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ABSTRACT 

Vizing’s Theorem states that any graph G has chromatic index either the 
maximum degree A ( G )  o r A ( G )  + 1 .  If G has 2s i- 1 points and A(G) = 2s, a 
well-known necessary condition for the chromatic index to equal 2s is that G 
have at most 2s’ lines. Hilton conjectured that this condition is also sufficient. 
We present a proof of that conjecture and a corollary that helps determine the 
chromatic index of some graphs with 2s points and maximum degree 2s - 2. 

1. INTRODUCTION 

A linecoloring of a graph is an assignment of colors to its lines such that no 
two adjacent lines are assigned the same color. The chromatic index of a 
graph G is the minimum number of colors used among all line-colorings of G 
and is denoted by x ’ (  G). Vizing [5] has shown that for any graph G, either 
x’(G)  = A(G) or x’(G)  = A(G) + 1 .  If x’(G)  = A(G), then G is in 
Class 1; otherwise G is in Class 2. In general, determining the class of a 
given graph G is very difficult. Howeter, if G contains a spanning star, that is, 
one point of G is adjacent to all others, the problem is more manageable. If G 
has 2s points, s a positive integer, then G is in Class 1 since it is a subgraph of 
K2, which can be line-colored using 2s - 1 colors (see Lemma 2 below). If 
G has 2s + 1 points, the problem is not quite as easy. Our object is to 
determine the chromatic index of such graphs. 

In the discussion below, we follow [4] for all terminology and notation 
unless stated otherwise; for basic results on line-colorings see [l]. In 
addition, a “coloring” of a graph will always mean a line-coloring, while an 
“n-coloring” will be a coloring that uses only n colors. Finally, once a graph 
G is colored, we will say that the point v of G “misses” color C (and, 
conversely, C misses v )  if no line assigned color C is incident with v. 
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2. PROOF OF HILTON'S CONJECTURE 

Let G be a graph with 2s -I- 1 points, where s is a positive integer, and 
suppose A(G) = 2s. Since any set of independent lines of G can have 
cardinality at most s, a necessary condition for G to be in Class 1 is that G 
have at most 2s * s  = 2s2 lines. Hilton [3] conjectured that this condition is 
also sufficient. We now present a proof of that conjecture. We will need the 
following standard results [ 11. 

Lemma 1. Every bipartite graph is in Class 1. I 

Lemma 2. The complete graph K,, is in Class 1 for n even and in Class 2 for 
n odd. I 

Definition. Let G be an arbitrary graph and let H = ( h , ,  . . .,hn) be a 
nonincreasing sequence of non-negative integers. Sequence H is said to be 
coloring-feasible for G if there exists an n-coloring of the lines of G for which 
the cardinalities of the resulting n color classes are precisely h l ,  . . .,h,. 

Lemma 3. [2] Let G be an arbitrary graph. If sequence H = ( h  I , . . . ,ho) is 
coloring-feasible for G, then so is any sequence H' = ( h i ,  . . . ,h,;) such that 

k - k  

Ah: .=  $ h i a n d f o r k = l , .  . . , n  - 1, , x h i 5  , x h i .  I 
i = I  i = I  1 = I  1 = I  

Remark. If G can be n-colored, then by Lemma 3 there is an n-coloring of G 
such that the cardinalities of any two color classes differ by at most one. Such 
a coloring is called an equitable coloring of G. 

Lemma 4. Let n be an odd integer. If K,, is colored with n colors, then each 
of the n colors misses exactly one point, and each point misses exactly one 
color. 

ProoJ: K,, has (;) = n(n - 1)/2 lines. In order to achieve an n- 

coloring, each color class must have cardinality ( n  - 1 ) / 2 ,  since it can be no 
more. So, each color misses exactly one point. Also, since each point has 
degree n - 1, each point misses exactly one color. I 

We are now able to prove the main result. Recall that a star is a complete 
bipartite graph Kl ,n. 

Theorem. Let G be a graph of odd order 2s + 1 which contains a spanning 
star. Then G is in Class 1 if and only if G has at most 2s' lines. 

