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Abstract

The chromatic polynomial of a graph G, denoted P (G,m), is equal to the number
of proper m-colorings of G. The list color function of graph G, denoted Pℓ(G,m), is a
list analogue of the chromatic polynomial that has been studied since the early 1990s,
primarily through comparisons with the corresponding chromatic polynomial. It is known
that for any graph G there is a k ∈ N such that Pℓ(G,m) = P (G,m) whenever m ≥ k.
The list color function threshold of G, denoted τ(G), is the smallest k ≥ χ(G) such that
Pℓ(G,m) = P (G,m) whenever m ≥ k. In 2009, Thomassen asked whether there is a
universal constant α such that for any graph G, τ(G) ≤ χℓ(G) + α, where χℓ(G) is the
list chromatic number of G. We show that the answer to this question is no by proving
that there exists a positive constant C such that τ(K2,l)− χℓ(K2,l) ≥ C

√
l for l ≥ 16.

Keywords. list coloring, chromatic polynomial, list color function.
Mathematics Subject Classification. 05C15, 05C30

1 Introduction

In this paper all graphs are nonempty, finite, simple graphs unless otherwise noted. Gen-
erally speaking we follow West [17] for terminology and notation. The set of natural numbers
is N = {1, 2, 3, . . .}. For m ∈ N, we write [m] for the set {1, . . . ,m}. If G is a graph and
S ⊆ V (G), we use G[S] for the subgraph of G induced by S. If u and v are adjacent in G, uv
or vu refers to the edge between u and v. We write Kn,l for complete bipartite graphs with
partite sets of size n and l. If G and H are vertex disjoint graphs, we write G ∨H for the
join of G and H.

1.1 List Coloring and Counting List Colorings

In classical vertex coloring one wishes to color the vertices of a graph G with up to m
colors from [m] so that adjacent vertices in G receive different colors, a so-called proper m-
coloring. The chromatic number of a graph, denoted χ(G), is the smallest m such that G has
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a proper m-coloring. List coloring is a generalization of classical vertex coloring introduced
independently by Vizing [15] and Erdős, Rubin, and Taylor [8] in the 1970s. In list coloring,
we associate a list assignment L with a graph G so that each vertex v ∈ V (G) is assigned a
list of available colors L(v) (we say L is a list assignment for G). We say G is L-colorable if
there is a proper coloring f of G such that f(v) ∈ L(v) for each v ∈ V (G) (we refer to f as
a proper L-coloring of G). A list assignment L is called a k-assignment for G if |L(v)| = k
for each v ∈ V (G). We say G is k-choosable if G is L-colorable whenever L is a k-assignment
for G. The list chromatic number of a graph G, denoted χℓ(G), is the smallest k such that
G is k-choosable. It is immediately obvious that for any graph G, χ(G) ≤ χℓ(G). Moreover,
it is well-known that the gap between the chromatic number and list chromatic number of
a graph can be arbitrarily large as the following result illustrates (see e.g., [13] for further
details).

Theorem 1 (Folklore). For n ∈ N, χℓ(Kn,l) = n+ 1 if and only if l ≥ nn.

In 1912 Birkhoff [3] introduced the notion of the chromatic polynomial with the hope of
using it to make progress on the four color problem. For m ∈ N, the chromatic polynomial of
a graph G, P (G,m), is the number of proper m-colorings of G. It is well-known that P (G,m)
is a polynomial in m of degree |V (G)| (e.g., see [5]). For example, P (Kn,m) =

∏n−1
i=0 (m− i),

P (Cn,m) = (m − 1)n + (−1)n(m − 1), P (T,m) = m(m − 1)n−1 whenever T is a tree on n
vertices, and P (K2,l,m) = m(m− 1)l +m(m− 1)(m − 2)l (see [2] and [17]).

The notion of chromatic polynomial was extended to list coloring in the early 1990s by
Kostochka and Sidorenko [12]. If L is a list assignment for G, we use P (G,L) to denote
the number of proper L-colorings of G. The list color function Pℓ(G,m) is the minimum
value of P (G,L) where the minimum is taken over all possible m-assignments L for G. Since
an m-assignment could assign the same m colors to every vertex in a graph, it is clear that
Pℓ(G,m) ≤ P (G,m) for each m ∈ N. In general, the list color function can differ significantly
from the chromatic polynomial for small values of m. One reason for this is that a graph
can have a list chromatic number that is much higher than its chromatic number. On the
other hand, in 1992, Donner [6] showed that for any graph G there is a k ∈ N such that
Pℓ(G,m) = P (G,m) whenever m ≥ k.

