Counterexamples to Gerbner's Conjecture on Stability of Maximal F-free Graphs

Jian Wang* Shipeng Wang ${ }^{\dagger}$ Weihua Yang ${ }^{\ddagger}$

Abstract

Let F be an $(r+1)$-color critical graph with $r \geq 2$, that is, $\chi(F)=r+1$ and there is an edge e in F such that $\chi(F-e)=r$. Gerbner recently conjectured that every n-vertex maximal F-free graph with at least $\left(1-\frac{1}{r}\right) \frac{n^{2}}{2}-o\left(n^{\frac{r+1}{r}}\right)$ edges contains an induced complete r-partite graph on $n-o(n)$ vertices. Let $F_{s, k}$ be a graph obtained from s copies of $C_{2 k+1}$ by sharing a common edge. In this paper, we show that for all $k \geq 2$ if G is an n-vertex maximal $F_{s, k}$-free graph with at least $n^{2} / 4-o\left(n^{\frac{s+2}{s+1}}\right)$ edges, then G contains an induced complete bipartite graph on $n-o(n)$ vertices. We also show that it is best possible. This disproves Gerbner's conjecture for $r=2$.

1 Introduction

A graph is called F-free if it does not contain F as a subgraph. The extremal number $e x(n, F)$ is defined as the maximum number of edges in an F-free n-vertex graph. Let $T_{r}(n)$ be the complete r-partite graph on n vertices with partition classes of size $\left\lfloor\frac{n}{r}\right\rfloor$ or $\left\lceil\frac{n}{r}\right\rceil$ and let $t_{r}(n)$ be the number of edges in $T_{r}(n)$. The classical Turán Theorem [7] shows that $\operatorname{ex}\left(n, K_{r+1}\right)=t_{r}(n)$ and $T_{r}(n)$ is the unique graph attaining it. Since then the problem of determining $e x(n, F)$ becomes a central topic in extremal graph theory, which has been extensively studied.

In the past decades, many stability extensions to extremal problems were also wellstudied. The stability phenomenon is that if an F-free graph is "close" to extremal in the number of edges, then it must be "close" to the extremal graph in its structure. The famous stability theorem of Erdős and Simonovits [2, 5] implies the following: if G is a K_{r+1}-free graph with $t_{r}(n)-o\left(n^{2}\right)$ edges, then G can be made into a copy of $T_{r}(n)$ by adding or deleting $o\left(n^{2}\right)$ edges.

A graph G is called maximal F-free if it is F-free and the addition of any edge in the complement \bar{G} creates a copy of F. Tyomkyn and Uzzel [8 considered a different kind of stability problems: when can one guarantee an 'almost spanning' complete r partite subgraph in a maximal K_{r+1}-free graph G with $t_{r}(n)-o\left(n^{2}\right)$ edges? They showed that every maximal K_{4}-free graph G with $t_{3}(n)-c n$ edges contains a complete 3-partite subgraph on ($1-o(1)) n$ vertices. Popielarz, Sahasrabudhe and Snyder [4] completely answered this question.

[^0]Theorem 1.1 (4]). Let $r \geq 2$ be an integer. Every maximal K_{r+1}-free on n vertices with at least $t_{r}(n)-o\left(n^{\frac{r+1}{r}}\right)$ edges contains an induced complete r-partite subgraph on $(1-o(1)) n$ vertices.

Let $f(F, n, m)$ be the maximum integer t such that every maximal F-free graph with at least $e x(n, F)-t$ edges contains an induced complete $(\chi(F)-1)$-partite subgraph on $n-m$ vertices. Popielarz, Sahasrabudhe and Snyder [4] give constructions to show that $f\left(K_{r+1}, n, o(n)\right)=o\left(n^{\frac{r+1}{r}}\right)$. In [9], Theorem [1.1] was extended to maximal $C_{2 k+1}$-free graphs.

Theorem 1.2 (9). For every $k \geq 1, f\left(C_{2 k+1}, n, o(n)\right)=o\left(n^{\frac{3}{2}}\right)$.
We say that a graph F is $(r+1)$-color-critical, if $\chi(F)=r+1$ but there is an edge e in it such that $\chi(F-e)=r$. Recently, Gerbner proposed the following conjecture.

Conjecture 1.3 ([1). Let $r \geq 2$ be an integer and F be an $(r+1)$-color critical graph. Then $f(F, n, o(n)) \geq o\left(n^{\frac{r+1}{r}}\right)$.

He verified Conjecture 1.3 for some special 3 -color-critical graphs.
Theorem 1.4 ([1]). Let F be a 3-color-critical graph in which every edge has a vertex that is contained in a triangle. Then $f(F, n, o(n)) \geq o\left(n^{\frac{3}{2}}\right)$.

Let $F_{s, k}$ be a graph obtained from s copies of $C_{2 k+1}$ by sharing a common edge. It is easy to see that $F_{s, k}$ is 3 -color-critical. Note that each vertex of $F_{s, 1}$ is contained in a triangle, and so $f\left(F_{s, 1}, n, o(n)\right) \geq o\left(n^{\frac{3}{2}}\right)$ by Theorem 1.4. Actually, one can show that $f\left(F_{s, 1}, n, o(n)\right)=o\left(n^{\frac{3}{2}}\right)$ by a similar construction in [4]. Since $F_{1, k}=C_{2 k+1}$, $f\left(F_{1, k}, n, o(n)\right)$ has been determined in Theorem 1.2,

In this paper, we extend the two results above and determine $f\left(F_{s, k}, n, o(n)\right)$ for all $k \geq 2$ and $s \geq 2$, and this disproves Conjecture 1.3 for $r=2$.

Theorem 1.5. For $k \geq 2$ and $s \geq 2$,

$$
f\left(F_{s, k}, n, o(n)\right)=o\left(n^{\frac{s+2}{s+1}}\right) .
$$

We prove Theorem 1.5 by the following two lemmas.
Lemma 1.6. For $k, s \geq 2,0 \leq \alpha \leq \frac{1}{2}$ and $n \geq \frac{8 k^{2} s^{2}}{\alpha}$, there is a maximal $F_{s, k}$-free graph G with $e(G) \geq \frac{n^{2}}{4}-2 k s \alpha n^{\frac{s+2}{s+1}}$ such that any induced complete bipartite subgraph of G has at most $\left(1-\alpha^{s}\right) n$ vertices.

Lemma 1.7. Let $k, s \geq 2$. For sufficiently large n and $0<\alpha<1$, if G is an n-vertex maximal $F_{s, k}$-free graph with at least $n^{2} / 4-\alpha n^{\frac{s+2}{s+1}}$ edges, then G contains an induced complete bipartite graph on $n-4 \cdot(12 s k)^{s+3} \alpha n$ vertices.

In the rest of the paper, we prove Lemma 1.6 in Section 2 and prove Lemma 1.7 in Section 3. We follow standard notation throughout. Let G be a graph. Denote by \bar{G} the complement of G. For $v \in V(G)$, we use $N_{G}(v)$ to denote the set of neighbors of v in G and let $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. Denote by $\delta(G)$ the minimum degree of G. Let S be a subset of $V(G)$. We use $N_{G}(v, S)$ to denote the set of neighbors of v in S and let $\operatorname{deg}_{G}(v, S)=\left|N_{G}(v, S)\right|$. Denote by $G[S]$ and $G-S$ the subgraphs of G induced by S and $V(G) \backslash S$, respectively. When $S=\{v\}$, we simply write $G-v$ for $G-\{v\}$. Denote by
$e_{G}(S)$ the number of edges of G with both ends in S. For $x y \in E(\bar{G})$, let $G+x y$ be the graph obtained from G by adding $x y$. For $x y \in E(G)$, let $G-x y$ be the graph obtained from G by deleting $x y$. For any two disjoint subsets X, Y of $V(G)$, let $G[X, Y]$ denote the bipartite subgraph of G with the partite sets X, Y and the edge set

$$
\{x y \in E(G): x \in X \text { and } y \in Y\} .
$$

Denote by $e_{G}(X, Y)$ the number of edges in $G[X, Y]$. We also use $E[X, Y]$ and $\bar{E}[X, Y]$ to denote the edge set of $G[X, Y]$ and $\bar{G}[X, Y]$, respectively. We often omit the subscript when the underlying graph is clear. We also omit the floor and ceiling signs where they do not affect the arguments.

2 Proof of Lemma 1.6

In this section, we give a construction to show that for every small $\varepsilon>0$, there is a maximal $F_{s, k}$-free graph with at least $\frac{n^{2}}{4}-\varepsilon n^{\frac{s+2}{s+1}}$ edges, from which a positive fraction of vertices has to be deleted to obtain an induced complete bipartite subgraph. First we introduce a function about the t-ary representations of positive integers, which will be used in our construction.

Definition 2.1. For every integer $s, t \geq 2$ and $x \in\left[0, t^{s}-1\right], x$ can be expressed uniquely as follows:

$$
x=q_{s-1} t^{s-1}+q_{s-2} t^{s-2}+\ldots+q_{1} t+q_{0},
$$

where $q_{0}, q_{1}, \ldots, q_{s-1} \in[0, t-1]$. We define the function $b_{t, s}(x, p)=q_{p}$ for $p=0,1, \ldots, s-1$.
We construct a class of graphs, which contains the desired graph.
Definition 2.2. Given $k \geq 2, s \geq 2,0<\alpha<\frac{1}{2}$ and $n \geq \frac{8 k^{2} s^{2}}{\alpha}$. Let $t=\alpha n^{\frac{1}{s+1}}$ and let $\mathcal{G}_{s, k, \alpha}(n)$ be a class of graphs as follows. A graph G on n vertices is in $\mathcal{G}_{s, k, \alpha}(n)$ if $V(G)$ can be partitioned into subsets

$$
X_{0}, \ldots, X_{t^{s}-1}, X_{t^{s}}, Y_{0}, \ldots, Y_{t^{s}-1}, Y_{t^{s}}
$$

and

$$
Z_{0,0}, \ldots, Z_{0, t-1}, Z_{1,0}, \ldots, Z_{1, t-1}, \ldots, Z_{s-1,0}, \ldots, Z_{s-1, t-1}
$$

such that:
(i) For each $p=0, \ldots, s-1$ and $q=0, \ldots, t-1,\left|Z_{p, q}\right|=2 k-1$ and $G\left[Z_{p, q}\right]$ contains a path of length $2 k-2$, say $z_{p, q}^{1} z_{p, q}^{2} \ldots z_{p, q}^{2 k-1}$.
(ii) For each $i=0,1, \ldots, t^{s}-1$,

$$
\left|X_{i}\right|=\left|Y_{i}\right|=n^{\frac{1}{s+1}} .
$$

and $X_{t^{s}}, Y_{t^{s}}$ is a balanced partition of

$$
V(G) \backslash \bigcup_{0 \leq i \leq t^{s}-1}\left(X_{i} \cup Y_{i}\right) \backslash \bigcup_{\substack{0 \leq p \leq s-1 \\ 0 \leq q \leq t-1}} Z_{p, q} .
$$

(iii) For each $i=0, \ldots, t^{s}-1, G\left[X_{i}, Y_{i}\right]$ is empty and $G\left[X_{t^{s}}, Y_{t^{s}}\right]$ is complete. For each $i, j \in\left\{0, \ldots, t^{s}\right\}$ with $i \neq j, G\left[X_{i}, Y_{j}\right]$ is complete.
(iv) Let $I(t, s, p, q)=\left\{i \in\left[0, t^{s}-1\right]: b_{t, s}(i, p)=q\right\}$. For each $p=0, \ldots, s-1$ and each $q=0, \ldots, t-1, z_{p, q}^{1}$ is adjacent to every vertex in

$$
\bigcup_{i \in I(t, s, p, q)} X_{i},
$$

and $z_{p, q}^{2 k-1}$ is adjacent to every vertex in

$$
\bigcup_{i \in I(t, s, p, q)} Y_{i} .
$$

When refer to vertex classes of a graph in $\mathcal{G}_{s, k, \alpha}$, we use X, Y, Z_{p} and Z to denote

$$
\bigcup_{0 \leq i \leq t^{s}} X_{i}, \bigcup_{0 \leq i \leq t^{s}} Y_{i}, \bigcup_{0 \leq q \leq t-1} Z_{p, q} \text { and } \bigcup_{\substack{0 \leq p \leq s-1 \\ 0 \leq q \leq t-1}} Z_{p, q},
$$

respectively.
Proposition 2.3. If G is the graph in $\mathcal{G}_{s, k, \alpha}(n)$ with minimum number of edges, then G is $F_{s, k}$-free.

