT. Then x* # y* since Fy, is triangle-free. Let X = Ng(2*,U),
Y = Ng(y*,V) and let S be one of X and Y with smaller size.

For any edge 2'y’ in G with 2/ € X and ¢/ € Y, if {2/,y'} NV (Fyy) = 0, then by
replacing z,y with 2,y in F,, we obtain a copy of F' in G, a contradiction. Thus, every
edge in G[X,Y] intersects V (Fy,), implying that e(X,Y) < h(|X|+ |Y]). Then

eq(X,Y) = [X|[Y] = e(X,Y) = |X[[Y] = h(|X] + [Y]).
Without loss of generality, we assume that |X| < |Y], then S = X. If |S| > 4h, then

(X, Y) = [S|[Y] = h(|S] + [Y])
= [Y|(IS] = ) — h[S|

> |S|* - 2h|S|
1S12 _ ISP

> .

- 2 16h2

If |S| < 4h, then since zy is a non-edge of G between X and Y, we have
|SI?

11



5|2

Thus, there are at least {5~ non-edges between X and Y. We delete vertices in S from
UUVoandlet U =U\ S and V! =V \S. If E[U,V]NQ = 0, then we are done.
Otherwise, there is another non-edge xy in Q0 with x € U’,y € V/, and we delete another
S’ from U’ UV’ incidents with at least . 6!12 non-edges between U’ and V’. By deleting
vertices greedily, we shall obtain a sequence of disjoint sets S1,5%,...,.5 in U UV such
that E[U\ (S1U...US)),V\(S1U...US)]NQ; = 0. In each step of the greedy algorithm,
there is a u € T such that either N(u) NU or N(u) NV is deleted, implying that | < 2|T|.

By LemmaB.3 (ii), G[U, V] has at least "72 —25h%en? edges. It follows that the number

of non-edges between U and V is at most

2
u||v] - (”Z - 25h25n2> < 25h%en?.

Thus,

~ |5
il" —opp2op2 _
g 62 = 25h%en (3.1)

By Cauchy-Schwarz inequality, we have

<i |Si|>2 < <i |Sl-|2> L. (3.2)

i=1 i=1

Note that |T'| < 30h%en from Lemma 3.3 (i). By (1), (2) and [ < 2|7, we arrive at
l
<Z |Si|> < 16h% - 25h%en®l < 202hen? - 2|T| < 20%h*en? - 60h2en.
Let Uy =U\ (S1U...US)and Vi =V \ (S1U...US;). Then

l
U\ U+ VAW < 18] < 160R%en?
i=1

and Step 1 is finished. O

Step 2. We can find U C Ut and V3 C Vi such that [Uy\Us|+|Vi \Va| < (6h)*+% SRR
s+1

and E[Us, V2] N (1 Us) = (). That is, by deleting at most (6h)5T2¢™2 nsg vertices from
Uy UV we destroy all non-edges in €2s.

Proof. By Step 1, we see that E[Uy, V1]NQ = 0. Thus, we are left to delete vertices from
U1 UV; to destroy all non-edges in Q9 N E[Uy, V4] If Qo N E[Uy, V4] = (), we have nothing
to do. So assume that Q5 N E[Ul, V1] # 0, then there is a non-edge xy in Qg with z € Uy
and y € V5. For xy € o, let

Fay = {me: Fyy is a copy of F'in G + zy with degp, (z) =degp, (y) =s+ 1} .

Clearly, Fy, # 0.

Claim 5. There is an F,, € F;, such that

(i) for every u € V(Fuy) \ (T'U{z,y}), degp,, (u,T) <1
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(ii) for every uv € E(Fyy —T —{z,y}), degp,, (u,T) + degp, (v,T) < 1.

Proof. For any Fy, € Fyy, let

01(Fry) = [{u € V(B \ (TU{o,9}) : degp,, (,T) =2}
and
0s(Fy,) = Huv € E(Fyy — T —{z,y}): degp, (u,T) + degp,, (v, T) > 2}‘ .