It is also known that Pℓ(G,m) = P (G,m) for all m ∈ N when G is a cycle or chordal
(see [12] and [11]). Moreover, if Pℓ(G,m) = P (G,m) for all m ∈ N, then Pℓ(G ∨Kn,m) =
P (G ∨Kn,m) for each n,m ∈ N (see [9]).

1.2 The List Color Function Threshold

We now introduce a notion that has received some attention (under different names) in
the literature 1. Given any graph G, the list color function number of G, denoted ν(G), is
the smallest t ≥ χ(G) such that Pℓ(G, t) = P (G, t). The list color function threshold of G,
denoted τ(G), is the smallest k ≥ χ(G) such that Pℓ(G,m) = P (G,m) whenever m ≥ k. By
Donner’s 1992 result, we know that both ν(G) and τ(G) are well-defined for any graph G.
Furthermore, χ(G) ≤ χℓ(G) ≤ ν(G) ≤ τ(G).

1It is worth mentioning that a DP-coloring (see [7]) analogue of the list color function threshold was recently
introduced and studied in [1].
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In 2009, Thomassen [14] showed that for any graph G, τ(G) ≤ |V (G)|10+1. Then, in 2017,
Wang, Qian, and Yan [16] showed that for any graph G, τ(G) ≤ (|E(G)|−1)/ ln(1+

√
2)+1.

Two well-known open questions on the list color function can be stated using the list color
function number and list color function threshold.

Question 2 (Kirov and Naimi [11]). For every graph G, is it the case that ν(G) = τ(G)?

Question 3 (Thomassen [14]). Is there a universal constant α such that for any graph G,
τ(G)− χℓ(G) ≤ α?

Question 2, which is asking whether the list color function of a graph and the correspond-
ing chromatic polynomial stay the same after the first point at which they are both nonzero
and equal, remains open. However, the DP-coloring analogue of Question 2 was answered in
the negative in [4] where it was studied under the notion of chromatic adherence (see [10] for
an introduction to the DP color function, the DP-coloring analogue of list color function).

In [14], it was shown that in Question 3, α cannot be zero. In this paper we show that
the answer to Question 3 is no in a fairly strong sense. Specifically, we prove the following.

Theorem 4. Suppose G = K2,l and l ≥ 16. Let q = ⌊l/4⌋. Then,

τ(G) >

⌊

(

q

ln(16/7)

)1/2

+ 1

⌋

.

Consequently, there is a constant C > 0 such that for each l ≥ 16, τ(K2,l) − χℓ(K2,l) =
τ(K2,l)− 3 ≥ C

√
l.

We have made no attempt to optimize the leading constant above. However, we believe
that this lower bound captures the behavior of τ(K2,l).

Conjecture 5. τ(K2,l) = Θ(
√
l) as l → ∞.

In light of the bound of Wang, Qian, and Yan, Thomassen’s Question 3, and Theo-
rem 4, it is natural to study the asymptotic behavior of the list color function threshold as
the size of the graphs we consider tends toward infinity. We define the extremal functions
δmax(t) = max{τ(G)−χℓ(G) : G is a graph with at most t edges} and τmax(t) = max{τ(G) :
G is a graph with at most t edges}. By Theorem 4 and the bound of Wang, Qian, and Yan,
we know that there exist positive constants C1, C2 such that C1

√
t ≤ δmax(t) ≤ C2t for large

enough t. The same asymptotic bounds hold for τmax(t) as well.

Question 6. What is the asymptotic behavior of δmax(t)?

Since χℓ(G) = O(
√

|E(G)|) as |E(G)| → ∞, if τmax(t) = ω(
√
t) as t → ∞, then δmax(t) ∼

τmax(t) as t → ∞.

Question 7. What is the asymptotic behavior of τmax(t)? In particular, is τmax(t) = ω(
√
t)?

Understanding τ(Kn,l) would be the first natural candidate towards answering Questions 6
and 7.