Proof. Suppose not, let H be a copy of $F_{s, k}$ in G. By Definition 2.2 (i), $G\left[Z_{p, q}\right]$ is a path of length $2 k-2$ for $p=0,1, \ldots, s-1$ and $q=0,1, \ldots, t-1$. Note that $z_{p, q}^{k}$ is the middle vertex on the path $G\left[Z_{p, q}\right]$. Let

$$
\left\{\begin{array}{l}
Z_{p, q}^{1}=\left\{z_{p, q}^{r}: r<k \text { and } r \text { is odd }\right\} \cup\left\{z_{p, q}^{r}: r>k \text { and } r \text { is even }\right\}, \\
Z_{p, q}^{2}=\left\{z_{p, q}^{r}: r<k \text { and } r \text { is even }\right\} \cup\left\{z_{p, q}^{r}: r>k \text { and } r \text { is odd }\right\} .
\end{array}\right.
$$

Clearly, $Z_{p, q}=Z_{p, q}^{1} \cup Z_{p, q}^{2} \cup\left\{z_{p, q}^{k}\right\}$. By Definition 2.2(iv), $z_{p, q}^{1}$ is not adjacent to any vertex in Y and $z_{p, q}^{2 k-1}$ is not adjacent to any vertex in X. It follows that both $X \cup Z_{p, q}^{2}$ and $Y \cup Z_{p, q}^{1}$ are independent sets of G. Let

$$
Z^{0}=\left\{z_{p, q}^{k}: 0 \leq p \leq s-1,0 \leq q \leq t-1\right\}, Z^{1}=\bigcup_{\substack{0 \leq p \leq s-1 \\ 0 \leq q \leq t-1}} Z_{p, q}^{1} \text { and } Z^{2}=\bigcup_{\substack{0 \leq p \leq s-1 \\ 0 \leq q \leq t-1}} Z_{p, q}^{2} .
$$

Then $Z^{0}, X \cup Z^{2}$ and $Y \cup Z^{1}$ are all independent sets of G. Let $x y$ be the common edge of s cycles in H, and let $P^{0}, P^{1}, \ldots, P^{s-1}$ be s paths of $H-x y$. Since $\operatorname{deg}_{H}(x)=s+1>2$, $\operatorname{deg}_{H}(y)=s+1>2$ and $\operatorname{deg}_{G}\left(z_{p, q}^{k}\right)=2$ for every $p \in[0, s-1]$ and $q \in[0, t-1]$, we have $\{x, y\} \cap Z^{0}=\emptyset$. Since $G-Z_{0}$ is bipartite and $P^{i}+x y$ is an odd cycle for $i=0,1, \ldots, s-1$, we see that $\left|V\left(P^{i}\right) \cap Z^{0}\right| \geq 1$, and let $z_{p_{i}, q_{i}}^{k} \in V\left(P^{i}\right) \cap Z^{0}$. By Definition 2.2 (i), $G\left[Z_{p_{i}, q_{i}}\right]=z_{p_{i}, q_{i}}^{1} z_{p_{i}, q_{i}}^{2} \ldots z_{p_{i}, q_{i}}^{2 k-1}$ is a subpath of P^{i}. Then there are exactly two vertices on $P^{i}+x y$ that are not in $Z_{p_{i}, q_{i}}$. By Definition 2.2 (iv), all the neighbors of $z_{p_{i}, q_{i}}^{1}$ except $z_{p_{i}, q_{i}}^{2}$ are in $X \backslash X_{t^{s}}$ and all the neighbors of $z_{p_{i}, q_{i}}^{2 k-1}$ except $z_{p_{i}, q_{i}}^{2 k-2}$ are in $Y \backslash Y_{t^{s}}$. Hence $V\left(P^{i}+x y\right)$ has one vertex in $X \backslash X_{t^{s}}$, one vertex in $Y \backslash Y_{t^{s}}$ and all the other vertices in $Z_{p_{i}, q_{i}}$ for each $i=0,1, \ldots, s-1$.

For distinct $i, j \in\{0,1, \ldots, s-1\}$, we claim that $p_{i} \neq p_{j}$ or $q_{i} \neq q_{j}$. Otherwise, we have $V\left(P^{i}+x y\right) \cap V\left(P^{j}+x y\right) \supset Z_{p_{i}, q_{i}}$, implying that $\left|V\left(P^{i}+x y\right) \cap V\left(P^{j}+x y\right)\right| \geq 2 k-1 \geq 3$, a contradiction. (Note that here is the only place we use $k \geq 2$ in the proof and explain that the construction fails for $k=1$.) Thus $Z_{p_{i}, q_{i}}$ and $Z_{p_{j}, q_{j}}$ are disjoint, implying that
$Z_{p_{i}, q_{i}}, Z_{p_{j}, q_{j}} \subset V(H) \backslash\{x, y\}$. Moreover, one of x, y is the common neighbor of $z_{p_{i}, q_{i}}^{1}$ and $z_{p_{j}, q_{j}}^{1}$ and the other is the common neighbor of $z_{p_{i}, q_{i}}^{2 k-1}$ and $z_{p_{j}, q_{j}}^{2 k-1}$. By Definition 2.2 (iv), $\{x, y\} \subset\left(X \backslash X_{t^{s}}\right) \cup\left(Y \backslash Y_{t^{s}}\right)$. Without loss of generality, we may assume that $x \in X_{a}$ and $y \in Y_{b}$ with $a, b \in\left[0, t^{s}-1\right]$. Since $x y$ is an edge in H, we have $a \neq b$.

Then x is the common neighbor of $z_{p_{0}, q_{0}}^{1}, z_{p_{1}, q_{1}}^{1}, \ldots, z_{p_{s-1}, q_{s-1}}^{1}$ and y is the common neighbor of $z_{p_{0}, q_{0}}^{2 k-1}, z_{p_{1}, q_{1}}^{2 k-1}, \ldots, z_{p_{s-1}, q_{s}-1}^{2 k-1}$. By Definition 2.2 (iv), we have $a \in I\left(t, s, p_{i}, q_{i}\right)$ and $b \in I\left(t, s, p_{i}, q_{i}\right)$, implying that $b_{t, s}\left(a, p_{i}\right)=q_{i}$ and $b_{t, s}\left(b, p_{i}\right)=q_{i}$ for $i=0,1, \ldots, s-1$. If $p_{i}=p_{j}$ for some $i \neq j$, then $q_{i}=b_{t, s}\left(a, p_{i}\right)=b_{t, s}\left(a, p_{j}\right)=q_{j}$, contradicting the fact that $p_{i} \neq p_{j}$ or $q_{i} \neq q_{j}$. Thus $p_{0}, p_{1}, \ldots, p_{s-1}$ is a permutation of $\{0,1, \ldots, s-1\}$. Without loss of generality, we assume that $p_{i}=i$ for $i=0,1, \ldots, s-1$, then

$$
a=q_{s-1} t^{s-1}+q_{s-2} t^{s-2}+\ldots+q_{1} t+q_{0}=b,
$$

a contradiction. Therefore, G is $F_{s, k}$-free.
Now we are in a position to prove Lemma (1.6)
Proof of Lemma 1.6]. By Proposition [2.3, we may choose a maximal $F_{s, k}$-free graph G in $\mathcal{G}_{s, k, \alpha}(n)$.

Claim 1. Both X and Y are independent sets in G.
Proof. By Definition 2.2 (iii), $G\left[X, Y_{t^{s}}\right]$ is complete bipartite. Note that

$$
\begin{aligned}
|X|>\left|Y_{t^{s}}\right| & =\frac{n-|Z|-\left|X \backslash X_{t^{s}}\right|-\left|Y \backslash Y_{t^{s}}\right|}{2} \\
& =\frac{n-s t(2 k-1)-2 t^{s} n^{\frac{1}{s+1}}}{2} \\
& =\frac{n-s \alpha n^{\frac{1}{s+1}}(2 k-1)-2\left(\alpha n^{\frac{1}{s+1}}\right)^{s} n^{\frac{1}{s+1}}}{2} \\
& >\frac{n}{2}-k s \alpha n^{\frac{1}{s+1}}-\alpha^{s} n .
\end{aligned}
$$

Note that $s \geq 2, \alpha<\frac{1}{2}$ and $n \geq \frac{8 k^{2} s^{2}}{\alpha}$. Then

$$
|X|>\left|Y_{t^{s}}\right|>\frac{n}{2}-\frac{k s n^{\frac{1}{3}}}{2}-\frac{n}{4} \geq \frac{n^{\frac{1}{3}}}{4}\left(n^{\frac{2}{3}}-2 k s\right) \geq 2 s k>\left|V\left(F_{s, k}\right)\right| .
$$

If there is an edge e in $G[X]$, then it is easy to find a copy of $F_{s, k}$ in $G\left[X \cup Y_{t^{s}}\right]$ because $F_{s, k}$ is 3-color-critical. Thus X is an independent set of G. Similarly, Y is an independent set of G.

Claim 2. For $i=0,1, \ldots, t^{s}-1, G\left[X_{i}, Y_{i}\right]$ is empty.
Proof. Suppose not, and let $x y$ be an edge with $x \in X_{i}$ and $y \in Y_{i}$. Assume that

$$
i=q_{s-1} t^{s-1}+q_{s-2} t^{s-2}+\ldots+q_{1} t+q_{0} .
$$

By Definition 2.2(iv), $z_{0, q_{0}}^{1}, \ldots, z_{s-1, q_{s-1}}^{1}$ have a common neighbor x, and $z_{0, q_{0}}^{2 k-1}, \ldots, z_{s-1, q_{s-1}}^{2 k-1}$ have a common neighbor y. It follows that $G\left[Z_{0, q_{0}} \cup \ldots \cup Z_{s-1, q_{s-1}} \cup\{x, y\}\right]$ contains a copy of $F_{s, k}$, contradicting the fact that G is $F_{s, k}$-free.

By Claims 1 and 2, we have

$$
\begin{align*}
e(G[X \cup Y]) & =|X||Y|-\sum_{i=0}^{t^{s}-1}\left|X_{i}\right|\left|Y_{i}\right| \\
& \geq\left(\frac{n-(2 k-1) s t}{2}\right)^{2}-t^{s}\left(n^{\frac{1}{s+1}}\right)^{2} \\
& =\left(\frac{n-(2 k-1) s \alpha n^{\frac{1}{s+1}}}{2}\right)^{2}-\alpha^{s} n^{\frac{s}{s+1}} n^{\frac{2}{s+1}} \\
& >\left(\frac{n}{2}-k s \alpha n^{\frac{1}{s+1}}\right)^{2}-\alpha^{s} n^{\frac{s+2}{s+1}} \\
& >\frac{n^{2}}{4}-k s \alpha n^{\frac{s+2}{s+1}}-\alpha^{s} n^{\frac{s+2}{s+1}} \\
& >\frac{n^{2}}{4}-2 k s \alpha n^{\frac{s+2}{s+1}} \tag{2.1}
\end{align*}
$$

In the following, we shall show that any induced complete bipartite subgraph of G has at most $\left(1-\frac{\alpha}{4}\right) n$ vertices. Assume that H is a largest induced complete bipartite subgraph of G with vertex classes A and B. Note that each vertex of X_{i} (or Y_{i}) plays the same role in G. If there is a vertex in X_{i} (or Y_{i}) belongs to $V(H)$, then by the maximality of H, every vertex of X_{i} (or Y_{i}) belongs to $V(H)$.

Suppose first that $X_{t^{s}} \cap(A \cup B)=\emptyset$ or $Y_{t^{s}} \cap(A \cup B)=\emptyset$. Then

$$
\begin{align*}
|A|+|B| & \leq n-\min \left\{\left|X_{t^{s}}\right|,\left|Y_{t^{s}}\right|\right\} \\
& =n-\frac{n-|Z|-\left|X \backslash X_{t^{s}}\right|-\left|Y \backslash Y_{t^{s}}\right|}{2} \\
& =\frac{n+|Z|+\left|X \backslash X_{t^{s}}\right|+\left|Y \backslash Y_{t^{s}}\right|}{2} \\
& =\frac{n+s \alpha n^{\frac{1}{s+1}}(2 k-1)+2\left(\alpha n^{\frac{1}{s+1}}\right)^{s} n^{\frac{1}{s+1}}}{2} \\
& <\frac{n}{2}+k s \alpha n^{\frac{1}{s+1}}+\alpha^{s} n \\
& \leq\left(1-\alpha^{s}\right) n . \tag{2.2}
\end{align*}
$$

Now suppose that $X_{t^{s}} \cap(A \cup B) \neq \emptyset$ and $Y_{t^{s}} \cap(A \cup B) \neq \emptyset$. Then $X_{t^{s}}, Y_{t^{s}} \subset$ $A \cup B$. Without loss of generality, we assume that $X_{t^{s}} \subset A$ and $Y_{t^{s}} \subset B$. Since $G\left[X_{i}, Y_{i}\right]$ $\left(0 \leq i \leq t^{s}-1\right)$ is empty, and both $G\left[X_{i}, Y_{t^{s}}\right]$ and $G\left[X_{t^{s}}, Y_{i}\right]$ are complete bipartite, it follows that at most one of X_{i} and Y_{i} is in $A \cup B$. Hence H is missing at least t^{s} of $X_{0}, \ldots, X_{t^{s}-1}, Y_{0}, \ldots, Y_{t^{s}-1}$ and so

$$
\begin{equation*}
|A \cup B| \leq n-t^{s} n^{\frac{1}{s+1}}=n-\alpha^{s} n=\left(1-\alpha^{s}\right) n \tag{2.3}
\end{equation*}
$$

This completes the proof.

3 Proof of Lemma 1.7

In this section, we prove a stability theorem for maximal $F_{s, k}$-free graphs. We say that a vertex of a graph G is color-critical, if deleting that vertex results in G with smaller chromatic number. The following two results are needed.