We choose Fy,, from F, such that 01 (Fyy)+02(Fyy) is minimized, and show that 0 (F,y) =
02(Fpy) = 0 to finish the proof. Suppose first that 6;(F,,) > 1. Then there is a u €
V(Fzy) \ (T'U{z,y}) such that degp, (u,T) = 2. Let C = zy...ujuuj...x be the cycle
in F,, with uj,u5 € T. Clearly, C has length 2k 4 1. Without loss of generality, we
assume that u € U. If the path uuj ...z has even length [, then by Lemma [3.4] (ii) with
W = V(Fyy) there is a uz-path P of length [ in G[U, V] such that V(P)NV (Fyy) = {u, x}.
By replacing uuj ...z from F,, with P, we obtain a new copy Fm’y of F with Fgﬁy € F and
01(Fy,) < 01(Fyy), contradicting the choice of Fy,. If the path wuj ... x has odd length [,
then by Lemma 3.4 (i) with W = V(F,,) there is a uy-path @ of length 2k — 1 in G[U, V]
such that V(Q) NV (Fyy) = {u,y}. By replacing y...uju from F,, with @), we obtain a
new copy Fy, of F' with F,, € F and 0(F,,) < 01(Fyy), contradicting the choice of Fy,.

Suppose next that 0a(Fy,) > 1. Then there is an edge uwv € E(F,, —x — y) with
u € U and v € V such that degp, (u,T) = degp, (v,T) =1, say Np,,(u,T) = {u*} and
Np,,(v,T) = {v*}. Let C be the cycle in F, containing u,v,u*,v*,z,y. Assume that
C=uzy...vvvv*...z or C =yx...u uvv™...y. We now distinguish the following two
cases.

Case 1. C=uzy...u uvv*...zx.

If y...u*u has odd length [, then by Lemma B.4] (i) with W = V(F,,) there is a yu-
path P of length [ in G[U, V] such that V(P) NV (F,,) = {y,u}. By replacing y...u*u
from Fy, with P, we obtain a new copy Féy of F with Fglcy € Fpy and 92(Féy) < Go(Foy),
contradicting the choice of F,,. If y...u"u has even length [, then the path vv*...x has
odd length 2k — 1 —[. By Lemma B4 (i) with W = V(F,,) there is a va-path @ of
length 2k — 1 — [ in G[U, V] such that V(Q) N V(F,,) = {v,z}. By replacing vv*...x
from F,, with @, we obtain a new copy Fy, of F with F,, € Fy, and 03(Fy,) < 02(Fyy),
contradicting the choice of F,.

Case 2. C=yz...u uvv*...y.

If z...u*u has even length [, then by Lemma 3.4 (ii) with W = V(F,,) there is a
zu-path P of length [ in G[U, V] such that V(P)NV (F,,) = {z,u}. By replacing x ... u*u
from Fy, with P, we obtain a new copy Fy, of F with I, € Fy,, and 05(Fy,) < 02(Fuy),
contradicting the choice of F,. If z...u"u has odd length I, then the path vv*...y has
even length 2k — 1 — [. By Lemma B4 (ii) with W = V(F,,) there is a vy-path @ of
length 2k — 1 — [ in G[U, V] such that V(Q) N V(Fyy) = {v,y}. By replacing vv*...y
from F,, with @, we obtain a new copy Fy, of F with F,, € Fy, and 63(Fy,) < 62(Fyy),
contradicting the choice of F,.

Thus 61 (Fyy) = 02(Fyy) = 0 and the claim follows.

O

By Claim 4, both Ng,, (z) NT and Np,,(y) NT are not empty, and let Np, () T

{z1,23, ... 25}, Ne,, ()NT = {yf,95,...,y; - Then {a], 25, ..., 23 }0{y],y5, ..,y } =0
since F'is K3-free. Let N, () NV = {z1,22,...,2f,2f41,...,2s—p} such that Ng, (z7) N
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Figure 1: The local structure of F, with zy € Q».

T #0for ¢ < fand Np,,(2) NT =0 for f+1<{<s—p. InFpy, cach z, ({ =1,...,f)
has one neighbor being  and the other one z; in T, and each 2, ({ = f+1,...,5—p) has
one neighbor being x and the other one uy in U. Let X be the set of common neighbors
of z7,23,..., 2z, in Uy and let Z be the set of neighbors of 2 in V for each £ =1,..., f.
Similarly, Ng,,(y) "U = {w1,wy, ..., wg, wyy1,...,ws—q} such that Ng, (wg) VT # 0 for
¢ <gand Np,, (w)) NT =0 for g4+1 < <5 —q. In Fyy, each wy ({ =1,...,g) has one
neighbor being y and the other one wj; in T, and each wy (¢ = g+ 1,...,s — ) has one
neighbor being y and the other one vy in V. Let Y be the set of common neighbors of
Y1, Y3s- -+ Yy in Vy and let Wy be the set of neighbors of wy in U for each £ =1,...,g as
shown in Figure [