3



2 Proof of Theorem 4

To prove a lower bound on τ(G), we need an upper bound on Pℓ(G,m) that is smaller
than P (G,m) for some m. Our first step is to give an enumerative generalization 2 of the
“if” direction of Theorem 1. We generalize the folklore ‘bad’ list assignment from Theorem 1
and count the number of such list colorings to get an upper bound on Pℓ(Kn,nnt,m).

Lemma 8. Let n,m, t ∈ N with n ≥ 2 and m ≥ n + 1, and let G = Kn,nnt with bipartition
X = {x1, . . . , xn}, Y = {y1, . . . , ynnt}. Let Sk = {m + n(k − 2) + ℓ : ℓ ∈ [n]} for each
k ∈ [n], and let A = {{s1, . . . , sn} : sk ∈ Sk for each k ∈ [n]}. Suppose A = {A0, . . . , Ann−1}.
Let L be the m-assignment for G defined by L(xk) = [m − n] ∪ Sk for each k ∈ [n] and
L(yk) = [m− n] ∪A⌊(k−1)/t⌋ for each k ∈ [nnt]. Then 3

P (G,L) = nn
n
∏

i=0

(m− i)t(
n

i
)(n−1)n−i

+

n
∑

N=1

n−N
∑

S=0

[

nS

(

n

S

)(

m− n

N

)

(

N−1
∑

i=0

(−1)i
(

N

i

)

(N − i)n−S

)

·
S
∏

i=0

(m−N − i)t(
S

i
)(n−1)S−inn−S

]

.

Proof. Let C be the set of all proper L-colorings of G. Let T = {(0, n)} ∪ {(N,S) ∈ Z× Z :
1 ≤ N ≤ n and 0 ≤ S ≤ n − N}. For each (N,S) ∈ T , let T(N,S) be the set of proper
L-colorings f of G such that |f(X) ∩ [m − n]| = N and |f(X) ∩

⋃n
k=1 Sk| = S. Notice that

P (G,L) = |C| =
∑

(N,S)∈T |T(N,S)|.
Let L′ be the restriction of L to X. We compute |T(0,n)| in two steps: first, we count the

number of proper L′-colorings h of G[X] such that h(X) ⊆ ⋃n
k=1 Sk. Then, given a proper

L′-coloring h of G[X] such that h(X) ⊆ ⋃n
k=1 Sk, we count the number of proper L-colorings

f of G such that f(v) = h(v) for each v ∈ X. We will find that the number obtained in the
second step does not depend on h, so that |T(0,n)| equals the number obtained in the first
step times the number obtained in the second step.

For step one, notice that |Sk| = n for each k ∈ [n]. So, the number of proper L′-colorings
h of G[X] such that h(X) ⊆

⋃n
k=1 Sk is

∏n
k=1|Sk| = nn. For step two, suppose h is a proper

L′-coloring of G[X] such that h(X) ⊆ ⋃n
k=1 Sk. For each k ∈ [n], suppose h(xk) = sk. For

each integer i with 0 ≤ i ≤ n, let Ri = {j ∈ [nnt] : |L(yj) ∩ {sk : k ∈ [n]}| = i}. Notice
that R0, . . . , Rn form a partition of [nnt], and that |Ri| = t · |{j ∈ [nn − 1] ∪ {0} : |Aj ∩ {sk :
k ∈ [n]}| = i}| for each integer i with 0 ≤ i ≤ n. By the definition of A, it is easy to see
|Ri| = t

(

n
i

)

(n− 1)n−i. Then, the number of proper L-colorings f of G such that f(v) = h(v)
for each v ∈ X is given by

n
∏

i=0

(m− i)|Ri| =

n
∏

i=0

(m− i)t(
n

i
)(n−1)n−i

2While we really only need the generalization when n = 2, we prove the result for general n for completeness.
3If a < b, then we interpret

(

a

b

)

as being equal to zero.
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from which we conclude

|T(0,n)| = nn
n
∏

i=0

(m− i)t(
n

i
)(n−1)n−i

.

We now compute |T(N,S)| for arbitrary (N,S) ∈ T \ {(0, n)}. To do so, we again employ
a two-step process: first, we count the number of proper L′-colorings h of G[X] such that
|h(X) ∩ [m − n]| = N and |h(X) ∩ ⋃n

k=1 Sk| = S. Then, given a proper L′-coloring h of
G[X] such that |h(X) ∩ [m − n]| = N and |h(X) ∩ ⋃n

k=1 Sk| = S, we count the number of
proper L-colorings f of G such that f(v) = h(v) for each v ∈ X. Again, we will find that the
number obtained in the second step does not depend on h, so that |T(N,S)| equals the number
obtained in the first step times the number obtained in the second step.