Lemma 3.1 ([1]). Let F be a 3-chromatic graph with a color-critical vertex and n be sufficiently large. Let $\frac{20|V(F)|}{n}<\varepsilon<\frac{1}{11|V(F)|^{2}}$. If G is an n-vertex F-free graph with $|E(G)| \geq e x(n, F)-\varepsilon n^{2}$, then there is a bipartite subgraph G^{\prime} of G with at least ($1-$ $12|V(F)| \varepsilon) n$ vertices, at least ex $(n, F)-13|V(F)| \varepsilon n^{2}$ edges and minimum degree at least $\left(\frac{1}{2}-\frac{1}{11|V(F)|}\right) n$ such that every vertex of G^{\prime} is adjacent in G to at most $|V(F)|$ vertices in the same partite set of G^{\prime}.

Theorem 3.2 (6$]$). Let F be an $(r+1)$-color-critical graph. There exists an n_{0} such that if $n>n_{0}$, then ex $(n, F)=t_{r}(n)$.

We find a large induced bipartite subgraphs with useful structures in maximal $F_{s, k}$-free graphs by the following lemma.
Lemma 3.3. Let G be an n-vertex maximal $F_{s, k}$-free graph with at least $\frac{n^{2}}{4}-\varepsilon n^{2}$ edges and let $h=\left|V\left(F_{s, k}\right)\right|$. Then there is a partition (U, V, T) of $V(G)$ such that
(i) $\left(\frac{1}{2}-\frac{1}{10 h}\right) n \leq|U|,|V| \leq\left(\frac{1}{2}+\frac{1}{10 h}\right) n$ and $|T| \leq 30 h^{2} \varepsilon n$;
(ii) $G[U \cup V]$ is an induced bipartite subgraph of G with partite sets U, V, minimum degree $\left(\frac{1}{2}-\frac{1}{10 h}\right) n$ and at least $\frac{n^{2}}{4}-25 h^{2} \varepsilon n^{2}$ edges;
(iii) for every $x \in T$, if x has neighbors in U (or V), then it has at least $h+1$ neighbors in $U($ or $V)$.

Proof. Since $F_{s, k}$ is 3-color-critical, by Theorem 3.2 we have ex $\left(n, F_{s, k}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$. Since $F_{s, k}$ has two critical vertices, by Lemma 3.1 there is a bipartite subgraph G^{\prime} of G with at least $(1-12 h \varepsilon) n$ vertices, at least $\frac{n^{2}}{4}-13 h \varepsilon n^{2}$ edges and minimum degree at least $\left(\frac{1}{2}-\frac{1}{11 h}\right) n$. Let U_{0}, V_{0} be two partite sets of G^{\prime} and let $T_{0}=V(G) \backslash V\left(G^{\prime}\right)$. Clearly, $\left(\frac{1}{2}-\frac{1}{11 h}\right) n \leq\left|U_{0}\right|,\left|V_{0}\right| \leq\left(\frac{1}{2}+\frac{1}{11 h}\right) n$ and $\left|T_{0}\right| \leq 12 h \varepsilon n$.
Claim 3. Both U_{0} and V_{0} are independent sets in G, that is, G^{\prime} is induced.
Proof. By contradiction, we may assume, without loss of generality, that U_{0} is not an independent set. Then there is an edge $u_{1} u_{2}$ in $G\left[U_{0}\right]$. Since $\delta\left(G^{\prime}\right) \geq\left(\frac{1}{2}-\frac{1}{11 h}\right) n$ and $\left|V_{0}\right| \leq\left(\frac{1}{2}+\frac{1}{11 h}\right) n$, each $u_{i}(i=1,2)$ has at most $\frac{2 n}{11 h}$ non-neighbors in V_{0}. It follows that u_{1}, u_{2} have at least $\left(\frac{1}{2}-\frac{5}{11 h}\right) n$ common neighbors in V_{0}. Let V_{0}^{\prime} be the set of the common neighbors of u_{1}, u_{2} and $U_{0}^{\prime}=U_{0} \backslash\left\{u_{1}, u_{2}\right\}$. By $\delta\left(G^{\prime}\right) \geq\left(\frac{1}{2}-\frac{1}{11 h}\right) n$ and since n is sufficiently large, we have
$e\left(U_{0}^{\prime}, V_{0}^{\prime}\right) \geq\left|V_{0}^{\prime}\right|\left(\left(\frac{1}{2}-\frac{1}{11 h}\right) n-2\right)>\left(\frac{1}{2}-\frac{5}{11 h}\right) n\left(\frac{1}{2}-\frac{2}{11 h}\right) n>\frac{n^{2}}{6} \geq \frac{(h+s-3) n}{2}$.
By Erdős-Gallai theorem [3], there is a path P on $h+s-1$ vertices in $G\left[U_{0}^{\prime}, V_{0}^{\prime}\right]$. We truncate P into s vertex-disjoint paths with endpoints in V_{0}^{\prime} and each of length $2 k-2$. These paths together with u_{1}, u_{2} form a copy of $F_{s, k}$, a contradiction.

Let $T=T_{0}, U=U_{0}$ and $V=V_{0}$. Now we remove a small amount of vertices from U to T by a greedy algorithm. In each step, if there is a vertex $x \in T$ with $1 \leq \operatorname{deg}(x, U) \leq h$, then we remove all the neighbors of x from U to T. If every vertex in T either has at least $h+1$ neighbors or no neighbors in U, then we stop. By Claim $3, U_{0}$ is an independent set, then each vertex added in T has no neighbors in U. Moveover, if all the neighbors of $x \in T_{0}$ have been removed from U to T, then x has no neighbors in the updated U. Hence
the algorithm will stop in at most $\left|T_{0}\right|$ steps. Let U^{\prime} be the vertices removed from U to T by the algorithm. It follows that

$$
\left|U^{\prime}\right| \leq h\left|T_{0}\right| \leq 12 h^{2} \varepsilon n .
$$

Then we remove a small amount of vertices from V to T similarly. In each step, if there is a vertex $x \in T$ with $1 \leq \operatorname{deg}(x, V) \leq h$, then we remove all the neighbors of x from V to T. Similarly, the algorithm will stop in at most $\left|T_{0}\right|+\left|U^{\prime}\right|$ steps. Since $\delta\left(G^{\prime}\right) \geq\left(\frac{1}{2}-\frac{1}{11 h}\right) n$, each $x \in U^{\prime}$ has at least $\left(\frac{1}{2}-\frac{1}{11 h}\right) n$ neighbors in V_{0}. It follows that each $x \in U^{\prime}$ has at least $\left(\frac{1}{2}-\frac{1}{11 h}\right) n-\left(\left|T_{0}\right|+\left|U^{\prime}\right|\right) h \geq h+1$ neighbors in V in the executing of the algorithm. That is, the neighbors of vertices in U^{\prime} will not be removed in the algorithm. Hence, the algorithm will stop in at most $\left|T_{0}\right|$ steps. Let V^{\prime} be the vertices removed from V to T by the algorithm. It follows that

$$
\left|V^{\prime}\right| \leq h\left|T_{0}\right| \leq 12 h^{2} \varepsilon n
$$

Let U, V, T be the resulting sets at the end of the algorithm. By Claim 3 and since $U \subset U_{0}, V \subset V_{0}$, both U and V are independent sets. Let $G^{\prime \prime}$ be the bipartite subgraph induced by U and V. Since both $\left|U^{\prime}\right|$ and $\left|V^{\prime}\right|$ have size at most $12 h^{2} \varepsilon n$, we have

$$
|T| \leq\left|T_{0}\right|+\left|U^{\prime}\right|+\left|V^{\prime}\right| \leq 12 h \varepsilon n+24 h^{2} \varepsilon n \leq 30 h^{2} \varepsilon n
$$

and

$$
\begin{aligned}
e\left(G^{\prime \prime}\right) & \geq e\left(G^{\prime}\right)-\left(\left|U^{\prime}\right|+\left|V^{\prime}\right|\right) \cdot \max \left\{\left|U_{0}\right|,\left|V_{0}\right|\right\} \\
& \geq \frac{n^{2}}{4}-13 h \varepsilon n^{2}-24 h^{2} \varepsilon n\left(\frac{1}{2}+\frac{1}{11 h}\right) n \\
& \geq \frac{n^{2}}{4}-25 h^{2} \varepsilon n^{2}
\end{aligned}
$$

and

$$
\delta\left(G^{\prime \prime}\right) \geq \delta\left(G^{\prime}\right)-\max \left\{\left|U^{\prime}\right|,\left|V^{\prime}\right|\right\} \geq\left(\frac{1}{2}-\frac{1}{11 h}\right) n-12 h^{2} \varepsilon n \geq\left(\frac{1}{2}-\frac{1}{10 h}\right) n
$$

It follows that

$$
\left(\frac{1}{2}-\frac{1}{10 h}\right) n \leq|U|,|V| \leq\left(\frac{1}{2}+\frac{1}{10 h}\right) n
$$

Moreover, for each $x \in T, x$ either has at least $h+1$ neighbors or no neighbors in U, and x either has at least $h+1$ neighbors or no neighbors in V. Thus the lemma holds.

Lemma 3.4. Let G be a bipartite graph with partite sets U, V and let W be a subset of $U \cup V$ with $|W|=h$. If $\left(\frac{1}{2}-\frac{1}{10 h}\right) n \leq|U|,|V| \leq\left(\frac{1}{2}+\frac{1}{10 h}\right) n, \delta(G) \geq\left(\frac{1}{2}-\frac{1}{10 h}\right) n$ and $n \geq 10 h$, then the following holds.
(i) For every $u \in U, v \in V$ and every odd integer l with $3 \leq l \leq h$, there is a uv-path P of length l such that $(V(P) \backslash\{u, v\}) \cap W=\emptyset$.
(ii) For every $u, v \in U$ and every even integer l with $2 \leq l \leq h$, there is a uv-path P of length l such that $(V(P) \backslash\{u, v\}) \cap W=\emptyset$.

Proof. For any $u \in U, v \in V$, let $A=N(v) \backslash(W \cup\{u\})$ and $B=N(u) \backslash(W \cup\{v\})$. Then

$$
\left(\frac{1}{2}-\frac{1}{10 h}\right) n-h-1 \leq|A|,|B| \leq\left(\frac{1}{2}+\frac{1}{10 h}\right) n
$$

and the minimum degree of $G[A, B]$ is at least

$$
\begin{aligned}
\delta(G)-\max \{|U|-|A|,|V|-|B|\} & \geq\left(\frac{1}{2}-\frac{1}{10 h}\right) n-\left(\frac{n}{5 h}+h+1\right) \\
& \geq\left(\frac{1}{2}-\frac{3}{10 h}\right) n-h-1 .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
e(A, B)=\frac{1}{2} & \sum_{x \in A \cup B} \operatorname{deg}_{G[A, B]}(x) \\
& \geq \frac{1}{2}\left(\left(\frac{1}{2}-\frac{3}{10 h}\right) n-h-1\right)(|A|+|B|) \\
& \geq \frac{1}{2}\left(\left(\frac{1}{2}-\frac{3}{10 h}\right) 10 h-h-1\right)(|A|+|B|) \\
& >\frac{h}{2}(|A|+|B|) \\
& >\frac{(l-2)-1}{2}(|A|+|B|) .
\end{aligned}
$$

For any odd integer l with $3 \leq l \leq h$, there is a path of length $l-2$ in $G[A, B]$ by Erdős-Gallai Theorem [3], which together with u, v is our desired path.

If $u, v \in U$, then let $A=U \backslash(W \cup\{u, v\})$ and $B=N(u) \cap N(v) \backslash W$. Clearly,

$$
|A| \geq\left(\frac{1}{2}-\frac{1}{10 h}\right) n-h-2
$$

and

$$
\begin{aligned}
|B| & \geq|N(u) \cap N(v)|-h \\
& \geq|N(u)|+|N(v)|-|V|-h \\
& \geq 2\left(\frac{1}{2}-\frac{1}{10 h}\right) n-\left(\frac{1}{2}+\frac{1}{10 h}\right) n-h \\
& =\left(\frac{1}{2}-\frac{3}{10 h}\right) n-h .
\end{aligned}
$$

The minimum degree of $G[A, B]$ is at least

$$
\begin{aligned}
\delta(G)-\max \{|U|-|A|,|V|-|B|\} & \geq\left(\frac{1}{2}-\frac{1}{10 h}\right) n-\left(\frac{2 n}{5 h}+h\right) \\
& \geq\left(\frac{1}{2}-\frac{1}{2 h}\right) n-h .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
e(A, B)=\frac{1}{2} & \sum_{x \in A \cup B} \operatorname{deg}_{G[A, B]}(x) \\
& \geq \frac{1}{2}\left(\left(\frac{1}{2}-\frac{1}{2 h}\right) n-h\right)(|A|+|B|) \\
& \geq \frac{1}{2}\left(\left(\frac{1}{2}-\frac{1}{2 h}\right) 10 h-h\right)(|A|+|B|) \\
& >\frac{h}{2}(|A|+|B|) \\
& >\frac{l-1}{2}(|A|+|B|) .
\end{aligned}
$$

For any even integer l with $2 \leq l \leq h$, there is a path of length l in $G[A, B]$ by ErdősGallai Theorem [3], say $x_{1} x_{2} \ldots x_{l+1}$. If $x_{1}, x_{l+1} \in A$, then $u x_{2} \ldots x_{l} v$ is the desired path. If $x_{1}, x_{l+1} \in B$, then $u x_{3} \ldots x_{l+1} v$ is the desired path. This completes the proof.