Proof. Since A (G) = 2s, it is clear from the previous discussion that we 
need only show the sufficiency. Also, note that removing lines from a graph 
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cannot increase its chromatic index, so it suffices to show that x '( G) = 2s if 
G has exactly 2s' lines (or, equivalently, G is K2,+, with exactly s lines 
removed). To do so, we will write G as the direct sum (also called the sum) of 
two factors of G, each with chromatic index s. 

Case 1. s is odd. 

Let v ,  , . . .,vm be those points which have degree at least two in the 
complement G. Writing z( v i )  for the degree of v j  in c, since zK"=,( u j )  2 
2m , it follows that ( v ,  , . . .,urn) must be incident with at least m distinct lines 
of G. Also, since c contains only s lines, m I s. Therefore, we can augment 
{ v ,  , . . .,vrn} to a set L = { v , ,  . . . ,~, , , ,v,+~ , . . . ,v,+,} such that any line of 
G must be incident with a member of L.  Also, note that any point not in L has 
degree at most one in G. Next, let R be the set consisting of the s points of G 
not included in L ,  and denote this set by R = { w , . . . ,w, ) . 

Define a spanning bipartite subgraph B of G such that two points are 
adjacent in B if and only if they are adjacent in G and one of them is in L ,  the 
other in R. So, B is a subgraph ofK,+,,s and hence A(B) I s + 1. If we let J 
be the set of points of B with degree s + 1, then J C R. Without loss of 
generality, assume J = (w, ,w2,. . .,wj}. 

Next define a graph Z by 2 = G - E(B) .  Note that if we let X be the 
subgraph of G induced by L,  and Y the subgraph of G induced by R, then we 
merely have 2 = X U Y. Also, since 

(i) X C K,+, implies x ' (X) I s by Lemma 2, 
(ii) Y = K, implies x ' (  Y )  = s, and 
(iii) X and Y are disjoint 

we see that the lines of 2 can be colored with s colors. Thus G can be written 
as the direct sum of two graphs, B and 2, where x ' (B)  I s i- 1 (by Lemma 
1) a n d x ' ( 2 )  = s. Note that i f J  is empty, then x ' (B)  = s by Lemma 1, and 
we are done. So, suppose J is nonempty ( s o j  L 1). To complete the proof of 
Case 1, we will removej lines from B,  each one incident with a different 
point of J ,  and place them as the corresponding lines in 2, without increasing 
the chromatic index of Z .  

First note that since each line of G is incident with a point ofL,  the edges of 
G are given by E(K,+,,, - E(B))  U E(X), where the points OfK,,,,, and 
B are identified in the obvious way. Also, since d( w i )  I 1 for i = 1,. . . , s, 
the graph K,+, ,s - E ( B )  contains exactly s - j lines. Therefore x contains 
exactlyj lines. Since X ,  being a subgraph of K,+, , is s-colorable, it follows 
from Lemma 3 that the equitable sequence H = ( h  ,, . . .,As), where 

(s + 1)/2 

( s -  1) /2  i = s - j +  l . . . , s  

i =  1, ..., s - j  
hi = [ 

is coloring-feasible for X .  
Perform such a coloring ofX. Since j of the colors, call them C, , . . .,C,, are 
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assigned to only (s - 1)/2 lines each, we see that for any i, i = 1 , .  . . , 2 2 ,  the 
color Ci misses two point of X ,  call them uil and ui2. 

Next, color Y with the same s colors used in the coloring of X ,  so that Ci 
misses wi, i = 1,. . . , j .  This is possible by Lemma 4 and the symmetry of Y. 
Finally, add to 2 the lines uilwi, for i = 1,. . . , j ,  and color them C1,. . . ,Cj 
respectively; then remove the correspondingj lines from B (these lines are 
guaranteed to be in B since each of wl,. . .,wj had degree s 4- 1 in B and 
uil EL). Now we have A ( B )  = s, so that x ' ( B )  = s by Lemma 1, while 
x ' (2) is stills by the construction above. Therefore, since G is the direct sum 
of B and 2, we have x'(G) = 2s. 

Case 2. s is even. 

The basic idea of the proof of this case is essentially the same as that of 
Case 1. We will again write G as the direct sum of two graphs, each with 
chromatic index equal to s. We proceed by using induction on s. It is easily 
verfied that the theorem is true for small s. Suppose, then, that the theorem 
holds for graphs with 2i + 1 points, i = 1,  2 , .  . ., s - 1. We now require 
another lemma. 