For step one, we can generate all such proper L′-colorings h of G[X] via the following
four-part process: first, choose a subset Ps of [n] of size S, and let Po = [n]− Ps. Secondly,
choose a subset O of [m− n] of size N . Thirdly, color the vertices in {xk : k ∈ Po} with the
colors in O such that each color in O is used at least once. Lastly, for each k ∈ Ps, color xk
with a color in Sk. The first part can be done in

(

n
S

)

ways. The second part can be done in
(

m−n
N

)

ways. By some simple counting and the Inclusion-Exclusion Principle, the third part
can be done in

N
∑

i=0

(−1)i
(

N

i

)

(N − i)n−S =

N−1
∑

i=0

(−1)i
(

N

i

)

(N − i)n−S

ways. Finally, for each k ∈ Ps, there are |Sk| = n ways to color xk with a color in Sk. Thus,
the final part can be done in nS ways. Hence, the number of proper L′-colorings h of G[X]
such that |h(X) ∩ [m− n]| = N and |h(X) ∩⋃n

k=1 Sk| = S is

(

n

S

)(

m− n

N

)

(

N−1
∑

i=0

(−1)i
(

N

i

)

(N − i)n−S

)

nS.

For step two, suppose h is a proper L′-coloring of G[X] such that |h(X)∩[m−n]| = N and
|h(X) ∩⋃n

k=1 Sk| = S. Let Po = {k ∈ [n] : h(xk) ∈ [m− n]} and Ps = {k ∈ [n] : h(xk) ∈ Sk}.
Notice that Po and Ps form a partition of [n]. Suppose h(X) ∩ [m − n] = {o1, . . . , oN}. For
each k ∈ Ps, suppose h(xk) = sk. For each i ∈ Z with 0 ≤ i ≤ |Ps| = S, let Ri = {j ∈
[nnt] : |L(yj)∩{sk : k ∈ Ps}| = i}. Notice that R0, . . . , RS form a partition of [nnt], and that
|Ri| = t · |{j ∈ [nn − 1] ∪ {0} : |Aj ∩ {sk : k ∈ Ps}| = i}| for each i ∈ Z with 0 ≤ i ≤ S. By
the definition of A, it is easy to see |Ri| = t

(S
i

)

(n − 1)S−inn−S. Then, the number of proper
L-colorings f of G such that f(v) = h(v) for each v ∈ X is given by

S
∏

i=0

(m−N − i)|Ri| =
S
∏

i=0

(m−N − i)t(
S

i
)(n−1)S−inn−S

,

from which we conclude

|T(N,S)| = nS

(

n

S

)(

m− n

N

)

(

N−1
∑

i=0

(−1)i
(

N

i

)

(N − i)n−S

)

S
∏

i=0

(m−N − i)t(
S

i
)(n−1)S−inn−S

.

The result follows.
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We can use Lemma 8 to find appropriate m, n, and t such that P (G,L) < P (G,m),
which would imply τ(G) > m. Since the focus of Theorem 4 is n = 2, we will now slightly
generalize the list assignment constructed in the statement of Lemma 8 in the case n = 2.
The notion of ‘balanced’ list assignment given below captures the essence of what makes this
list assignment ‘bad’ as well as nice to work with.

Suppose G = K2,l, the bipartition of G is {x1, x2}, {y1, . . . , yl}, and L is an m-assignment
for G such that L(x1) = [m] and L(x2) = [m − 2] ∪ {m + 1,m + 2}. Let z1 = |{j ∈ [l] :
L(yj) = [m − 2] ∪ {m − 1,m + 1}}|, z2 = |{j ∈ [l] : L(yj) = [m − 2] ∪ {m − 1,m + 2}}|,
z3 = |{j ∈ [l] : L(yj) = [m−2]∪{m,m+1}}|, and z4 = |{j ∈ [l] : L(yj) = [m−2]∪{m,m+2}}|.
Then, we say the list assignment L is balanced if

∑4
i=1 zi = l and |zj − zi| ≤ 1 whenever

i, j ∈ [4].
We will now use the formula and list assignment for G = K2,4t in Lemma 8, to deter-

mine how large t must be to ensure the existence of a balanced m-assignment L for G that
demonstrates Pℓ(G,m) < P (G,m).