For distinct vertices 2’ € X, 2] € Z1,...,2} € Zy, if 2’2, 2'2), ... 2’2} are edges in G
/

then we say that G[z/; 21, . .. ,z}] is an (X, Z1,..., Zy)-star with center z’. Let
Xo = {2’ € X: there exists an (X, Z1,..., Zy)-star with center z'} .
Clearly, Gx;21,...,2¢] is an (X, Z1,..., Zy)-star, implying that x € X,. Similarly, let
Yy = {y' € Y': there exists a (Y, W1, ..., Wy)-star with center y'}

and clearly y € Yj.

For any pair (2,y) with 2’ € Xo and y' € Y, if there exist 27,...,z} such that
Gla'; 2y, ... ,z}] isan (X, Zi,...,Zf)-starand /' ¢ {2],... ,z}}, then we say that vy is good
to x'; otherwise ¢/’ is bad to x’. Similarly, if there exist w}, ..., w} such that G[y';wy, ..., wy]
isa (Y,W1,...,Wy)-star and 2’ ¢ {wy,...,wy}, then we say that 2’ is good to ¢/, otherwise
2’ is bad to 3. We call (z/,y') a compatible pair if ¢ is good to 2’ and 2’ is good to ¥/';
otherwise we say that (z',y') is incompatible. For each 2’ € Xo, there exist 21,..., 2} such
that G[a'; 21, . .. ,z}] is an (X, Z1,..., Zy)-star, implying that the number of vertices in Yy
that are bad to 2’ is at most f. Similarly, for each v’ € Y, the number of vertices in X
that are bad to 3’ is at most g. Then the number of incompatible pairs between Xy and
Yy is at most f|Xo| + g|Yo|. Thus, the number of compatible pairs between Xy and Yj is
at least | Xo|[Yo| — f|Xo| — g[Yol.

Claim 6. Every compatible pair (2/,y') with 2/ € Xy and ¢’ € Y} is a non-edge of
G[U1, V1)
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Proof. Suppose not, let (2, y') with 2’ € Xy, ¥’ € Yy be a compatible pair and 2’y € E(G).

Then there exist 21, ..., 2} and w},...,wg such that Gla’,2],..., 2} isan (X, Z1,..., Zy)-
star and G[y';w, ..., wy] is a (Y, Wy,..., Wy)-star. We shall find a copy of F' in G, which
leads to a contradiction.
Let
Ry ={2',y 21, . 2w, wg )

Since ug (f +1 < ¢ < s —p) and 2/ have at least (% - ﬁ) n common neighbors in V
and n is sufficiently large, we may choose distinct 2%, ..., 2, from V' \ (V(Fyy) U RY)
such that z, € N(2/, V)N N(ug, V) for each £ = f+1,...,s—p. Similarly, we may choose
distinet wj 4, ..., wy_, from U\ (V(Fyy) U R}) such that wy € N(y',U) N N(vg,U) for

each/{=g+1,...,s—q. Let

Ry ={x,y,21,...,2f,w1,...,wg}, Ro={2f41,..,25—p, Wgs1,. -, Ws—gq}

and

Y / / /
Ry = {2fi1y s 2y Wop1y - We_g -

Clearly, RAN(RyUV (Fy,)) = 0. Let F be a graph obtained from Fy, by replacing vertices
in Ry U Ry with vertices in R} U R). If Rj N (V(Fyy) \ (R1 U Ry)) = 0, then FY is a copy
of F in G, a contradiction. Hence R} N (V(Fyy) \ (R1 U Ry)) # 0, that is, FC is the image
of an F-homomorphism but not a copy of F.