Lemma 5. Let G' be an arbitrary graph with 2s 4- 1 points, s even, and 
exactly s lines. Then one of the following two conditions holds. 

(i) There exists a set ofs + 1 points of G', call it L, such that the subgraph 
of G' induced by L has at least s/2 lines, every line of G' is incident with a 
point of L, and every point of degree greater than one in G' is an element of 
L.  

(ii) There exists a set L of s + 1 points of G' such that the subgraph of G' 
induced by L has exactly s/2 lines, and any point with degree greater than 
one in G' is included in L.  

Proof of Lemma 5. Order the points of G' by nonincreasing degree and 
call them ul ,  ..., u2s+l. Note that x:Lil d ( u i )  = 2s .  We consider two 
possibilities. 

Case 5.1. q p l  d(ui)  2 s. 

Now ( u l  ,u2, . . is incident with at least s/2 distinct lines. Lett be the 
number of points of G' with degree greater than one, and let r = max ( t , s / 2 } .  
Let L = {ul  , . . . ,ur ) .  We will expand L so that it has s + 1 points satisfying 
(i). 

Note that r l  s and L is at the moment incident with at least r distinct 
lines. Add to L a set of s + 1 - r points so that any line of G' is incident with 
a point included in L. This is possible since L previously covered all but at 
most s - r lines. We can assume that it was possible to choose the newly 
added s + 1 - r points so that each has nonzero degree in G', for otherwise 
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the number of point of G’ with nonzero degree is less than s + 1, in which the 
case the set of points with nonzero degree could be arbitrarily expanded to 
satisfy (i). So, the sum of the degrees of the points ofL is at leasts + s/2 + 1. 
Therefore, since G’ has only s lines, the subgraph of G’ induced by the s + 1 
points in L has at least s/2 + 1 lines, and so property (i) is satisfied. 

Case 5.2. ai21 d(uJ < s. 

Here f o r j  > s / 2 ,  we have d ( u i )  I 1. Let L = ( u , ,  . . . , Now, 
since Z;L2, d(uJ < s, the subgraph of G’ induced by L has less thans/2 lines. 
We augment L one point at a time as follows. Given L,  let v‘ be a point of G’ 
not yet in L such that d(u ’ )  = 1 and the number of lines in the subgraph of 
G‘ induced by L U u’ is a maximum over all L U v, v not in L.  Then add v‘ to 
L .  

Continue this procedure until L induces exactly s/2 lines in G‘. This is 
possible since we add at most one line to the induced subgraph for each 
additional point placed in L,  and the algorithm assures that we get s/2 lines 
induced with I LI < s + 1, since X ~ 1 2 1 d ( u i )  1 s/2. 

Once L induces exactly s/2 lines in G’ we begin adding points to L without 
increasing the induced number of lines. We claim that we can continue this 
process until L contains s + 1 points. For, suppose we reach a stage where 
no point can be added to L without increasing the induced number of lines. 
Then each point of G’ not yet included in L has degree one, and no line of 
G’ can have both its incident points in V( G ’) - L .  Thus, there are at most 
s points of G‘ not yet included in L ,  so that L already includes at least s + 1 
elements. 

After augmenting L to s f 1 points as outlined above, we note that it 
satisfies the conditions of property (ii), so that the proof of Lemma 5 is 
complete. I 

We now return to the proof of Case 2 of the theorem. Recall that the graph 
G has 2s -t 1 points, s even, and G has exactly s lines. By Lemma 5 ,  we have 
two possibilities. 

Case 2.1. There is a set of s + 1 points, L = ( u l , .  . .,u, + I  1, such that the 
subgraph of induced by L has at least s/2 lines, every line of G is incident 
with a point of L,  and every point of G with degree greater than one in G is 
included in L.  