Lemma 9. Suppose G = K2,4t and m ≥ 3. If

t > max

{

ln(ǫ/(4(m − 2)))

2 ln((m− 2)/(m − 1))
,

ln((2 − ǫ)/4)

ln(1− 1/(m− 1)2)

}

for some real number ǫ with 0 < ǫ < 2, then there is a balanced m-assignment L for G such
that P (G,L) < P (G,m).

Proof. Suppose G = K2,4t and the bipartition of G is {x1, x2}, {y1, . . . , y4t}. Clearly,
P (G,m) = m(m − 1)4t + m(m − 1)(m − 2)4t. If L is the m-assignment for G described
in the statement of Lemma 8, then L is a balanced m-assignment and

P (G,L) = (m− 2)(m− 1)4t + (m− 3)(m − 2)4t+1

+ 4(m− 2)2t+1(m− 1)2t + 4(m− 2)t(m− 1)2tmt

by Lemma 8. We will show P (G,L) < P (G,m). Let b = 1+1/(m−1) and s = 1−1/(m−1).
Notice

t >
ln(ǫ/(4(m − 2)))

2 ln((m− 2)/(m − 1))
which implies 4(m− 2)s2t < ǫ, as 2 ln((m− 2)/(m− 1)) < 0.

Also

t >
ln((2 − ǫ)/4)

ln(1− 1/(m− 1)2)
which implies 4stbt < 2− ǫ.

Combining these inequalities yields

4(m− 2)s2t + 4stbt < 2 which implies 4(m− 2)s2t + 4stbt < 2 + (4m− 6)s4t.

Then,

4(m− 1)2t(m− 2)2t+1 + 4mt(m− 2)t(m− 1)2t

< 2(m− 1)4t +m(m− 1)(m − 2)4t − (m− 2)4t+1(m− 3).

6



From which we obtain

(m− 2)(m− 1)4t + (m− 2)4t+1(m− 3) + 4(m− 1)2t(m− 2)2t+1 + 4mt(m− 2)t(m− 1)2t

< m(m− 1)4t +m(m− 1)(m− 2)4t

as desired.

We now establish some notation that will be used for the remainder of the paper. Suppose
G = K2,l, the bipartition of G is {x1, x2}, {y1, . . . , yl}, and L is an m-assignment for G. For
each (a1, a2) ∈ L(x1)×L(x2), let C(a1,a2) be the set of proper L-colorings of G in which xi is
colored with ai for each i ∈ [2]. Notice P (G,L) =

∑

(a1,a2)∈L(x1)×L(x2)
|C(a1,a2)|.

Generally speaking, our strategy for proving Theorem 4 is inductive. We wish to show
that if there is a balanced m-assignment L for G = K2,4t that demonstrates Pℓ(G,m) <
P (G,m) (Lemma 8 will be the key to proving such an L exists) and t is sufficiently large,
then for any l ≥ 4t there is a balanced m-assignment L′ for G′ = K2,l that demonstrates
Pℓ(G

′,m) < P (G′,m). The next two lemmas make the inductive idea precise.

Lemma 10. Suppose G = K2,l and G′ = K2,l+1. If L is a balanced m-assignment for G with
m ≥ 3, P (G,L) < P (G,m), ǫ ∈ (0, 2) , and l satisfies

⌊

l

4

⌋

> max

{

ln(ǫ/(2(m − 2)))

2 ln((m− 2)/(m − 1))
,

ln((2− ǫ)/4)

ln(1− 1/(m− 1)2)

}

,

then there is a balanced m-assignment L′ for G′ such that P (G′, L′) < P (G′,m).

Proof. For simplicity, suppose the bipartitions of G and G′ are {x1, x2}, {y1, . . . , yl} and
{x1, x2}, {y1, . . . , yl+1} respectively. We know that P (G,L) < P (G,m) = m(m − 1)l +
m(m − 1)(m − 2)l. We also know that P (G′,m) = m(m − 1)l+1 +m(m − 1)(m − 2)l+1. As
such

P (G′,m)− P (G,m) = m(m− 1)l(m− 2) +m(m− 1)(m − 2)l(m− 3).