Now we replace the overlapped vertices in F° to get a copy of F by a greedy algorithm.
Let ¢o be the homomorphism from F' to Fy and let ¢,, be the isomorphism from F' to

F,y. Then ¢q is not an isomorphism and ¢, is an isomorphism. Let R} = qﬁ;yl(Rl) and
RS = qﬁ;yl (R2). By the labeling of F', we see that

RiURS = {a,b} U {c}: duy(c)) € UUV I U{chy 1t buy(chy_1) eUUV}.
Let
Ry ={u€eV(F): ¢gy(u) € T} and R = (Ui_; {ch,...,ch_o}) \ RS. (3.3)

Clearly, (R}, R5, R, R}) is a partition of V(F') and ¢, (R}) C UU V. Since for any edge
wv of F' with u € R} we have ¢,y (v) € T'U R1 U Ry, it follows that v € R} U RS U Rj.
Thus there is no edge between R} and R} in F'. Note that ¢ can be expressed explicitly
as follows:

(1) do(¢my (x)) = 2" and ¢o(¢zy (¥)) = ¥;

(ii) foreach £ =1,...,s—p, qﬁo(gb;;(zg)) = zjand foreach ¢ =1,...,5—q, gbo((ﬁ;yl(wg)) =
wy;

(ili) ¢o(c) = Pay(c) for ¢ € R5U Rj.

Since vertices in Rj are chosen disjoint from V' (F,,) U R}, we have ¢o(R5) N ¢o(R} U R U
R}) = 0. Then ¢o(R}) N ¢o(R}) # 0 because ¢g is not an isomorphism and ¢, is an
isomorphism.

For any a € R} and ¢ € R} with ¢g(a) = ¢o(c), ¢o(c) = ¢o(a) € ¢po(R}) = R} CUUV.
By (B.3) we have ¢ € Ui_;{c},...,cb,. ,}. Let dy,ds be two neighbors of ¢ in F. Clearly, d;
has degree two in F' for i = 1,2. Since ¢ € R} and there is no edge between R} and R} in
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F, it follows that di,dy ¢ R}. Since ¢g(c) = ¢gy(c) € V(Fyy) \ (T'N{z,y}), at most one of
Guy(dr), day(da) is in T by Claim 5 (i). Recall that FY is obtained from Fj, by replacing
vertices in Ry U Ry with vertices in R} U R}, and never changing vertices in 7. Thus
H{o(d1), do(d2)} NT| = [{pzy(d1), dzy(da)} NT| < 1. We shall find an F-homomorphism
¢1 such that |¢1(V(F))| > |¢o(V(F))| by distinguishing two cases.

Case 1. ’{(bo(dl), ¢0(d2)} N T‘ = 0.

Without loss of generality, we assume that ¢o(c) € U and ¢o(d1), po(d2) € V. Since
¢o(dy), po(dz) have at least (3 — 737 ) n common neighbors in U, we may choose u’ from
N(6o(d1)) 1 N(do(d)) \ éo(V(F)). Define 61 (c) = uf and ¢1(a) = go(a) for all a € V/(F)\
{c}. Tt is easy to see that ¢ is an F-homomorphism with |¢1(V (F))| = |¢o(V(F))| + 1.

Case 2. [{go(d1), éo(d2)} N T| = 1.

Without loss of generality, we assume that ¢g(c) € U, ¢o(d1) € V and ¢g(d2) € T.
Recall that d; has exactly two neighbors in F' and one of them is ¢, and let d3 be the other
one. Since @gy(cdr) is an edge of Fyy — T — {z,y}, by Claim 5 (ii) degp, (¢zy(c), T) +
degp,, (¢zy(d1), T) < 1, that is, [dey({d1,d2}) N T| + [¢ay({c,d3}) NT| < 1. Because FY
is obtained from Fy, by replacing vertices in Ry U Ry with vertices in R} U R/, and never
changing vertices in T', we have |¢o({d1,d2}) NT| + [po({c,ds}) N T| = |¢zy({d1,d2}) N
T| + |¢ay({c,ds}) NT| < 1. Then |po({c,d3}) NT| =0 by [¢o({d1,d2}) NT| =1, implying
that ¢o(ds) € U. Since ¢o(dz) has one neighbor ¢g(c) in U, by Lemma B3 (iii) we know
that ¢o(dz) has at least h 4+ 1 neighbors in U, and let v’ € N(¢o(da),U) \ ¢o(V(F)).
Moreover, since u' and ¢g(d3) have at least (% — ﬁ) n > h common neighbors in V', we
may choose v € N(u', V)N N(¢o(d3), V) \ ¢o(V(F)). Define ¢1(c) =, ¢1(dy) = v' and
o1(a) = ¢g(a) for all a € V(F) \ {c,d1}. It is easy to see that ¢; is an F-homomorphism
with [61(V(F)] > I60(V (F))] + 1.