We need some definitions in the proof of Lemma 1.7. Let F, G be two graphs. A homomorphism from F to G is a mapping $\phi: V(F) \rightarrow V(G)$ with the property that $\{\phi(u), \phi(v)\} \in E(G)$ whenever $\{u, v\} \in E(F)$. A homomorphism from F to G is also called an F-homomorphism in G. If ϕ is injective, then ϕ is called an injective homomorphism. If ϕ is both injective and surjective, then ϕ is called an isomorphism. Now we prove Lemma 1.7 by a delicate vertex-deletion process.

Proof of Lemma 1.7. Let G be an n-vertex maximal $F_{s, k}$-free graph with at least $\frac{n^{2}}{4}-\varepsilon n^{2}$ edges and let $h=\left|V\left(F_{s, k}\right)\right|$. By Lemma 3.3, there is a partition (U, V, T) of $V(G)$ satisfying conditions (i), (ii) and (iii) of Lemma 3.3, Let $G^{\prime}=G[U, V]$. We are left to delete vertices in G^{\prime} until the resulting graph is complete bipartite.

We write F instead of $F_{s, k}$ for simplicity. For any non-edge $x y$ of G^{\prime} with $x \in U$ and $y \in V, G+x y$ contains at least one copy of F since G is maximal F-free. Let $F_{x y}$ be one of such copies and let $\phi_{x y}$ be the isomorphism from F to $F_{x y}$. Let

$$
\Omega=\left\{x y: x \in U, y \in V \text { and } x y \notin E\left(G^{\prime}\right)\right\} .
$$

Claim 4. For each $x y \in \Omega, N_{F_{x y}}(x) \cap T \neq \emptyset$ and $N_{F_{x y}}(y) \cap T \neq \emptyset$.
Proof. By contradiction, we may suppose that $N_{F_{x y}}(x) \cap T=\emptyset$ without loss of generality. Let $y_{0}=y, y_{1}, \ldots, y_{p}$ be the neighbors of x in $F_{x y}$. Then y_{1}, \ldots, y_{p} are all in V because U is an independent set. Since the maximum degree of $F_{x y}$ is $s+1$, it follows that $p \leq s$. By Lemma 3.3 (ii), we have $\delta\left(G^{\prime}\right) \geq\left(\frac{1}{2}-\frac{1}{10 h}\right) n$ and $\left(\frac{1}{2}-\frac{1}{10 h}\right) n \leq|U| \leq\left(\frac{1}{2}+\frac{1}{10 h}\right) n$, then each $y_{i}(i=0,1, \ldots, p)$ has at most $\frac{n}{5 h}$ non-neighbors in U. Note that

$$
h=s(2 k-1)+2 \geq 3 s+2>2 s+3 \geq 2 p+3
$$

as $k \geq 2$ and $s \geq p$. Therefore, the number of common neighbors of $y_{0}, y_{1}, \ldots, y_{p}$ in U is
at least

$$
\begin{aligned}
\left(\frac{1}{2}-\frac{1}{10 h}\right) n-(p+1) \frac{n}{5 h} & \geq\left(\frac{1}{2}-\frac{2 p+3}{10 h}\right) n \\
& >\left(\frac{1}{2}-\frac{1}{10}\right) n \\
& \geq \frac{2 n}{5} \\
& >h
\end{aligned}
$$

Thus, there is a vertex $x^{\prime} \in U$ such that $x^{\prime} \notin V\left(F_{x y}\right)$ and $x^{\prime} y_{i} \in E(G)$ for $i=0,1, \ldots, p$. Then by replacing x with x^{\prime} in $F_{x y}$ we obtain a copy of F in G, contradicting the fact that G is F-free.

Let a, b be the vertices of degree $s+1$ in F and let $a c_{1}^{i} \ldots c_{2 k-1}^{i} b(i=1, \ldots, s)$ be those paths in $F-a b$. Now we partition Ω into three classes as follows:

$$
\left\{\begin{array}{l}
\Omega_{1}=\left\{x y \in \Omega: \phi_{x y}^{-1}(x), \phi_{x y}^{-1}(y) \in V(F) \backslash\{a, b\}\right\} \\
\Omega_{2}=\left\{x y \in \Omega:\left\{\phi_{x y}^{-1}(x), \phi_{x y}^{-1}(y)\right\}=\{a, b\}\right\} \\
\Omega_{3}=\left\{x y \in \Omega:\left|\left\{\phi_{x y}^{-1}(x), \phi_{x y}^{-1}(y)\right\} \cap\{a, b\}\right|=1\right\}
\end{array}\right.
$$

We delete a small amount of vertices from $U \cup V$ to destroy all non-edges in Ω in the following three steps.
Step 1. We can find $U_{1} \subset U$ and $V_{1} \subset V$ such that $\left|U \backslash U_{1}\right|+\left|V \backslash V_{1}\right| \leq 160 h^{3} \varepsilon n^{\frac{3}{2}}$ and $\bar{E}\left[U_{1}, V_{1}\right] \cap \Omega_{1}=\emptyset$. That is, by deleting at most $160 h^{3} \varepsilon n^{\frac{3}{2}}$ vertices from $U \cup V$ we destroy all non-edges in Ω_{1}.

Proof. If $\Omega_{1}=\emptyset$, we have nothing to do. So assume that $\Omega_{1} \neq \emptyset$, then there is a non-edge $x y$ in Ω_{1} with $x \in U$ and $y \in V$. By definition of Ω_{1}, we see that both x and y have degree two in $F_{x y}$. By Claim 4, $N_{F_{x y}}(x) \cap T \neq \emptyset$ and $N_{F_{x y}}(y) \cap T \neq \emptyset$. Let $x^{*} \in N_{F_{x y}}(x) \cap T$ and $y^{*} \in N_{F_{x y}}(y) \cap T$. Then $x^{*} \neq y^{*}$ since $F_{x y}$ is triangle-free. Let $X=N_{G}\left(x^{*}, U\right)$, $Y=N_{G}\left(y^{*}, V\right)$ and let S be one of X and Y with smaller size.

For any edge $x^{\prime} y^{\prime}$ in G with $x^{\prime} \in X$ and $y^{\prime} \in Y$, if $\left\{x^{\prime}, y^{\prime}\right\} \cap V\left(F_{x y}\right)=\emptyset$, then by replacing x, y with x^{\prime}, y^{\prime} in $F_{x y}$ we obtain a copy of F in G, a contradiction. Thus, every edge in $G[X, Y]$ intersects $V\left(F_{x y}\right)$, implying that $e(X, Y) \leq h(|X|+|Y|)$. Then

$$
e_{\bar{G}}(X, Y)=|X||Y|-e(X, Y) \geq|X||Y|-h(|X|+|Y|) .
$$

Without loss of generality, we assume that $|X| \leq|Y|$, then $S=X$. If $|S| \geq 4 h$, then

$$
\begin{aligned}
e_{\bar{G}}(X, Y) & \geq|S||Y|-h(|S|+|Y|) \\
& =|Y|(|S|-h)-h|S| \\
& \geq|S|^{2}-2 h|S| \\
& \geq \frac{|S|^{2}}{2}>\frac{|S|^{2}}{16 h^{2}} .
\end{aligned}
$$

If $|S|<4 h$, then since $x y$ is a non-edge of G between X and Y, we have

$$
e_{\bar{G}}(X, Y) \geq 1>\frac{|S|^{2}}{16 h^{2}}
$$

Thus, there are at least $\frac{|S|^{2}}{16 h^{2}}$ non-edges between X and Y. We delete vertices in S from $U \cup V$ and let $U^{\prime}=U \backslash S$ and $V^{\prime}=V \backslash S$. If $\bar{E}\left[U^{\prime}, V^{\prime}\right] \cap \Omega_{1}=\emptyset$, then we are done. Otherwise, there is another non-edge $x y$ in Ω_{1} with $x \in U^{\prime}, y \in V^{\prime}$, and we delete another S^{\prime} from $U^{\prime} \cup V^{\prime}$ incidents with at least $\frac{\left|S^{\prime}\right|^{2}}{16 h^{2}}$ non-edges between U^{\prime} and V^{\prime}. By deleting vertices greedily, we shall obtain a sequence of disjoint sets $S_{1}, S_{2}, \ldots, S_{l}$ in $U \cup V$ such that $\bar{E}\left[U \backslash\left(S_{1} \cup \ldots \cup S_{l}\right), V \backslash\left(S_{1} \cup \ldots \cup S_{l}\right)\right] \cap \Omega_{1}=\emptyset$. In each step of the greedy algorithm, there is a $u \in T$ such that either $N(u) \cap U$ or $N(u) \cap V$ is deleted, implying that $l \leq 2|T|$.

By Lemma 3.3 (ii), $G[U, V]$ has at least $\frac{n^{2}}{4}-25 h^{2} \varepsilon n^{2}$ edges. It follows that the number of non-edges between U and V is at most

$$
|U||V|-\left(\frac{n^{2}}{4}-25 h^{2} \varepsilon n^{2}\right) \leq 25 h^{2} \varepsilon n^{2} .
$$

Thus,

$$
\begin{equation*}
\sum_{i=1}^{l} \frac{\left|S_{i}\right|^{2}}{16 h^{2}} \leq 25 h^{2} \varepsilon n^{2} \tag{3.1}
\end{equation*}
$$

By Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\left(\sum_{i=1}^{l}\left|S_{i}\right|\right)^{2} \leq\left(\sum_{i=1}^{l}\left|S_{i}\right|^{2}\right) l . \tag{3.2}
\end{equation*}
$$

Note that $|T| \leq 30 h^{2} \varepsilon n$ from Lemma 3.3 (i). By (3.1), (3.2) and $l \leq 2|T|$, we arrive at

$$
\left(\sum_{i=1}^{l}\left|S_{i}\right|\right)^{2} \leq 16 h^{2} \cdot 25 h^{2} \varepsilon n^{2} l \leq 20^{2} h^{4} \varepsilon n^{2} \cdot 2|T| \leq 20^{2} h^{4} \varepsilon n^{2} \cdot 60 h^{2} \varepsilon n .
$$

Let $U_{1}=U \backslash\left(S_{1} \cup \ldots \cup S_{l}\right)$ and $V_{1}=V \backslash\left(S_{1} \cup \ldots \cup S_{l}\right)$. Then

$$
\left|U \backslash U_{1}\right|+\left|V \backslash V_{1}\right| \leq \sum_{i=1}^{l}\left|S_{i}\right| \leq 160 h^{3} \varepsilon n^{\frac{3}{2}}
$$

and Step 1 is finished.
Step 2. We can find $U_{2} \subset U_{1}$ and $V_{2} \subset V_{1}$ such that $\left|U_{1} \backslash U_{2}\right|+\left|V_{1} \backslash V_{2}\right| \leq(6 h)^{s+3} \varepsilon^{\frac{s+1}{2}} n^{\frac{s+2}{2}}$ and $\bar{E}\left[U_{2}, V_{2}\right] \cap\left(\Omega_{1} \cup \Omega_{2}\right)=\emptyset$. That is, by deleting at most $(6 h)^{s+2} \varepsilon^{\frac{s+1}{2}} n^{\frac{s+2}{2}}$ vertices from $U_{1} \cup V_{1}$ we destroy all non-edges in Ω_{2}.

Proof. By Step 1, we see that $E\left[U_{1}, V_{1}\right] \cap \Omega_{1}=\emptyset$. Thus, we are left to delete vertices from $U_{1} \cup V_{1}$ to destroy all non-edges in $\Omega_{2} \cap \bar{E}\left[U_{1}, V_{1}\right]$. If $\Omega_{2} \cap \bar{E}\left[U_{1}, V_{1}\right]=\emptyset$, we have nothing to do. So assume that $\Omega_{2} \cap \bar{E}\left[U_{1}, V_{1}\right] \neq \emptyset$, then there is a non-edge $x y$ in Ω_{2} with $x \in U_{1}$ and $y \in V_{1}$. For $x y \in \Omega_{2}$, let

$$
\mathcal{F}_{x y}=\left\{F_{x y}: F_{x y} \text { is a copy of } F \text { in } G+x y \text { with } \operatorname{deg}_{F_{x y}}(x)=\operatorname{deg}_{F_{x y}}(y)=s+1\right\} .
$$

Clearly, $\mathcal{F}_{x y} \neq \emptyset$.
Claim 5. There is an $F_{x y} \in \mathcal{F}_{x y}$ such that
(i) for every $u \in V\left(F_{x y}\right) \backslash(T \cup\{x, y\}), \operatorname{deg}_{F_{x y}}(u, T) \leq 1$;
(ii) for every $u v \in E\left(F_{x y}-T-\{x, y\}\right), \operatorname{deg}_{F_{x y}}(u, T)+\operatorname{deg}_{F_{x y}}(v, T) \leq 1$.