Let c(i,j) = |C(i,j)|, with regard to G. We know P (G,L) =
∑

(i,j)∈L(x1)×L(x2)
c(i,j). Without

loss of generality assume z1 ≤ zj for each j ∈ {2, 3, 4}. Let L′ be the m-assignment for G′

given by L′(v) = L(v) if v ∈ V (G) and L′(yl+1) = [m− 2] ∪ {m − 1,m + 1}. Clearly L′ is a
balanced m-assignment for G′.

With some simple counting, we see that:

P (G′, L′) = (m− 1)

m−2
∑

i=1

c(i,i) + (m− 2)
∑

(i,j)∈[m−2]2

i 6=j

c(i,j) + (m− 2)

m−2
∑

i=1

c(m−1,i)

+ (m− 1)
m−2
∑

i=1

c(m,i) + (m− 2)
m−2
∑

i=1

c(i,m+1) + (m− 1)
m−2
∑

i=1

c(i,m+2)

+ (m− 2)c(m−1,m+1) + (m− 1)[c(m−1,m+2) + c(m,m+1)] +mc(m,m+2)

= (m− 2)P (G,L) + 2c(m,m+2) + c(m−1,m+2) + c(m,m+1) +
m−2
∑

i=1

c(i,m+2)

7



+

m−2
∑

i=1

c(m,i) +

m−2
∑

i=1

c(i,i).

This implies P (G′, L′)−P (G,L) = (m−3)P (G,L)+J ≤ (m−3)[m(m−1)l +m(m−1)(m−
2)l] + J , where J = P (G′, L′)− (m− 2)P (G,L). We will show if

⌊

l

4

⌋

> max

{

ln(ǫ/(2(m − 2)))

2 ln((m− 2)/(m − 1))
,

ln((2− ǫ)/4)

ln(1− 1/(m− 1)2)

}

,

then J < m(m − 1)l. Notice, if J < m(m − 1)l we have P (G′, L′) − P (G,L) < P (G′,m) −
P (G,m) which implies P (G′, L′) < P (G′,m). Since z1 ≤ zj where j ∈ [4], z1 = ⌊l/4⌋. So,

z1 >
ln(ǫ/(2(m − 2)))

2 ln((m− 2)/(m− 1))
which implies 2(m− 2)

(

m− 2

m− 1

)2z1

< ǫ.

Since 2z1 ≤ z2 + z4, 2z1 ≤ z3 + z4, and (m− 2)/(m − 1) < 1, we have

(m− 2)

(

m− 2

m− 1

)z2+z4

+ (m− 2)

(

m− 2

m− 1

)z3+z4

< ǫ. (1)

Similarly,

z1 >
ln((2− ǫ)/4)

ln(1− 1/(m− 1)2)
which implies 4

(

m(m− 2)

(m− 1)2

)z1

< 2− ǫ.

Now, let b = 1 + 1/(m − 1) and s = 1 − 1/(m − 1). The most recent inequality becomes
4(bs)z1 < 2−ǫ, and since s < 1, 2(bs)z1 ≥ 2bz1sz4 . We will show that bz3sz2+bz2sz3 ≤ 2(bs)z1 .
Notice that z2 = z3 or max{z2, z3} = z1 + 1 and min{z2, z3} = z1.

Assume z2 = z3. Since bs < 1, bz3sz2 + bz2sz3 = 2(bs)z2 ≤ 2(bs)z1 . Now, without loss of
generality, assume z2 = z1 and z3 = z1 + 1. Then, bz3sz2 + bz2sz3 = (bs)z1(b + s) = 2(bs)z1 .
So, we have bz3sz2 + bz2sz3 ≤ 2(bs)z1 . As a result, 2bz1sz4 + bz3sz2 + bz2sz3 < 2− ǫ. This along
with (1) implies

2bz1sz4 + bz3sz2 + bz2sz3 + (m− 2)sz2+z4 + (m− 2)sz3+z4 < 2.

This implies

2mz1(m− 1)z2+z3(m− 2)z4 +mz3(m− 1)z1+z4(m− 2)z2 +mz2(m− 1)z1+z4(m− 2)z3

+ (m− 2)(m− 1)z1+z3(m− 2)z2+z4 + (m− 2)(m− 1)z1+z2(m− 2)z3+z4 < 2(m− 1)l

which implies

2mz1(m− 1)z2+z3(m− 2)z4 +mz3(m− 1)z1+z4(m− 2)z2 +mz2(m− 1)z1+z4(m− 2)z3

+ (m− 2)(m − 1)z1+z3(m− 2)z2+z4 + (m− 2)(m− 1)z1+z2(m− 2)z3+z4 + (m− 2)(m− 1)l

< m(m− 1)l.

