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THE MAXIMUM NUMBER OF EDGES IN
A MINIMAL GRAPH OF DIAMETER 2

ZOLTAN FUREDL

Abstract. A graph G is a minimal graph of diameter 2 if it has diameter 2 and the deletion of any
edge increases its diameter. Here the following conjecture of Murty and Simon is proved for n > no. If §
has n vertices then it has at most {n?/4] edges. The only éxtremum is the complete bipartite graph.

1. PRELIMINARIES -

A graph G is a pair (V(G), E(G)) (or shortly (V, E)) where E (the edge-set) is a set
of pairs of V. (V is called vertez-set.) Let S be a subset of vertices. Then G(.S) denotes
the subgraph induced by S, and G(A, B) stands for the induced bipartite subgraph (for
AN B = 0). The neighborhood of a vertex v is denoted by Ng(v) {or sometimes briefly
by N(v)), i.e., N(v) = {u € V : {u,v} € E}. Note that v ¢ N(v). The size of N(v) is
called the degree of v, degg(v). The graph G has diameter 2 if it is not the complete graph
and for each two vertices u,v € V either {u,v} is an edge of G, or N(u) N N(v) # 0 (or
both). G is called a minimal graph of diameter 2 if its diameter is 2, and the deletion of
any of its edges spoils this property. Plesnik [P] observed that all known minimal graphs
of diameter 2 on n vertices have no more than n?/4 edges, and that the complete bipartite
graphs are minimal graphs of diameter 2. Independently, Simon and Murty (see in [CH])
stated these as the following conjecture:

CONJECTURE 1.1. If G is a minimal graph of diameter 2 on n vertices, then |E(G)] <
[n?/4|, with equality holding if and only if G is the complete bipartite graph K(|n/2], [n/2]).

Let G be a minimal graph of diameter 2 with n vertices. Plesnik [P] proved that
|E(G)| < 3n(n —1)/8. Caccetta and Haggkvist [CH] obtained |E(G)| < 0.27n%. Fan [F]
_proved affirmatively the first part of the Conjecture 1.1 for n < 24 and for n = 26. For
n > 25 he obtained '

n? - 16.2n 4 56

2
350 < 0.2532n".

B(Q)] < in? +

An incorrect proof was published [X] in 1984.
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THEOREM 1.2. Conjecture 1.1 is true for n > nyg.

The value of ng is explicitly computable, but the proof given here yields a vastly huge
number (a tower of 2’s of height about 1000). |

This paper is organized as follows. In Section 2 a lemma is proved about the number
of disjoint neighborhoods in an arbitrary graph. In Section 3 we prove that |E(G)| <
(1 + o(1))n*/4 holds for all n. The main idea of the proof is that we delete some o(n?)
edges of G such that the remaining graph, G, has only at most n?/4 edges. In this step we
utilize a result of Ruzsa and Szemerédi [RSz] about triangle-free, 3-uniform hypergraphs.
In Section 4 we put back the deleted edges. Then after a lengthy argument, where we
repeatedly use the structure of Gy, we conclude that the Conjecture is true for sufficiently
large n. In Section 5 we have some closing remarks on further open problems.

2. THE NUMBER OF DISJOINT NEIGHBORHOODS IN A GRAPH

Let F be an arbitrary graph on n vertices. Define the set of pairs with disjoint neigh-
borhoods as follows:

N disj F = {{u, v} : Ne(u) N Nx(v) = 0}.
LEMMA 2.1. |E(F)| + | disj F} £ |n2/2].

For the complete bipartite graph K(|n/2], [n/2]) equality holds in Lemma 2.1.

Proof. We use induction on n. The cases n == 1,2 are trivial. Suppose that the vertex
r has maximum degree, i.e., |[Nx{z)| = maxdegs(v). If Nx(z) = @, then the left hand
side in Lemma 2.1 is (}) < |n2/2]. So we may suppose that there exists a y € N(z). For
every z € N(z) \ {y} we have z € N(y) N N(z) # 0, hence

(2.1) deggisj 7(y) < n — degx(z),

and by definition

(2.2) degr(y) < degz(z).

Summing up (2.1) and (2.2) we have

(2.3) degy;s; #(y) + deg£(y) < n.

We distiguish between two subcases.

1) Suppose first that there exists a yo € N(z) such that the left hand side of (2.3) is
only at most n — 1. Let F' be the graph obtained from F by deleting the vertex yy and
the edges through yo. Obviously

(2.4) |E(F)| = |E(F") + degx(vo),




and it is easy to see that
(2.5) | disj F| < | disj F'| + degaig #(yo)-

Summing up (2.4), (2.5), then using the induction hypothesis for 7' and the assumption
for yg, we obtain that

|E(F)| + | disj F| < [(n = 1)*/2] + (n — 1) < [n*/2].

2) Suppose now that equality holds in (2.3) for every y € N(z). Then equality holds
in (2.1) for all y € N(z), which implies that KX(N(z), V(F) \ N(z)) is a subgraph of
disj F. Consequently, there is no edge of F in N(z). Equality holds in (2.2) as well, so
K(N(z),V(F)\N(z)) is a subgraph of F, too. Hence F = K(N(z), V(F)\N(z)). Finally,
for this graph the left hand side in Lemma 2.1 is at most 2[n?/4]. O

3. THE PROOF OF max |E(G)| = $(1 + o(1))n?

Let G denote a minimal graph of diameter 2 with n vertices. Define the set of critical
pairs as follows. {u,v} € crit G if there is a unique path of length at most 2 with endpoints
u and v. Call this unique path eritical path and denote it by P(u,v). There are two cases.