Proof. For any $F_{x y} \in \mathcal{F}_{x y}$, let

$$
\theta_{1}\left(F_{x y}\right)=\left|\left\{u \in V\left(F_{x y}\right) \backslash(T \cup\{x, y\}): \operatorname{deg}_{F_{x y}}(u, T)=2\right\}\right|
$$

and

$$
\theta_{2}\left(F_{x y}\right)=\left|\left\{u v \in E\left(F_{x y}-T-\{x, y\}\right): \operatorname{deg}_{F_{x y}}(u, T)+\operatorname{deg}_{F_{x y}}(v, T) \geq 2\right\}\right| .
$$

We choose $F_{x y}$ from $\mathcal{F}_{x y}$ such that $\theta_{1}\left(F_{x y}\right)+\theta_{2}\left(F_{x y}\right)$ is minimized, and show that $\theta_{1}\left(F_{x y}\right)=$ $\theta_{2}\left(F_{x y}\right)=0$ to finish the proof. Suppose first that $\theta_{1}\left(F_{x y}\right) \geq 1$. Then there is a $u \in$ $V\left(F_{x y}\right) \backslash(T \cup\{x, y\})$ such that $\operatorname{deg}_{F_{x y}}(u, T)=2$. Let $C=x y \ldots u_{1}^{*} u u_{2}^{*} \ldots x$ be the cycle in $F_{x y}$ with $u_{1}^{*}, u_{2}^{*} \in T$. Clearly, C has length $2 k+1$. Without loss of generality, we assume that $u \in U$. If the path $u u_{2}^{*} \ldots x$ has even length l, then by Lemma 3.4 (ii) with $W=V\left(F_{x y}\right)$ there is a $u x$-path P of length l in $G[U, V]$ such that $V(P) \cap V\left(F_{x y}\right)=\{u, x\}$. By replacing $u u_{2}^{*} \ldots x$ from $F_{x y}$ with P, we obtain a new copy $F_{x y}^{\prime}$ of F with $F_{x y}^{\prime} \in \mathcal{F}$ and $\theta_{1}\left(F_{x y}^{\prime}\right)<\theta_{1}\left(F_{x y}\right)$, contradicting the choice of $F_{x y}$. If the path $u u_{2}^{*} \ldots x$ has odd length l, then by Lemma 3.4 (i) with $W=V\left(F_{x y}\right)$ there is a $u y$-path Q of length $2 k-l$ in $G[U, V]$ such that $V(Q) \cap V\left(F_{x y}\right)=\{u, y\}$. By replacing $y \ldots u_{1}^{*} u$ from $F_{x y}$ with Q, we obtain a new copy $F_{x y}^{\prime}$ of F with $F_{x y}^{\prime} \in \mathcal{F}$ and $\theta_{1}\left(F_{x y}^{\prime}\right)<\theta_{1}\left(F_{x y}\right)$, contradicting the choice of $F_{x y}$.

Suppose next that $\theta_{2}\left(F_{x y}\right) \geq 1$. Then there is an edge $u v \in E\left(F_{x y}-x-y\right)$ with $u \in U$ and $v \in V$ such that $\operatorname{deg}_{F_{x y}}(u, T)=\operatorname{deg}_{F_{x y}}(v, T)=1$, say $N_{F_{x y}}(u, T)=\left\{u^{*}\right\}$ and $N_{F_{x y}}(v, T)=\left\{v^{*}\right\}$. Let C be the cycle in $F_{x y}$ containing u, v, u^{*}, v^{*}, x, y. Assume that $C=x y \ldots u^{*} u v v^{*} \ldots x$ or $C=y x \ldots u^{*} u v v^{*} \ldots y$. We now distinguish the following two cases.

Case 1. $C=x y \ldots u^{*} u v v^{*} \ldots x$.
If $y \ldots u^{*} u$ has odd length l, then by Lemma 3.4 (i) with $W=V\left(F_{x y}\right)$ there is a $y u-$ path P of length l in $G[U, V]$ such that $V(P) \cap V\left(F_{x y}\right)=\{y, u\}$. By replacing $y \ldots u^{*} u$ from $F_{x y}$ with P, we obtain a new copy $F_{x y}^{\prime}$ of F with $F_{x y}^{\prime} \in \mathcal{F}_{x y}$ and $\theta_{2}\left(F_{x y}^{\prime}\right)<\theta_{2}\left(F_{x y}\right)$, contradicting the choice of $F_{x y}$. If $y \ldots u^{*} u$ has even length l, then the path $v v^{*} \ldots x$ has odd length $2 k-1-l$. By Lemma 3.4 (i) with $W=V\left(F_{x y}\right)$ there is a $v x$-path Q of length $2 k-1-l$ in $G[U, V]$ such that $V(Q) \cap V\left(F_{x y}\right)=\{v, x\}$. By replacing $v v^{*} \ldots x$ from $F_{x y}$ with Q, we obtain a new copy $F_{x y}^{\prime}$ of F with $F_{x y}^{\prime} \in \mathcal{F}_{x y}$ and $\theta_{2}\left(F_{x y}^{\prime}\right)<\theta_{2}\left(F_{x y}\right)$, contradicting the choice of $F_{x y}$.

Case 2. $C=y x \ldots u^{*} u v v^{*} \ldots y$.
If $x \ldots u^{*} u$ has even length l, then by Lemma 3.4 (ii) with $W=V\left(F_{x y}\right)$ there is a $x u$-path P of length l in $G[U, V]$ such that $V(P) \cap V\left(F_{x y}\right)=\{x, u\}$. By replacing $x \ldots u^{*} u$ from $F_{x y}$ with P, we obtain a new copy $F_{x y}^{\prime}$ of F with $F_{x y}^{\prime} \in \mathcal{F}_{x y}$ and $\theta_{2}\left(F_{x y}^{\prime}\right)<\theta_{2}\left(F_{x y}\right)$, contradicting the choice of $F_{x y}$. If $x \ldots u^{*} u$ has odd length l, then the path $v v^{*} \ldots y$ has even length $2 k-1-l$. By Lemma 3.4 (ii) with $W=V\left(F_{x y}\right)$ there is a $v y$-path Q of length $2 k-1-l$ in $G[U, V]$ such that $V(Q) \cap V\left(F_{x y}\right)=\{v, y\}$. By replacing $v v^{*} \ldots y$ from $F_{x y}$ with Q, we obtain a new copy $F_{x y}^{\prime}$ of F with $F_{x y}^{\prime} \in \mathcal{F}_{x y}$ and $\theta_{2}\left(F_{x y}^{\prime}\right)<\theta_{2}\left(F_{x y}\right)$, contradicting the choice of $F_{x y}$.

Thus $\theta_{1}\left(F_{x y}\right)=\theta_{2}\left(F_{x y}\right)=0$ and the claim follows.
By Claim 4, both $N_{F_{x y}}(x) \cap T$ and $N_{F_{x y}}(y) \cap T$ are not empty, and let $N_{F_{x y}}(x) \cap T=$ $\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{p}^{*}\right\}, N_{F_{x y}}(y) \cap T=\left\{y_{1}^{*}, y_{2}^{*}, \ldots, y_{q}^{*}\right\}$. Then $\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{p}^{*}\right\} \cap\left\{y_{1}^{*}, y_{2}^{*}, \ldots, y_{q}^{*}\right\}=\emptyset$ since F is K_{3}-free. Let $N_{F_{x y}}(x) \cap V=\left\{z_{1}, z_{2}, \ldots, z_{f}, z_{f+1}, \ldots, z_{s-p}\right\}$ such that $N_{F_{x y}}\left(z_{\ell}\right) \cap$

Figure 1: The local structure of $F_{x y}$ with $x y \in \Omega_{2}$.
$T \neq \emptyset$ for $\ell \leq f$ and $N_{F_{x y}}\left(z_{\ell}\right) \cap T=\emptyset$ for $f+1 \leq \ell \leq s-p$. In $F_{x y}$, each $z_{\ell}(\ell=1, \ldots, f)$ has one neighbor being x and the other one z_{ℓ}^{*} in T, and each $z_{\ell}(\ell=f+1, \ldots, s-p)$ has one neighbor being x and the other one u_{ℓ} in U. Let X be the set of common neighbors of $x_{1}^{*}, x_{2}^{*}, \ldots, x_{p}^{*}$ in U_{1} and let Z_{ℓ} be the set of neighbors of z_{ℓ}^{*} in V for each $\ell=1, \ldots, f$. Similarly, $N_{F_{x y}}(y) \cap U=\left\{w_{1}, w_{2}, \ldots, w_{g}, w_{g+1}, \ldots, w_{s-q}\right\}$ such that $N_{F_{x y}}\left(w_{\ell}\right) \cap T \neq \emptyset$ for $\ell \leq g$ and $N_{F_{x y}}\left(w_{\ell}\right) \cap T=\emptyset$ for $g+1 \leq \ell \leq s-q$. In $F_{x y}$, each $w_{\ell}(\ell=1, \ldots, g)$ has one neighbor being y and the other one w_{ℓ}^{*} in T, and each $w_{\ell}(\ell=g+1, \ldots, s-q)$ has one neighbor being y and the other one v_{ℓ} in V. Let Y be the set of common neighbors of $y_{1}^{*}, y_{2}^{*}, \ldots, y_{q}^{*}$ in V_{1} and let W_{ℓ} be the set of neighbors of w_{ℓ}^{*} in U for each $\ell=1, \ldots, g$ as shown in Figure 1 .

For distinct vertices $x^{\prime} \in X, z_{1}^{\prime} \in Z_{1}, \ldots, z_{f}^{\prime} \in Z_{f}$, if $x^{\prime} z_{1}^{\prime}, x^{\prime} z_{2}^{\prime}, \ldots, x^{\prime} z_{f}^{\prime}$ are edges in G then we say that $G\left[x^{\prime} ; z_{1}^{\prime}, \ldots, z_{f}^{\prime}\right]$ is an $\left(X, Z_{1}, \ldots, Z_{f}\right)$-star with center x^{\prime}. Let

$$
X_{0}=\left\{x^{\prime} \in X: \text { there exists an }\left(X, Z_{1}, \ldots, Z_{f}\right) \text {-star with center } x^{\prime}\right\}
$$

Clearly, $G\left[x ; z_{1}, \ldots, z_{f}\right]$ is an $\left(X, Z_{1}, \ldots, Z_{f}\right)$-star, implying that $x \in X_{0}$. Similarly, let

$$
Y_{0}=\left\{y^{\prime} \in Y: \text { there exists a }\left(Y, W_{1}, \ldots, W_{g}\right) \text {-star with center } y^{\prime}\right\}
$$

and clearly $y \in Y_{0}$.
For any pair $\left(x^{\prime}, y^{\prime}\right)$ with $x^{\prime} \in X_{0}$ and $y^{\prime} \in Y_{0}$, if there exist $z_{1}^{\prime}, \ldots, z_{f}^{\prime}$ such that $G\left[x^{\prime} ; z_{1}^{\prime}, \ldots, z_{f}^{\prime}\right]$ is an $\left(X, Z_{1}, \ldots, Z_{f}\right)$-star and $y^{\prime} \notin\left\{z_{1}^{\prime}, \ldots, z_{f}^{\prime}\right\}$, then we say that y^{\prime} is good to x^{\prime}; otherwise y^{\prime} is bad to x^{\prime}. Similarly, if there exist $w_{1}^{\prime}, \ldots, w_{g}^{\prime}$ such that $G\left[y^{\prime} ; w_{1}^{\prime}, \ldots, w_{g}^{\prime}\right]$ is a $\left(Y, W_{1}, \ldots, W_{g}\right)$-star and $x^{\prime} \notin\left\{w_{1}^{\prime}, \ldots, w_{g}^{\prime}\right\}$, then we say that x^{\prime} is good to y^{\prime}, otherwise x^{\prime} is bad to y^{\prime}. We call $\left(x^{\prime}, y^{\prime}\right)$ a compatible pair if y^{\prime} is good to x^{\prime} and x^{\prime} is good to y^{\prime}; otherwise we say that $\left(x^{\prime}, y^{\prime}\right)$ is incompatible. For each $x^{\prime} \in X_{0}$, there exist $z_{1}^{\prime}, \ldots, z_{f}^{\prime}$ such that $G\left[x^{\prime} ; z_{1}^{\prime}, \ldots, z_{f}^{\prime}\right]$ is an $\left(X, Z_{1}, \ldots, Z_{f}\right)$-star, implying that the number of vertices in Y_{0} that are bad to x^{\prime} is at most f. Similarly, for each $y^{\prime} \in Y_{0}$ the number of vertices in X_{0} that are bad to y^{\prime} is at most g. Then the number of incompatible pairs between X_{0} and Y_{0} is at most $f\left|X_{0}\right|+g\left|Y_{0}\right|$. Thus, the number of compatible pairs between X_{0} and Y_{0} is at least $\left|X_{0}\right|\left|Y_{0}\right|-f\left|X_{0}\right|-g\left|Y_{0}\right|$.
Claim 6. Every compatible pair $\left(x^{\prime}, y^{\prime}\right)$ with $x^{\prime} \in X_{0}$ and $y^{\prime} \in Y_{0}$ is a non-edge of $G\left[U_{1}, V_{1}\right]$.

Proof. Suppose not, let $\left(x^{\prime}, y^{\prime}\right)$ with $x^{\prime} \in X_{0}, y^{\prime} \in Y_{0}$ be a compatible pair and $x^{\prime} y^{\prime} \in E(G)$. Then there exist $z_{1}^{\prime}, \ldots, z_{f}^{\prime}$ and $w_{1}^{\prime}, \ldots, w_{g}^{\prime}$ such that $G\left[x^{\prime}, z_{1}^{\prime}, \ldots, z_{f}^{\prime}\right]$ is an $\left(X, Z_{1}, \ldots, Z_{f}\right)$ star and $G\left[y^{\prime} ; w_{1}^{\prime}, \ldots, w_{g}^{\prime}\right]$ is a $\left(Y, W_{1}, \ldots, W_{g}\right)$-star. We shall find a copy of F in G, which leads to a contradiction.