If ¢1 is not an F-isomorphism, then there exist a’ € R} and ¢ € R} with ¢;(a’) =
¢1(c'). By the same argument above, we shall find an F-homomorphism ¢, such that
lp2(V(F))| > |p1(V(F))|. Do this repeatedly, we get F-homomorphisms ¢1, ¢2,..., ¢, ...
with h— R, < oo(V(F)| < é1(V(F)] < -+ < |i(V(F))| < -+ Since |¢s(V(F))| < h
for all 7, we shall obtain an F-isomorphism in at most |R}| steps, contradicting the fact
that G is F-free. Thus, every compatible pair (2/,y") with 2’ € X and ¢’ € Y is not an
edge in G[Uy, V1. O

Recall that the number of compatible pairs between Xy and Yj is at least | Xo||Yo| —
f1Xo| — ¢|Yol|. Since f,g < h, it follows that

e (Xo,Yo) = [Xol[Yo| — f[Xo| = gYo| = [Xol[Yo| — h(| Xo| + [Yol)-

Let S be one of Xy and Yy with smaller size. By the same argument as in the proof of
Step 1, we have

1S
cq(Xo,Y0) 2 {55

We delete vertices in S from U1 UV; and let U] = U\ S and V{ = V1\S. If E[U], V{]NQs =
(), then we are done. Otherwise, there is another non-edge zy in Q9 with x € U], y € V{,
152
16h2
V{. By deleting vertices greedily, we shall obtain a sequence of disjoint sets S1,Sa,...,S]

in U3 UV; such that E[U7 \ (S1U...US), V1 \ (S1U...US)|NOQ =0.
In each step of the greedy algorithm, there are vertices z7,... 2}, 27, ... z;‘c € T and
Yis-- s Yg, Wi, ... wy € T such that either Xo or Y is deleted. If X is deleted, then since X

and we delete another S’ from UjUV/ incidents with at least non-edges between U7 and
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is the set of common neighbors of 7, ...,z in the Uy \ X, there are no (X, Z1,...,Zy)-
stars in the future steps. It follows that the tuple (x’{,...,x;,z’f,...z}) will not ap-
pear in the future steps of the algorithm. Similarly, if Yy is deleted, then the tuple
(€7 P T 111 w;) will not appear in the future steps of the algorithm. Since p+ f < s

and ¢ + g < s, it follows that

1<y (E\) (!T\f—p> .S @) (\Tyg_ q>

p+f<s q+9<s

3 00

p+f<s
<2 ) TP <25%T).
p+f<s

Similarly, by [B1)) and ([B:2]) we arrive at
l 2
(Z ys,w) < 16h% - 25h%en?l < 20°hien? - 252|T)° < 202h*en? - 252 (30h%en)®.
=1

Let UQZUl\(SlLJ...USl) andV2:V1\(Slu...USl). Then

l
s+1 s+2 s+1 s+2

UL\ Us| + [Vi\ V| < 18] <20v2- 3020 s ™2 0"z < (6h)*F%c"2 n™
i=1

and Step 2 is finished. O

By Step 2, we see that E[Us, Vo] N (21 U Q) = (). Thus, we are left to delete vertices
from Uy U V5 to destroy all non-edges in Q3 N E[Us, Vo, If Q3 N E[Us, Vo] = 0, we have
nothing to do. Hence we assume that Q3 N E[Us, V5] # () and let 2y be a non-edge in 3
with € U and y € V5. By definition of €23, there is at least one copy Fj, of F' such
that degp, (¥) = s+ 1 and degp, (y) = 2 or degp, (v) = 2 and degp, (y) = s+ 1. We
partition 23 into four classes as follows:

O3 = {xy € Qy: degp, () = s+ 1, degp, (y) =2, degp, (2,T) = 3}7
039 = {xy € O3 dengy(m) =2, dengy(y) =s+1, dengy(%T) = S} ’
Q33 = {xy € Qy: degp, () =s+1, degp, (y) =2, degp, (2,T) < s— 1},
Q34 = {xy € Q3: degp,, () =2, degp,, (y) = s+ 1, degp,,(y,T) < s — 1} :

We complete the proof by the following two steps.
Step 3.1. We can find U3 C Us and V3 C V; such that |Us \ Us| + [Vo \ V3| <
s+2 s+1 s+2

(6h)+3c" 5 n° T and E[Us, Va]N(Q31UQs2) = 0. That is, by deleting at most (67)**3 ™5 n"2
vertices from U U Vo we destroy all non-edges in €231 U (239.