Let R be the set of all points of G not included in L .  Label 
R = {w, , . . . ,wT). Let X denote the subgraph of G induced by L ,  and Y the 
subgraph of G induced by R. As before, let B be the spanning bipartite 
subgraph of G whose lines are all v,w,., 1 I t I s + 1, 1 I r I s, such i5at 
v,w, is a line in G. Again write 2 forX U Y. Note that ~ ’ ( 2 )  = max ( x ’ ( X ) ,  
x’(  Y)). But Y =K,, x’(  Y) = s - 1 by Lemma 2; on the other hand, X is 
K, + minus at least s/2 lines, so by the induction hypothesis, x’ (X)  I s. 
Therefore. Z has chromatic index at most s. 
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Next, since B is bipartite and A ( B )  = s + 1, we see that x ’ ( B )  = s + 1 
by Lemma 1. Again, l e t j  be the number of points with degree s + 1 in B. By 
the construction of L,  we have s/2 I j I s, and these j points are all in the 
set R. Assume, without loss of generality, that these j points are the set 
J = { w , , . . . , wj)  . Once again we seek to remove j lines from B, one incident 
with each point of J ,  and replace the corresponding lines in Z without 
causing the chromatic index of Z to become greater than s. 

First note that X is merely K,+, minusj lines, since G is K2s+l 
minus s lines, Y is K,, and B is K,,,, minus s - j lines. So, by the induction 
hypothesis and Lemma 3, there is an equitable s-coloring of the lines of X 
with color-cardinality sequence H = ( h ,  , . . . ,h,) where hi = s / 2  for 
i I s - ( j  - s/2) and hi = s/2 - 1 otherwise. Let k = s - ( j  - s/2). 
Then the corresponding colors C1,. . .,Ck miss one point of X each, while the 
colors C,,, , . . .,C, each miss three points of X. 

Now consider the graph Y (which is merely%). Since the color-cardinality 
sequence (~12,. ..,s/2, 0) of length s is coloring-feasible for Y, so is the 
equitable sequence ( t l ,  . . .,t,) where ti = s/2 for i I s/2 and ti = s/2 - 1 
otherwise. Note that since we are coloring K, with s colors, each point of Y is 
missing exactly one color. Using the same s colors we used in coloring X, we 
are thus able to color Y so that 

0 points miss color Ci, for i = 1, .  . .,s/2, 

2 points miss color C;, for i = s/2 + 1,. . .,s. 

In addition, using the symmetry of K,, we can assume that in this coloring 
of Y, the points w1,w2 miss color Ck+,, w3 and w4 miss Ck+2, and so forth 
until w2j-s-l and w2j-s miss C,, while the other s - j points of J miss 
C,,2+, , . . ., C,, respectively. 

Finally, we add ,i lines to 2 by making each of wl,. . .,wj in Y adjacent to a 
point in X missing the same color missed by wi, and assigning each new line 
that color missing from its two incident points. Note that even though w1 and 
w2 miss the same color, we can join them to different points of X since C,,, 
misses three points in X .  A similar argument holds for w3 and w4, . . . , w ~ ~ - ~ - ,  
and w2j-s. So we have addedj lines to Z ,  but x ’ ( Z )  is still at most s. 

Now remove the corresponding j lines from B. Since each of wl,. . .,wj is 
incident with one of these lines, we now have A ( B )  = s ,  so that x ’ ( B )  = s. 

Therefore, since G is the direct sum of B and Z ,  we have x’( G) = 2s, so 
that G is in Class 1. 

Case 2.2. There exists a set of s -t 1 points L = ( u I  , . . . ,us+l )  such that the 
subgraph of G induced by L has exactly s /2  lines, and any point of G not in L 
has degree in c at most one. 

L e t R =  V ( G )  - L,andlabelthesepointssothatR = ( w , ,  ..., w,}.Let 
X denote the subgraph of G induced by L,  and let Y denote the subgraph of G 
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induced by R .  Let B be a spanning bipartite subgraph of G, where the lines of 
B are all v,w,., I 5 c I s + 1, 1 I r I s, such that v,w, is a line in G. Finally, 
let 2 be L U R. 

Note that A ( B )  = s + 1. Let j be the number of points with degree 
s + 1 in B. Then, by construction s/2 I: j I s, and B is Ks+l,s with s - j 
specific lines removed. Again, the points with degree s + 1 in B must all be 
contained in R.  Without loss of generality, assume they are wl,. . .,w,. 