Let

$$
R_{1}^{\prime}=\left\{x^{\prime}, y^{\prime}, z_{1}^{\prime}, \ldots, z_{f}^{\prime}, w_{1}^{\prime}, \ldots, w_{g}^{\prime}\right\}
$$

Since $u_{\ell}(f+1 \leq \ell \leq s-p)$ and x^{\prime} have at least $\left(\frac{1}{2}-\frac{1}{10 h}\right) n$ common neighbors in V and n is sufficiently large, we may choose distinct $z_{f+1}^{\prime}, \ldots, z_{s-p}^{\prime}$ from $V \backslash\left(V\left(F_{x y}\right) \cup R_{1}^{\prime}\right)$ such that $z_{\ell}^{\prime} \in N\left(x^{\prime}, V\right) \cap N\left(u_{\ell}, V\right)$ for each $\ell=f+1, \ldots, s-p$. Similarly, we may choose distinct $w_{g+1}^{\prime}, \ldots, w_{s-q}^{\prime}$ from $U \backslash\left(V\left(F_{x y}\right) \cup R_{1}^{\prime}\right)$ such that $w_{\ell}^{\prime} \in N\left(y^{\prime}, U\right) \cap N\left(v_{\ell}, U\right)$ for each $\ell=g+1, \ldots, s-q$. Let

$$
R_{1}=\left\{x, y, z_{1}, \ldots, z_{f}, w_{1}, \ldots, w_{g}\right\}, R_{2}=\left\{z_{f+1}, \ldots, z_{s-p}, w_{g+1}, \ldots, w_{s-q}\right\}
$$

and

$$
R_{2}^{\prime}=\left\{z_{f+1}^{\prime}, \ldots, z_{s-p}^{\prime}, w_{g+1}^{\prime}, \ldots, w_{s-q}^{\prime}\right\}
$$

Clearly, $R_{2}^{\prime} \cap\left(R_{1}^{\prime} \cup V\left(F_{x y}\right)\right)=\emptyset$. Let F^{0} be a graph obtained from $F_{x y}$ by replacing vertices in $R_{1} \cup R_{2}$ with vertices in $R_{1}^{\prime} \cup R_{2}^{\prime}$. If $R_{1}^{\prime} \cap\left(V\left(F_{x y}\right) \backslash\left(R_{1} \cup R_{2}\right)\right)=\emptyset$, then F^{0} is a copy of F in G, a contradiction. Hence $R_{1}^{\prime} \cap\left(V\left(F_{x y}\right) \backslash\left(R_{1} \cup R_{2}\right)\right) \neq \emptyset$, that is, F^{0} is the image of an F-homomorphism but not a copy of F.

Now we replace the overlapped vertices in F^{0} to get a copy of F by a greedy algorithm. Let ϕ_{0} be the homomorphism from F to F_{0} and let $\phi_{x y}$ be the isomorphism from F to $F_{x y}$. Then ϕ_{0} is not an isomorphism and $\phi_{x y}$ is an isomorphism. Let $R_{1}^{*}=\phi_{x y}^{-1}\left(R_{1}\right)$ and $R_{2}^{*}=\phi_{x y}^{-1}\left(R_{2}\right)$. By the labeling of F, we see that

$$
R_{1}^{*} \cup R_{2}^{*}=\{a, b\} \cup\left\{c_{1}^{i}: \phi_{x y}\left(c_{1}^{i}\right) \in U \cup V\right\} \cup\left\{c_{2 k-1}^{i}: \phi_{x y}\left(c_{2 k-1}^{i}\right) \in U \cup V\right\} .
$$

Let

$$
\begin{equation*}
R_{3}^{*}=\left\{u \in V(F): \phi_{x y}(u) \in T\right\} \text { and } R_{4}^{*}=\left(\cup_{i=1}^{s}\left\{c_{2}^{i}, \ldots, c_{2 k-2}^{i}\right\}\right) \backslash R_{3}^{*} \tag{3.3}
\end{equation*}
$$

Clearly, $\left(R_{1}^{*}, R_{2}^{*}, R_{3}^{*}, R_{4}^{*}\right)$ is a partition of $V(F)$ and $\phi_{x y}\left(R_{4}^{*}\right) \subset U \cup V$. Since for any edge $u v$ of F with $u \in R_{1}^{*}$ we have $\phi_{x y}(v) \in T \cup R_{1} \cup R_{2}$, it follows that $v \in R_{1}^{*} \cup R_{2}^{*} \cup R_{3}^{*}$. Thus there is no edge between R_{1}^{*} and R_{4}^{*} in F. Note that ϕ_{0} can be expressed explicitly as follows:
(i) $\phi_{0}\left(\phi_{x y}^{-1}(x)\right)=x^{\prime}$ and $\phi_{0}\left(\phi_{x y}^{-1}(y)\right)=y^{\prime}$;
(ii) for each $\ell=1, \ldots, s-p, \phi_{0}\left(\phi_{x y}^{-1}\left(z_{\ell}\right)\right)=z_{\ell}^{\prime}$ and for each $\ell=1, \ldots, s-q, \phi_{0}\left(\phi_{x y}^{-1}\left(w_{\ell}\right)\right)=$ $w_{\ell}^{\prime} ;$
(iii) $\phi_{0}(c)=\phi_{x y}(c)$ for $c \in R_{3}^{*} \cup R_{4}^{*}$.

Since vertices in R_{2}^{\prime} are chosen disjoint from $V\left(F_{x y}\right) \cup R_{1}^{\prime}$, we have $\phi_{0}\left(R_{2}^{*}\right) \cap \phi_{0}\left(R_{1}^{*} \cup R_{3}^{*} \cup\right.$ $\left.R_{4}^{*}\right)=\emptyset$. Then $\phi_{0}\left(R_{1}^{*}\right) \cap \phi_{0}\left(R_{4}^{*}\right) \neq \emptyset$ because ϕ_{0} is not an isomorphism and $\phi_{x y}$ is an isomorphism.

For any $a \in R_{1}^{*}$ and $c \in R_{4}^{*}$ with $\phi_{0}(a)=\phi_{0}(c), \phi_{0}(c)=\phi_{0}(a) \in \phi_{0}\left(R_{1}^{*}\right)=R_{1}^{\prime} \subset U \cup V$. By (3.3) we have $c \in \cup_{i=1}^{s}\left\{c_{2}^{i}, \ldots, c_{2 k-2}^{i}\right\}$. Let d_{1}, d_{2} be two neighbors of c in F. Clearly, d_{i} has degree two in F for $i=1,2$. Since $c \in R_{4}^{*}$ and there is no edge between R_{1}^{*} and R_{4}^{*} in
F, it follows that $d_{1}, d_{2} \notin R_{1}^{*}$. Since $\phi_{0}(c)=\phi_{x y}(c) \in V\left(F_{x y}\right) \backslash(T \cap\{x, y\})$, at most one of $\phi_{x y}\left(d_{1}\right), \phi_{x y}\left(d_{2}\right)$ is in T by Claim 5 (i). Recall that F^{0} is obtained from $F_{x y}$ by replacing vertices in $R_{1} \cup R_{2}$ with vertices in $R_{1}^{\prime} \cup R_{2}^{\prime}$ and never changing vertices in T. Thus $\left|\left\{\phi_{0}\left(d_{1}\right), \phi_{0}\left(d_{2}\right)\right\} \cap T\right|=\left|\left\{\phi_{x y}\left(d_{1}\right), \phi_{x y}\left(d_{2}\right)\right\} \cap T\right| \leq 1$. We shall find an F-homomorphism ϕ_{1} such that $\left|\phi_{1}(V(F))\right|>\left|\phi_{0}(V(F))\right|$ by distinguishing two cases.

Case 1. $\left|\left\{\phi_{0}\left(d_{1}\right), \phi_{0}\left(d_{2}\right)\right\} \cap T\right|=0$.
Without loss of generality, we assume that $\phi_{0}(c) \in U$ and $\phi_{0}\left(d_{1}\right), \phi_{0}\left(d_{2}\right) \in V$. Since $\phi_{0}\left(d_{1}\right), \phi_{0}\left(d_{2}\right)$ have at least $\left(\frac{1}{2}-\frac{1}{10 h}\right) n$ common neighbors in U, we may choose u^{\prime} from $N\left(\phi_{0}\left(d_{1}\right)\right) \cap N\left(\phi_{0}\left(d_{2}\right)\right) \backslash \phi_{0}(V(F))$. Define $\phi_{1}(c)=u^{\prime}$ and $\phi_{1}(a)=\phi_{0}(a)$ for all $a \in V(F) \backslash$ $\{c\}$. It is easy to see that ϕ_{1} is an F-homomorphism with $\left|\phi_{1}(V(F))\right|=\left|\phi_{0}(V(F))\right|+1$.

Case 2. $\left|\left\{\phi_{0}\left(d_{1}\right), \phi_{0}\left(d_{2}\right)\right\} \cap T\right|=1$.
Without loss of generality, we assume that $\phi_{0}(c) \in U, \phi_{0}\left(d_{1}\right) \in V$ and $\phi_{0}\left(d_{2}\right) \in T$. Recall that d_{1} has exactly two neighbors in F and one of them is c, and let d_{3} be the other one. Since $\phi_{x y}\left(c d_{1}\right)$ is an edge of $F_{x y}-T-\{x, y\}$, by Claim 5 (ii) $\operatorname{deg}_{F_{x y}}\left(\phi_{x y}(c), T\right)+$ $\operatorname{deg}_{F_{x y}}\left(\phi_{x y}\left(d_{1}\right), T\right) \leq 1$, that is, $\left|\phi_{x y}\left(\left\{d_{1}, d_{2}\right\}\right) \cap T\right|+\left|\phi_{x y}\left(\left\{c, d_{3}\right\}\right) \cap T\right| \leq 1$. Because F^{0} is obtained from $F_{x y}$ by replacing vertices in $R_{1} \cup R_{2}$ with vertices in $R_{1}^{\prime} \cup R_{2}^{\prime}$ and never changing vertices in T, we have $\left|\phi_{0}\left(\left\{d_{1}, d_{2}\right\}\right) \cap T\right|+\left|\phi_{0}\left(\left\{c, d_{3}\right\}\right) \cap T\right|=\mid \phi_{x y}\left(\left\{d_{1}, d_{2}\right\}\right) \cap$ $T\left|+\left|\phi_{x y}\left(\left\{c, d_{3}\right\}\right) \cap T\right| \leq 1\right.$. Then $| \phi_{0}\left(\left\{c, d_{3}\right\}\right) \cap T \mid=0$ by $\left|\phi_{0}\left(\left\{d_{1}, d_{2}\right\}\right) \cap T\right|=1$, implying that $\phi_{0}\left(d_{3}\right) \in U$. Since $\phi_{0}\left(d_{2}\right)$ has one neighbor $\phi_{0}(c)$ in U, by Lemma 3.3 (iii) we know that $\phi_{0}\left(d_{2}\right)$ has at least $h+1$ neighbors in U, and let $u^{\prime} \in N\left(\phi_{0}\left(d_{2}\right), U\right) \backslash \phi_{0}(V(F))$. Moreover, since u^{\prime} and $\phi_{0}\left(d_{3}\right)$ have at least $\left(\frac{1}{2}-\frac{1}{10 h}\right) n>h$ common neighbors in V, we may choose $v^{\prime} \in N\left(u^{\prime}, V\right) \cap N\left(\phi_{0}\left(d_{3}\right), V\right) \backslash \phi_{0}(V(F))$. Define $\phi_{1}(c)=u^{\prime}, \phi_{1}\left(d_{1}\right)=v^{\prime}$ and $\phi_{1}(a)=\phi_{0}(a)$ for all $a \in V(F) \backslash\left\{c, d_{1}\right\}$. It is easy to see that ϕ_{1} is an F-homomorphism with $\left|\phi_{1}(V(F))\right| \geq\left|\phi_{0}(V(F))\right|+1$.

If ϕ_{1} is not an F-isomorphism, then there exist $a^{\prime} \in R_{1}^{*}$ and $c^{\prime} \in R_{4}^{*}$ with $\phi_{1}\left(a^{\prime}\right)=$ $\phi_{1}\left(c^{\prime}\right)$. By the same argument above, we shall find an F-homomorphism ϕ_{2} such that $\left|\phi_{2}(V(F))\right|>\left|\phi_{1}(V(F))\right|$. Do this repeatedly, we get F-homomorphisms $\phi_{1}, \phi_{2}, \ldots, \phi_{l}, \ldots$ with $h-\left|R_{1}^{\prime}\right| \leq\left|\phi_{0}(V(F))\right|<\left|\phi_{1}(V(F))\right|<\cdots<\left|\phi_{l}(V(F))\right|<\cdots$. Since $\left|\phi_{i}(V(F))\right| \leq h$ for all i, we shall obtain an F-isomorphism in at most $\left|R_{1}^{\prime}\right|$ steps, contradicting the fact that G is F-free. Thus, every compatible pair $\left(x^{\prime}, y^{\prime}\right)$ with $x^{\prime} \in X_{0}$ and $y^{\prime} \in Y_{0}$ is not an edge in $G\left[U_{1}, V_{1}\right]$.