Recall J = 2c(m,m+2) + c(m−1,m+2) + c(m,m+1) +
∑m−2

i=1 c(i,m+2) +
∑m−2

i=1 c(m,i) +
∑m−2

i=1 c(i,i).

Thus, J < m(m− 1)l.
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Lemma 11. Suppose G = K2,r and there is a balanced m-assignment L for G with m ≥ 3
such that P (G,L) < P (G,m). Suppose there is an ǫ ∈ (0, 2) such that r satisfies

⌊r

4

⌋

> max

{

ln(ǫ/(2(m − 2)))

2 ln((m− 2)/(m − 1))
,

ln((2− ǫ)/4)

ln(1− 1/(m− 1)2)

}

.

Then, for each l ≥ r, if G′ = K2,l, there is a balanced m-assignment L′ for G′ such that
P (G′, L′) < P (G′,m). Consequently, Pℓ(K2,l,m) < P (K2,l,m) (i.e., τ(K2,l) > m) whenever
l ≥ r.

Proof. The proof is by induction on l. When l = r the desired statement is true since
G′ = K2,r. Suppose l > r and the desired statement holds for all natural numbers greater
than r−1 and less than l. Since l−1 ≥ r, there is a balanced m-assignment, L, forH = K2,l−1

such that P (H,L) < P (H,m). Since there is an ǫ ∈ (0, 2) such that

⌊

l − 1

4

⌋

≥
⌊r

4

⌋

> max

{

ln(ǫ/(2(m − 2)))

2 ln((m− 2)/(m− 1))
,

ln((2− ǫ)/4)

ln(1− 1/(m − 1)2)

}

,

Lemma 10 implies there is a balanced m-assignment L′ for G′ = K2,l such that P (G′, L′) <
P (G′,m).

The next lemma follows immediately from Lemmas 11 and 9.

Lemma 12. If t ∈ N , m ≥ 3, and

t > max

{

ln(ǫ/(4(m − 2)))

2 ln((m− 2)/(m − 1))
,

ln((2 − ǫ)/4)

ln(1− 1/(m− 1)2)

}

for some ǫ ∈ (0, 2), then τ(K2,l) > m whenever l ≥ 4t.

Now, we are ready to prove Theorem 4.

Proof. With the intent of using Lemma 12, we will show

q > max

{

ln(ǫ/(4(m − 2)))

2 ln((m− 2)/(m− 1))
,

ln((2− ǫ)/4)

ln(1− 1/(m − 1)2)

}

when ǫ = 1/4, and m =
⌊

(q/ ln(16/7))1/2 + 1
⌋

. Notice l ≥ 16 implies q ≥ 4 and m ≥ 3.

Clearly, q ≥ (m− 1)2 ln(16/7).
Let f : (2,∞) → R and g : (2,∞) → R be given by f(x) = (x − 1) ln(16/7) and g(x) =

(1/2) ln(16(x− 2)). Suppose h : (2,∞) → R is given by h(x) = f(x)− g(x), we have h′(x) =
ln(16/7) − 1/(2(x − 2)). Notice h′(x) > 0 when x ≥ 3, and h(3) = 2 ln(16/7) − ln(16)/2 > 0.
So, f(x) > g(x) when x ≥ 3.

Now, since q ≥ (m − 1)f(m), q ≥ (m − 1)2 ln(16/7) > ((m − 1)/2) ln(16(m − 2)). Let
ǫ = 1/4. Using the fact that ln(1 + x) < x when x 6= 0 and x > −1, we have

(m− 1)2 ln(16/7) =
ln(7/16)

−1/(m− 1)2
>

ln((2− ǫ)/4)

ln(1− 1/(m − 1)2)
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and

(m− 1)
ln(16(m− 2))

2
=

ln(1/(16(m − 2)))

−2/(m− 1)
>

ln(ǫ/(4(m − 2)))

2 ln((m− 2)/(m− 1))
.

Since q = ⌊l/4⌋, l ≥ 4q. So Lemma 12 implies

τ(K2,l) >

⌊

(

q

ln(16/7)

)1/2

+ 1

⌋

.
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