Proof. If E[Us, V2] N (231 UQ32) = 0, we have nothing to do. So assume that E[Us, V2] N
(Q31 U Q32) # 0, then there is a non-edge xy in Q31 U Q30 with z € Uy and y € Va.
Without loss of generality, we assume that xy € 3. By Claim 4, degp,, (y,T) =1 and
let Np,,(y,T) = {y*}. Assume that

Npg,,(z)NT = {z],23,..., 25}
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Let X be the set of common neighbors of z7,...,z% in Us of G and let Y = Ng(y*, Va).
For any edge 2’y in G[X,Y], if {«/,y'} NV (F,) = 0, then by replacing z,y with z’,y in
F,, we obtain a copy of F' in G, a contradiction. Thus, every edge in G[X,Y] intersects

V(Fyy), implying that e(X,Y") < h(|X]|+ |Y|). Then
eq(X,Y) = [X|[Y] = e(X,Y) = |X[[Y] = h(|X] + [Y]).

Let S be one of X and Y with the smaller size. By the same argument as in Step 1, we
have

S
ea(X,Y) > 62

We delete vertices in S from Us UV and let Uy = Up\ S and Vy = o\ S. If E[US, VJ]N (31U

Q32) = 0, then we are done. Otherwise, there is another non-edge xy in Q31 U Q3o with
112

z € Uj, y € V3, and we delete another S’ from U5 UV incidents with at least 5]

16h2
between Uj and V. By deleting vertices greedily, we shall obtain a sequence of disjoint sets

S1,59,...,5;in UyUV; such that E[UQ\(SlU. . .US[),VQ\(SIU. . .US[)]Q(le UQ32) = 0.

In each step of the greedy algorithm, if there is a non-edge xy € 231 between U, and
Vo, then there exist vertices z7,...,z%,y* € T such that either X = N N(z},Us) or
Y = N(y*,V3) is deleted. If there is a non-edge zy € Q32 between Us and Vs, then there
exist vertices yj,...,ys, x* € T such that either X = N(z*,Us) or Y = N{_;N(y), V2) is
deleted. It follows that

non-edges

T
1<2 ((‘ ’) + yT\> < 2(|T|° +|T)) < 4|T|* < 4(30n%en)*.
S
By (31) and (32), we arrive at
1 2
<Z \Sﬁ) < 16h% - 25h%en?l < 20°h%en? - 4(30h%en)® = 40? - 305K T 15t +2,
=1

Let UgZUQ\(SlLJ...USl) andV;;zVQ\(Slu...USl). Then

s+1 s+ s+1 s+2
2

l
U2\ Us| + Vo \ Va| < 18] < 403050525 05 < (6h)"+2e T n
i=1

and Step 3.1 is finished.

O

Step 3.2. We can find Uy C Us and Vy C V3 such that |Us \ Us| + |V3 \ V4| <
(6h)8+3€s+1 s5+2 s+3€s+1 s+

z n 2 and G[Uy, V4] is complete bipartite, i.e., by deleting at most (6h) 22
vertices from Us U V3 we obtain an induced complete bipartite subgraph of G.

)

Proof. If E[Us, V3] N (233 U34) = 0, we have nothing to do. So assume that E[Us, V3] N
(Q33 U Q34) # 0, then there is a non-edge xy in Q33 U Q34 with = € Us and y € V.
Without loss of generality, we assume that degp,, (r) = s+ 1 and degp,, (y) = 2. By
Claim 4, degp, (y,T) =1 and let Ng, (y,T) = {y*}. Let Np,, (z) NT = {z7,23,...,2;}
and Np,, () NV = {2zp41,..., 25y} with p < s — 1. By Claim 4, we have p > 1. Let X
be the set of common neighbors of z7, ...,z in Uz of G and let Y = Ng(y*, V3).