Recall that the number of compatible pairs between X_{0} and Y_{0} is at least $\left|X_{0}\right|\left|Y_{0}\right|-$ $f\left|X_{0}\right|-g\left|Y_{0}\right|$. Since $f, g \leq h$, it follows that

$$
e_{\bar{G}}\left(X_{0}, Y_{0}\right) \geq\left|X_{0}\right|\left|Y_{0}\right|-f\left|X_{0}\right|-g\left|Y_{0}\right| \geq\left|X_{0}\right|\left|Y_{0}\right|-h\left(\left|X_{0}\right|+\left|Y_{0}\right|\right) .
$$

Let S be one of X_{0} and Y_{0} with smaller size. By the same argument as in the proof of Step 1, we have

$$
e_{\bar{G}}\left(X_{0}, Y_{0}\right) \geq \frac{|S|^{2}}{16 h^{2}}
$$

We delete vertices in S from $U_{1} \cup V_{1}$ and let $U_{1}^{\prime}=U_{1} \backslash S$ and $V_{1}^{\prime}=V_{1} \backslash S$. If $\bar{E}\left[U_{1}^{\prime}, V_{1}^{\prime}\right] \cap \Omega_{2}=$ \emptyset, then we are done. Otherwise, there is another non-edge $x y$ in Ω_{2} with $x \in U_{1}^{\prime}, y \in V_{1}^{\prime}$, and we delete another S^{\prime} from $U_{1}^{\prime} \cup V_{1}^{\prime}$ incidents with at least $\frac{\left|S^{\prime}\right|^{2}}{16 h^{2}}$ non-edges between U_{1}^{\prime} and V_{1}^{\prime}. By deleting vertices greedily, we shall obtain a sequence of disjoint sets $S_{1}, S_{2}, \ldots, S_{l}$ in $U_{1} \cup V_{1}$ such that $\bar{E}\left[U_{1} \backslash\left(S_{1} \cup \ldots \cup S_{l}\right), V_{1} \backslash\left(S_{1} \cup \ldots \cup S_{l}\right)\right] \cap \Omega_{2}=\emptyset$.

In each step of the greedy algorithm, there are vertices $x_{1}^{*}, \ldots, x_{p}^{*}, z_{1}^{*}, \ldots z_{f}^{*} \in T$ and $y_{1}^{*}, \ldots, y_{q}^{*}, w_{1}^{*}, \ldots w_{g}^{*} \in T$ such that either X_{0} or Y_{0} is deleted. If X_{0} is deleted, then since X
is the set of common neighbors of $x_{1}^{*}, \ldots, x_{p}^{*}$ in the $U_{1} \backslash X_{0}$, there are no $\left(X, Z_{1}, \ldots, Z_{f}\right)$ stars in the future steps. It follows that the tuple $\left(x_{1}^{*}, \ldots, x_{p}^{*}, z_{1}^{*}, \ldots z_{f}^{*}\right)$ will not appear in the future steps of the algorithm. Similarly, if Y_{0} is deleted, then the tuple $\left(y_{1}^{*}, \ldots, y_{q}^{*}, w_{1}^{*}, \ldots w_{g}^{*}\right)$ will not appear in the future steps of the algorithm. Since $p+f \leq s$ and $q+g \leq s$, it follows that

$$
\begin{aligned}
l & \leq \sum_{p+f \leq s}\binom{|T|}{p}\binom{|T|-p}{f}+\sum_{q+g \leq s}\binom{|T|}{q}\binom{|T|-q}{g} \\
& =2 \sum_{p+f \leq s}\binom{|T|}{p}\binom{|T|-p}{f} \\
& \leq 2 \sum_{p+f \leq s}|T|^{s} \leq 2 s^{2}|T|^{s} .
\end{aligned}
$$

Similarly, by (3.1) and (3.2) we arrive at

$$
\left(\sum_{i=1}^{l}\left|S_{i}\right|\right)^{2} \leq 16 h^{2} \cdot 25 h^{2} \varepsilon n^{2} l \leq 20^{2} h^{4} \varepsilon n^{2} \cdot 2 s^{2}|T|^{s} \leq 20^{2} h^{4} \varepsilon n^{2} \cdot 2 s^{2}\left(30 h^{2} \varepsilon n\right)^{s} .
$$

Let $U_{2}=U_{1} \backslash\left(S_{1} \cup \ldots \cup S_{l}\right)$ and $V_{2}=V_{1} \backslash\left(S_{1} \cup \ldots \cup S_{l}\right)$. Then

$$
\left|U_{1} \backslash U_{2}\right|+\left|V_{1} \backslash V_{2}\right| \leq \sum_{i=1}^{l}\left|S_{i}\right| \leq 20 \sqrt{2} \cdot 30^{\frac{s}{2}} h^{s+2} s \varepsilon^{\frac{s+1}{2}} n^{\frac{s+2}{2}} \leq(6 h)^{s+2} \varepsilon^{\frac{s+1}{2}} n^{\frac{s+2}{2}}
$$

and Step 2 is finished.
By Step 2 , we see that $\bar{E}\left[U_{2}, V_{2}\right] \cap\left(\Omega_{1} \cup \Omega_{2}\right)=\emptyset$. Thus, we are left to delete vertices from $U_{2} \cup V_{2}$ to destroy all non-edges in $\Omega_{3} \cap \bar{E}\left[U_{2}, V_{2}\right]$. If $\Omega_{3} \cap \bar{E}\left[U_{2}, V_{2}\right]=\emptyset$, we have nothing to do. Hence we assume that $\Omega_{3} \cap \bar{E}\left[U_{2}, V_{2}\right] \neq \emptyset$ and let $x y$ be a non-edge in Ω_{3} with $x \in U_{2}$ and $y \in V_{2}$. By definition of Ω_{3}, there is at least one copy $F_{x y}$ of F such that $\operatorname{deg}_{F_{x y}}(x)=s+1$ and $\operatorname{deg}_{F_{x y}}(y)=2$ or $\operatorname{deg}_{F_{x y}}(x)=2$ and $\operatorname{deg}_{F_{x y}}(y)=s+1$. We partition Ω_{3} into four classes as follows:

$$
\left\{\begin{array}{l}
\Omega_{31}=\left\{x y \in \Omega_{3}: \operatorname{deg}_{F_{x y}}(x)=s+1, \operatorname{deg}_{F_{x y}}(y)=2, \operatorname{deg}_{F_{x y}}(x, T)=s\right\} \\
\Omega_{32}=\left\{x y \in \Omega_{3}: \operatorname{deg}_{F_{x y}}(x)=2, \operatorname{deg}_{F_{x y}}(y)=s+1, \operatorname{deg}_{F_{x y}}(y, T)=s\right\} \\
\Omega_{33}=\left\{x y \in \Omega_{3}: \operatorname{deg}_{F_{x y}}(x)=s+1, \operatorname{deg}_{F_{x y}}(y)=2, \operatorname{deg}_{F_{x y}}(x, T) \leq s-1\right\} \\
\Omega_{34}=\left\{x y \in \Omega_{3}: \operatorname{deg}_{F_{x y}}(x)=2, \operatorname{deg}_{F_{x y}}(y)=s+1, \operatorname{deg}_{F_{x y}}(y, T) \leq s-1\right\}
\end{array}\right.
$$

We complete the proof by the following two steps.
Step 3.1. We can find $U_{3} \subset U_{2}$ and $V_{3} \subset V_{2}$ such that $\left|U_{2} \backslash U_{3}\right|+\left|V_{2} \backslash V_{3}\right| \leq$ $(6 h)^{s+3} \varepsilon^{\frac{s+1}{2}} n^{\frac{s+2}{2}}$ and $\bar{E}\left[U_{3}, V_{3}\right] \cap\left(\Omega_{31} \cup \Omega_{32}\right)=\emptyset$. That is, by deleting at most $(6 h)^{s+3} \varepsilon^{\frac{s+1}{2}} n^{\frac{s+2}{2}}$ vertices from $U_{2} \cup V_{2}$ we destroy all non-edges in $\Omega_{31} \cup \Omega_{32}$.

Proof. If $\bar{E}\left[U_{2}, V_{2}\right] \cap\left(\Omega_{31} \cup \Omega_{32}\right)=\emptyset$, we have nothing to do. So assume that $\bar{E}\left[U_{2}, V_{2}\right] \cap$ $\left(\Omega_{31} \cup \Omega_{32}\right) \neq \emptyset$, then there is a non-edge $x y$ in $\Omega_{31} \cup \Omega_{32}$ with $x \in U_{2}$ and $y \in V_{2}$. Without loss of generality, we assume that $x y \in \Omega_{31}$. By Claim 4, $\operatorname{deg}_{F_{x y}}(y, T)=1$ and let $N_{F_{x y}}(y, T)=\left\{y^{*}\right\}$. Assume that

$$
N_{F_{x y}}(x) \cap T=\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{s}^{*}\right\} .
$$

Let X be the set of common neighbors of $x_{1}^{*}, \ldots, x_{s}^{*}$ in U_{2} of G and let $Y=N_{G}\left(y^{*}, V_{2}\right)$. For any edge $x^{\prime} y^{\prime}$ in $G[X, Y]$, if $\left\{x^{\prime}, y^{\prime}\right\} \cap V\left(F_{x y}\right)=\emptyset$, then by replacing x, y with x^{\prime}, y^{\prime} in $F_{x y}$ we obtain a copy of F in G, a contradiction. Thus, every edge in $G[X, Y]$ intersects $V\left(F_{x y}\right)$, implying that $e(X, Y) \leq h(|X|+|Y|)$. Then

$$
e_{\bar{G}}(X, Y)=|X||Y|-e(X, Y) \geq|X||Y|-h(|X|+|Y|) .
$$

Let S be one of X and Y with the smaller size. By the same argument as in Step 1, we have

$$
e_{\bar{G}}(X, Y) \geq \frac{|S|^{2}}{16 h^{2}}
$$

We delete vertices in S from $U_{2} \cup V_{2}$ and let $U_{2}^{\prime}=U_{2} \backslash S$ and $V_{2}^{\prime}=V_{2} \backslash S$. If $\bar{E}\left[U_{2}^{\prime}, V_{2}^{\prime}\right] \cap\left(\Omega_{31} \cup\right.$ $\left.\Omega_{32}\right)=\emptyset$, then we are done. Otherwise, there is another non-edge $x y$ in $\Omega_{31} \cup \Omega_{32}$ with $x \in U_{2}^{\prime}, y \in V_{2}^{\prime}$, and we delete another S^{\prime} from $U_{2}^{\prime} \cup V_{2}^{\prime}$ incidents with at least $\frac{\left|S^{\prime}\right|^{2}}{16 h^{2}}$ non-edges between U_{2}^{\prime} and V_{2}^{\prime}. By deleting vertices greedily, we shall obtain a sequence of disjoint sets $S_{1}, S_{2}, \ldots, S_{l}$ in $U_{2} \cup V_{2}$ such that $\bar{E}\left[U_{2} \backslash\left(S_{1} \cup \ldots \cup S_{l}\right), V_{2} \backslash\left(S_{1} \cup \ldots \cup S_{l}\right)\right] \cap\left(\Omega_{31} \cup \Omega_{32}\right)=\emptyset$.

In each step of the greedy algorithm, if there is a non-edge $x y \in \Omega_{31}$ between U_{2} and V_{2}, then there exist vertices $x_{1}^{*}, \ldots, x_{s}^{*}, y^{*} \in T$ such that either $X=\cap_{i=1}^{s} N\left(x_{i}^{*}, U_{2}\right)$ or $Y=N\left(y^{*}, V_{2}\right)$ is deleted. If there is a non-edge $x y \in \Omega_{32}$ between U_{2} and V_{2}, then there exist vertices $y_{1}^{*}, \ldots, y_{s}^{*}, x^{*} \in T$ such that either $X=N\left(x^{*}, U_{2}\right)$ or $Y=\cap_{i=1}^{s} N\left(y_{i}^{*}, V_{2}\right)$ is deleted. It follows that

$$
l \leq 2\left(\binom{|T|}{s}+|T|\right)<2\left(|T|^{s}+|T|\right) \leq 4|T|^{s} \leq 4\left(30 h^{2} \varepsilon n\right)^{s} .
$$

By (3.1) and (3.2), we arrive at

$$
\left(\sum_{i=1}^{l}\left|S_{i}\right|\right)^{2} \leq 16 h^{2} \cdot 25 h^{2} \varepsilon n^{2} l \leq 20^{2} h^{4} \varepsilon n^{2} \cdot 4\left(30 h^{2} \varepsilon n\right)^{s}=40^{2} \cdot 30^{s} h^{2 s+4} \varepsilon^{s+1} n^{s+2} .
$$

Let $U_{3}=U_{2} \backslash\left(S_{1} \cup \ldots \cup S_{l}\right)$ and $V_{3}=V_{2} \backslash\left(S_{1} \cup \ldots \cup S_{l}\right)$. Then

$$
\left|U_{2} \backslash U_{3}\right|+\left|V_{2} \backslash V_{3}\right| \leq \sum_{i=1}^{l}\left|S_{i}\right| \leq 40 \cdot 30^{\frac{s}{2}} h^{s+2} \varepsilon^{\frac{s+1}{2}} n^{\frac{s+2}{2}} \leq(6 h)^{s+3} \varepsilon^{\frac{s+1}{2}} n^{\frac{s+2}{2}}
$$

and Step 3.1 is finished.
Step 3.2. We can find $U_{4} \subset U_{3}$ and $V_{4} \subset V_{3}$ such that $\left|U_{3} \backslash U_{4}\right|+\left|V_{3} \backslash V_{4}\right| \leq$ $(6 h)^{s+3} \varepsilon^{\frac{s+1}{2}} n^{\frac{s+2}{2}}$ and $G\left[U_{4}, V_{4}\right]$ is complete bipartite, i.e., by deleting at most $(6 h)^{s+3} \varepsilon^{\frac{s+1}{2}} n^{\frac{s+2}{2}}$ vertices from $U_{3} \cup V_{3}$ we obtain an induced complete bipartite subgraph of G.