By the induction hypothesis, x ' ( X )  = s. AIso, since Y is a subgraph of K, 
and s is even, x ' ( Y )  I s - 1. Therefore, x '( 2)  = s. Once again we seek to 
remove j lines from B, one each incident with wl , .  . .,w,, and add the 
corresponding lines to the graph Z without increasing the chromatic index of 
2. 

Since B is K,+l,, minus s - j lines and X is K,+, minus s/2 lines, Y must 
be K, minus j - s/2 lines. Since any point o f R  has degree at most one in G, 
the 0' - s/2) lines of are independent and thus are incident with exactly 
(2 j  - s) points of Y. Since all these points must then have degree s + 1 in B 
(again by construction, since no point ofR has degree greater than one in c), 
we can assume these points are wI , . . .,wZjPr. 

Since X is K,, , minus exactly s /2  lines, we can color X with s colors by the 
induction hypothesis. We do so, naming the colors C, , . . .,C,. Note that each 
color misses exactly one point in X, since each color must appear s/2 times. 

Next, take any equitable s-coloring of Y, using the same s colors as for X .  
Since this coloring is equitable,j of the colors are missing exactly 2 points of 
Y each, while the other s - j colors do not miss any points of Y.  Renaming 
the colors within Y ,  if necessary, we have the colors C, , . . .,C, missing two 
points of Y each. Recalling that the degree in Y of w, is s - 2 for i I 25' - s 
and s - 1 otherwise, we note that the points wl,. . . , w ~ , - ~  are each missing 
exactly 2 colors, while the points w ~ , - ~ + ~ ,  . . . ,w, each miss 1 color. There- 
fore, associate with each point w, of Y the set Wi consisting of its 1 or 2 
missing colors. By the reasoning above, the 2(s - j )  sets W2,-s+l,. . . ,W, 
each contain one element. Pair these off into s - j  pairs of one-element sets 
and take the union within the individual pairs, obtaining s - j sets of 
cardinality one or two. 

Suppose for the time being that each of the unions results in a set with 2 
elements. Combining these s - j sets with W , ,  . . .,W2,-r we g e t j  sets, each 
with two elements, and each element appearing in exactly two sets. Thus, the 
union of any k sets contains at least k distinct elements; therefore, by Hall's 
theorem [4, p. 5 31 there is a system of distinct representatives (SDR) for the 
sets. If the supposition above that the unions of the pairs of singleton sets 
always results in a set of cardinality two does not hold, an SDR can be 
obtained in a similar fashion-if any union results in a set of cardinality one, 
assign that set its element as a representative, and show the existence of an 
SDR for the two-element sets by the method above. 

We now have a system of distinct representatives, each representative 
being a color associated through its set with a point of Y missing that color. 
So we obtain a set o f j  distinct points, each missing a particular associated 
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color, no two associated colors the same, and wl,. . . , w2j-s are in this set o f j  
points. Thus, renaming the points in Y if necessary, we can assume the 
chosen points are wl.. . ,wj. 

To finish the proof, we now add to Z the lines from each of wl,. . . ,wi to the 
point of X missing the associated representative color, and assign the mutual 
missing color to that line. Then remove the lines corresponding to the j lines 
added to 2 from the graph B. 

Now A ( B )  = s, so that x ‘ ( B )  = s; however, we still have ~ ’ ( 2 )  = s. 
Therefore, since G is the direct sum of B and 2, we obtain x ’ (  G )  = 2s. I 

Corollary. Let G be a graph with 2s + 2 points and maximum degree 2s. If 
there is a point v of G such that G - u has exactly 2s’ lines, then G is in Class 
1. 

Proof. By the previous theorem, G - u  can be 2s-colored. In such a 
coloring of G - v ,  each color misses exactly one point. Then to each line vwj 
incident with v we can assign any color missing from wi in the 2s-coloring of 
G - v .  Since each color previously missed only one point of G - u,  no two 
lines incident with v are assigned the same color, so that we have obtained a 
2s-coloring of the graph G.  I 

A connected graph G is p-critical if G is in Class 2, A ( G )  = p ,  and G - e 
is in Class 1 for any edge e of G.  Much work has been done on critical graphs 
[ 11. Our main theorem gives an infinite family of such graphs since it can be 
restated as follows. 

Theorem. A graph of odd order 2s + 1 is 2s-critical if and only if it has 
exactly 2s’ + 1 lines. I 
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