Let ¢, be the isomorphism from F' to F,,. Without loss of generality, assume that
Guy(a) = x and ¢qy(c) = y. If ¥ is an injective homomorphism from F — ¢} to G with

V(G (@1)) = a1, .y V(g (23)) = 7, V(dg, (¥7) =y
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and
(ay (2p41) € Vi ooy W(dy(25)) €V, ¥(a) € X,
then we say that ¢ is agree with ¢,. Define

V., = {¢: ¢ is an injective homomorphism from F' — cl to G that is agree with Gy}

Let
Xo = {2’ € X: Iy € ¥,y such that ¥,/ (a) = z'}.

For any ' € Xg, let Hy be a copy of F — ¢l in G corresponding to ... If there is
y' € Y \ V(H, ) such that 2’y € E(G), then we define a homomorphism ¢ from F to G
as follows:

P(u) = 1y (u) for all u € V(F — ¢}) and ¢(c}) =9/

Then ¢ is an injective homomorphism from F' to G, contradicting the fact that G is F-free.
Hence each 2’ € X has at most V (H,) neighbors in Y, implying that

ec(Xo0,Y) = [Xo|[Y] = [Xo[h > [ Xol[Y| = h(|Xo| + [Y]).

Let S be one of Xy and Y with the smaller size. By the same argument as in Step 1, we
have

Eli
eq(Xo,Y) > 1612

We delete vertices in S from Uz U Va3 and let U5 = Us \ S and V§ = V3 \ S. If
E[UL, VY] N (33 U Q34) = 0, then we are done. Otherwise, there is another non-edge xy
in (Q33 U Q34) with z € US, y € V4, and we delete another S’ from Uj U V4 incident with

712
at least Ifs—hIQ non-edges between Uj and V3. By deleting vertices greedily, we shall obtain

a Sequenlce of disjoint sets Si,Sa,...,S5; in U3 U V3 such that E[Us \ (S1U...US)), V3 \
(Sl U...u Sl)] N (933 U 934) = 0.

In each step of the greedy algorithm, if there is a non-edges xy € (133 between Uj
and V3, then there exist vertices z7,...,x,,y* € T such that either X, or Y is deleted.
If Y is deleted, then y* has no neighbor in V3 \ Y. If X, is deleted, then there is no
non-edge 2y’ € Q33 between Uz \ Xo and V3 such that Ng, ,(z') N T = {a7,23,... 2}
and N, , (v )NT = {y*}. For otherwise, F,, —y' is a copy of F — qﬁ;,;,(y’), which is also
a copy of F'— ¢}, contradicting the assumption that 2’ ¢ Us \ Xg. It follows that the tuple
(z1,...,25,y") will not appear in the future steps of the algorithm. If there is a non-edges
ry € (134 between Us and V3, then there exist vertices y7,...,y;,z* € T such that either
X = N(z*,Us) or Yy (which can be defined similarly) is deleted. By the same argument,
we see that the tuple (v, ... »Ygs x*) will not appear in the future steps of the algorithm.
Therefore,

s—1 |T| s—1 |T| s—1 s—1
<> ( >‘T’ + ( >\T! < STITPH 4 3T T < 25T < 25(30h%en)’.
p=1 P =1 N1 p=1 q=1

By (1) and (3:2), we arrive at

1 2
<Z ys,w) < 16h% - 25h%en®l < 20%h%en? - 25(30h%en)® = 2- 202 - 30°sh2 T4 T1pst2,
=1
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Let Uy = U3\(Slu. . .US[) and V; = Vg\(SlU . .US[). Since E[U4,V4]Q(QlUQQU93) = @,
G|Uy4, V4] is complete bipartite. Moreover,

l
s+1 s+ s+1 s+2

Us \ Ua| + V3 \ Vi < 37 [8i] < 20V2 - 305 /sh*H2e™5 03" < (6h)"H™F n's.
=1

Thus Step 3.2 is finished. O

Let n’ be the total number of vertices we deleted from G to obtain an induced complete

bipartite graph. By Lemma [3:3] (i) and Steps 1, 2, 3.1, 3.2, we have

s+1 s+2

n = |T| +|(UUV)\ (Us UVy)| < 30h%en + 160h%en2 + 3 - (6h)* 3 T n°z .

Let ¢ = an” 1. Then for s > 2, a<1and h < 2sk, we have

s+1

n' = 30h%an=1 + 160h%ans~ 1 4+ 3. (6h) 30T n

< (30 + 1600° + 3+ (6) %03 ) an
<4-(6n)*3an

<4-(12sk)*an.

This completes the proof. ]
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