Proof. If $\bar{E}\left[U_{3}, V_{3}\right] \cap\left(\Omega_{33} \cup \Omega_{34}\right)=\emptyset$, we have nothing to do. So assume that $\bar{E}\left[U_{3}, V_{3}\right] \cap$ $\left(\Omega_{33} \cup \Omega_{34}\right) \neq \emptyset$, then there is a non-edge $x y$ in $\Omega_{33} \cup \Omega_{34}$ with $x \in U_{3}$ and $y \in V_{3}$. Without loss of generality, we assume that $\operatorname{deg}_{F_{x y}}(x)=s+1$ and $\operatorname{deg}_{F_{x y}}(y)=2$. By Claim 4, $\operatorname{deg}_{F_{x y}}(y, T)=1$ and let $N_{F_{x y}}(y, T)=\left\{y^{*}\right\}$. Let $N_{F_{x y}}(x) \cap T=\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{p}^{*}\right\}$ and $N_{F_{x y}}(x) \cap V=\left\{z_{p+1}, \ldots, z_{s}, y\right\}$ with $p \leq s-1$. By Claim 4, we have $p \geq 1$. Let X be the set of common neighbors of $x_{1}^{*}, \ldots, x_{p}^{*}$ in U_{3} of G and let $Y=N_{G}\left(y^{*}, V_{3}\right)$.

Let $\phi_{x y}$ be the isomorphism from F to $F_{x y}$. Without loss of generality, assume that $\phi_{x y}(a)=x$ and $\phi_{x y}\left(c_{1}^{1}\right)=y$. If ψ is an injective homomorphism from $F-c_{1}^{1}$ to G with

$$
\psi\left(\phi_{x y}^{-1}\left(x_{1}^{*}\right)\right)=x_{1}^{*}, \ldots, \psi\left(\phi_{x y}^{-1}\left(x_{p}^{*}\right)\right)=x_{p}^{*}, \psi\left(\phi_{x y}^{-1}\left(y^{*}\right)\right)=y^{*}
$$

and

$$
\psi\left(\phi_{x y}^{-1}\left(z_{p+1}\right)\right) \in V, \ldots, \psi\left(\phi_{x y}^{-1}\left(z_{s}\right)\right) \in V, \psi(a) \in X,
$$

then we say that ψ is agree with $\phi_{x y}$. Define

$$
\Psi_{x y}=\left\{\psi: \psi \text { is an injective homomorphism from } F-c_{1}^{1} \text { to } G \text { that is agree with } \phi_{x y}\right\} .
$$

Let

$$
X_{0}=\left\{x^{\prime} \in X: \exists \psi_{x^{\prime}} \in \Psi_{x y} \text { such that } \psi_{x^{\prime}}(a)=x^{\prime}\right\} .
$$

For any $x^{\prime} \in X_{0}$, let $H_{x^{\prime}}$ be a copy of $F-c_{1}^{1}$ in G corresponding to $\psi_{x^{\prime}}$. If there is $y^{\prime} \in Y \backslash V\left(H_{x^{\prime}}\right)$ such that $x^{\prime} y^{\prime} \in E(G)$, then we define a homomorphism ϕ from F to G as follows:

$$
\phi(u)=\psi_{x^{\prime}}(u) \text { for all } u \in V\left(F-c_{1}^{1}\right) \text { and } \phi\left(c_{1}^{1}\right)=y^{\prime} .
$$

Then ϕ is an injective homomorphism from F to G, contradicting the fact that G is F-free. Hence each $x^{\prime} \in X_{0}$ has at most $V\left(H_{x^{\prime}}\right)$ neighbors in Y, implying that

$$
e_{\bar{G}}\left(X_{0}, Y\right) \geq\left|X_{0}\right||Y|-\left|X_{0}\right| h \geq\left|X_{0}\right||Y|-h\left(\left|X_{0}\right|+|Y|\right) .
$$

Let S be one of X_{0} and Y with the smaller size. By the same argument as in Step 1, we have

$$
e_{\bar{G}}\left(X_{0}, Y\right) \geq \frac{|S|^{2}}{16 h^{2}}
$$

We delete vertices in S from $U_{3} \cup V_{3}$ and let $U_{3}^{\prime}=U_{3} \backslash S$ and $V_{3}^{\prime}=V_{3} \backslash S$. If $\bar{E}\left[U_{3}^{\prime}, V_{3}^{\prime}\right] \cap\left(\Omega_{33} \cup \Omega_{34}\right)=\emptyset$, then we are done. Otherwise, there is another non-edge $x y$ in ($\Omega_{33} \cup \Omega_{34}$) with $x \in U_{3}^{\prime}, y \in V_{3}^{\prime}$, and we delete another S^{\prime} from $U_{3}^{\prime} \cup V_{3}^{\prime}$ incident with at least $\frac{\left|S^{\prime}\right|^{2}}{16 h^{2}}$ non-edges between U_{3}^{\prime} and V_{3}^{\prime}. By deleting vertices greedily, we shall obtain a sequence of disjoint sets $S_{1}, S_{2}, \ldots, S_{l}$ in $U_{3} \cup V_{3}$ such that $\bar{E}\left[U_{3} \backslash\left(S_{1} \cup \ldots \cup S_{l}\right), V_{3} \backslash\right.$ $\left.\left(S_{1} \cup \ldots \cup S_{l}\right)\right] \cap\left(\Omega_{33} \cup \Omega_{34}\right)=\emptyset$.

In each step of the greedy algorithm, if there is a non-edges $x y \in \Omega_{33}$ between U_{3} and V_{3}, then there exist vertices $x_{1}^{*}, \ldots, x_{p}^{*}, y^{*} \in T$ such that either X_{0} or Y is deleted. If Y is deleted, then y^{*} has no neighbor in $V_{3} \backslash Y$. If X_{0} is deleted, then there is no non-edge $x^{\prime} y^{\prime} \in \Omega_{33}$ between $U_{3} \backslash X_{0}$ and V_{3} such that $N_{F_{x^{\prime} y^{\prime}}}\left(x^{\prime}\right) \cap T=\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{p}^{*}\right\}$ and $N_{F_{x^{\prime} y^{\prime}}}\left(y^{\prime}\right) \cap T=\left\{y^{*}\right\}$. For otherwise, $F_{x^{\prime} y^{\prime}}-y^{\prime}$ is a copy of $F-\phi_{x^{\prime} y^{\prime}}^{-1}\left(y^{\prime}\right)$, which is also a copy of $F-c_{1}^{1}$, contradicting the assumption that $x^{\prime} \notin U_{3} \backslash X_{0}$. It follows that the tuple $\left(x_{1}^{*}, \ldots, x_{p}^{*}, y^{*}\right)$ will not appear in the future steps of the algorithm. If there is a non-edges $x y \in \Omega_{34}$ between U_{3} and V_{3}, then there exist vertices $y_{1}^{*}, \ldots, y_{q}^{*}, x^{*} \in T$ such that either $X=N\left(x^{*}, U_{2}\right)$ or Y_{0} (which can be defined similarly) is deleted. By the same argument, we see that the tuple $\left(y_{1}^{*}, \ldots, y_{q}^{*}, x^{*}\right)$ will not appear in the future steps of the algorithm. Therefore,

$$
l \leq \sum_{p=1}^{s-1}\binom{|T|}{p}|T|+\sum_{q=1}^{s-1}\binom{|T|}{q}|T|<\sum_{p=1}^{s-1}|T|^{p+1}+\sum_{q=1}^{s-1}|T|^{q+1}<2 s|T|^{s} \leq 2 s\left(30 h^{2} \varepsilon n\right)^{s} .
$$

By (3.1) and (3.2), we arrive at

$$
\left(\sum_{i=1}^{l}\left|S_{i}\right|\right)^{2} \leq 16 h^{2} \cdot 25 h^{2} \varepsilon n^{2} l \leq 20^{2} h^{4} \varepsilon n^{2} \cdot 2 s\left(30 h^{2} \varepsilon n\right)^{s}=2 \cdot 20^{2} \cdot 30^{s} s h^{2 s+4} \varepsilon^{s+1} n^{s+2} .
$$

Let $U_{4}=U_{3} \backslash\left(S_{1} \cup \ldots \cup S_{l}\right)$ and $V_{4}=V_{3} \backslash\left(S_{1} \cup \ldots \cup S_{l}\right)$. Since $\bar{E}\left[U_{4}, V_{4}\right] \cap\left(\Omega_{1} \cup \Omega_{2} \cup \Omega_{3}\right)=\emptyset$, $G\left[U_{4}, V_{4}\right]$ is complete bipartite. Moreover,

$$
\left|U_{3} \backslash U_{4}\right|+\left|V_{3} \backslash V_{4}\right| \leq \sum_{i=1}^{l}\left|S_{i}\right| \leq 20 \sqrt{2} \cdot 30^{\frac{s}{2}} \sqrt{s} h^{s+2} \varepsilon^{\frac{s+1}{2}} n^{\frac{s+2}{2}} \leq(6 h)^{s+3} \varepsilon^{\frac{s+1}{2}} n^{\frac{s+2}{2}} .
$$

Thus Step 3.2 is finished.
Let n^{\prime} be the total number of vertices we deleted from G to obtain an induced complete bipartite graph. By Lemma 3.3 (i) and Steps 1, 2, 3.1, 3.2, we have

$$
n^{\prime}=|T|+\left|(U \cup V) \backslash\left(U_{4} \cup V_{4}\right)\right| \leq 30 h^{2} \varepsilon n+160 h^{3} \varepsilon n^{\frac{3}{2}}+3 \cdot(6 h)^{s+3} \varepsilon^{\frac{s+1}{2}} n^{\frac{s+2}{2}}
$$

Let $\varepsilon=\alpha n^{-\frac{s}{s+1}}$. Then for $s \geq 2, \alpha<1$ and $h \leq 2 s k$, we have

$$
\begin{aligned}
n^{\prime} & =30 h^{2} \alpha n^{\frac{1}{s+1}}+160 h^{3} \alpha n^{\frac{3}{2}-\frac{s}{s+1}}+3 \cdot(6 h)^{s+3} \alpha^{\frac{s+1}{2}} n \\
& \leq\left(30 h^{2}+160 h^{3}+3 \cdot(6 h)^{s+3} \alpha^{\frac{s-1}{2}}\right) \alpha n \\
& \leq 4 \cdot(6 h)^{s+3} \alpha n \\
& \leq 4 \cdot(12 s k)^{s+3} \alpha n .
\end{aligned}
$$

This completes the proof.

References

[1] D. Gerbner, A note on stability for maximal F-free graphs, Graphs Combin. (2021), https://doi.org/10.1007/s00373-021-02372-z.
[2] P. Erdős, Some recent results on extremal problems in graph theory (Results), Theory of Graphs (Internl. Symp. Rome) (1966), 118-123.
[3] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Hungar. 10 (1959), 337-356.
[4] K. Popielarz, J. Sahasrabudhe and R. Snyder, A stability theorem for maximal $K_{r+1^{-}}$ free graphs, J. Combin. Theory Ser. B 132 (2018), 236-257.
[5] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: Theory of Graphs (Proc. Colloq. Tihany, 1966), Academic Press, New York (1968), 279-319.
[6] M. Simonovits, Extremal graph problems with symmetrical extremal graphs. Additional chromatic conditions, Discrete Math. 7 (1974), 349-376.
[7] P. Turán, On an extremal problem in graph theory (in Hungarian), Math. Fiz. Lapok 48 (1941), 436-452.
[8] M. Tyomkyn and A.J. Uzzel, Strong Turán stability, Electron. J. Combin. 22 (2015), P3.9, 24pp.
[9] J. Wang, S. Wang, W. Yang and X. Yuan, A stability theorem for maximal $C_{2 k+1}$-free graphs, J. Graph Theory. (2022), 1-14. https://doi.org/10.1002/jgt.22824.

[^0]: ${ }^{*}$ Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, P. R. China. E-mail: wangjian01@tyut.edu.cn. Research supported by NSFC No.11701407.
 ${ }^{\dagger}$ Department of Mathematics, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China. E-mail: spwang22@yahoo. com. Research supported by NSFC No. 12001242.
 ${ }^{\ddagger}$ Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, P. R. China. E-mail: yangweihua@tyut.edu.cn. Research supported by NSFC No. 11671296.