I) If P(u,v) consists of only a single edge then we call it type I II) If P(u,v) consists
of two edges then we call them type II It is possible that an edge of G has both types. But
the minimality of G ensures that every edge has at least one type, i.e., every edge belongs
to a critical path. For an edge E € E(G), denote m(E) the multiplicity of E, i.e. the
number of critical paths in which the edge E appears.

LEMMA 3.1. For any m > 0 the number of edges of G with multiplicity at least m is
at most n{n — 1)/m.

Proof. The total sum of multiplicities is at most twice the number of critical pairs, i.e.
it is at most 2(3). O

An upper bound on the number of light paths. Let m be an arbitrary positive
number. A critical path is called Kght if it has two edges, and both have multiplicity less
than m. We are going to give an upper bound (depending on n and m) for the number of
light paths. To do this we recall some definitions and results from the extremal hypergraph
theory. ' '

A 3-graph (or 3-uniform hypergraph) H is a pair (V(H), E(H)), where V(H) is a
finite set (the set of vertices), and E(H) is a set of 3-element subsets of V(H) (the set of
edges). H is called linear if every two distinct edges intersect in at most 1 element. Three
edges of a hypergraph form a triangle if they pairwise intersect, but no vertex is contained
in all the three of them. For example, a triangle in a linear 3-graph is isomorphic to
{{1,2,3},{3,4,5},{5,6,1}}. Denote by RSz(n) the largest number of edges in a triangle-

free, linear 3-graph over n vertices. Ruzsa and Szemerédi proved the following theorem.
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THEOREM 3.2 [RSz]. RSz(n) = o(n?).

(Actually, they also proved that RSz(n) is larger than n?~¢ for all positive ¢, but we
need the upper bound only.)

LEMMA 3.3. The number of light paths is less than 27m RSz(n).

Proof. Define the 3-graph H' with vertex-set V(G) as the set of 3-element sets deter-
mined by the light critical paths of G. Consider a light critical path P(u,v) = {{u, ¢}, {c,v}}.
The critical pair {u,v} does not appear in any other triples from !, so there are at most
2(m —1) further triples intersecting {u,¢,v} in 2 elements. Keeping the triple {u,¢,v} and
deleting those from H* which intersect it in 2 elements, then continuing this process until
no two triples left with intersection size 2 one obtain a linear hypergraph H? such that

(3.1) E(H?) C E(H*) and |E(H?)| > |E(H)|/(2m — 1).

A 3-graph H is called 3-partite, if one can partition its vertex-set VH)=ViuWh U,
such that for all edge E € E(H) and for all : (1 <: < 3) one has [ENV;| = 1. Erdés and
Kleitman proved the following simple but important fact.

"FacT 3.4 [EK]. Let H be an arbitrary r-graph. Then one can find an r-partite
subhypergraph H' of it such that .

B0 2 ZiEM)

Applying Fact 3.4 to H?, one obtain a 3-part1te, 11near hipergraph H® with parts
V1, V5, V3, such that

2
(32) B 2 2B,
Let P(u, v) be a critical path with edges {u,c} and {c,v}. The vertex c is called the center
of the triple {u,c,v}. Without loss of generality we may suppose that at least 1/3 of the

triples of H3 have its center in V5. This means, that there is a subhypergra.ph H* of H?
such that

(33) - B 2 SIEGE)]

and with the additional property that if {vi,v2,v3} is a triple of H* with v; € V; then
{v1,v3} is its critical pair.




PROPOSITION 3.5. H* is triangle-free.

Proof. Suppose on the contrary that three triples Py, P2, P; of H* form a triangle. Then
P,UP,UP; intersects V; (1 < i < 3) in at least 2 elements. As |P,UP,UP;| = 6, we obtain
that each V; contains exactly two vertices from the triangle. Let (PLUP,UP)NV; = {a;, bi}
and P, = {a1,a;,a3}. Without loss of generality we may suppose that P; intersects Py
in a;, i.e. Py = {by,a2,b3} and Py = {b1,b2,a3}. Then (by, ba,a3) and (b3, az, a3} are two
disjoint paths from b, to a3, wich contradicts the earlier constraint that {b;, a3} is a critical
pair. [J

The end of the proof of Lemma 3.3. Proposition 3.5 and Theorem 3.2 imply that
|E(H*)| < RSz(n), and (3.1)~(3.3) imply that |E(H!)| < 27m|E(H*)|. O

The asymptotic upper bound on |E(G)|. Let m = £1/n?/ RSz(n). Note that m =
m(n) tends to infinity according to Theorem 3.2. Delete all edges of § whose multiplicity
is at least m, and those edges which appear in a light critical path. Denote the obtained
graph by Gp. Lemma 3.1 and 3.3 imply the following upper bound on the number of deleted
edges.

2

(3.4) 1B(G)] < |B(Go)| + Z2=2) ”+Mmmmn<wwm+——

Deleting these edges from G we have distroyed all critical paths of lengh 2. In other words,
if (u,c,v) is a critical path in G (with critical pair {u,v}), then the neighborhoods of u
and v in Gy are disjoint. This implies that crit G C disj Gg, i.e.

(3.5) | erit G| < | disj Gol.

As the edge-set of G is the union of critical paths, and after the deletion every V{P(u,v))

contains at most one edge of Gy, we conclude that the number of edges in Gy is not more
than the number of critical pairs in G, i.e.

(3.6) |E(Go)| < |erit Gl.

The inequalities (3.5) and (3.6) in;ply together with Lemma 2.1 that
(37) B0}l < 5(1E(Go)| +]disi Gol) < m /4.
Finally, (3.7) and (3.4) give

2 2 2
COROLLARY 3.6. |B(G)] < 2 + 20 = (1+o(1)) O




4, THE PROOF OF THE MAIN THEOREM

We continue the proof started in the previous section. We are going to define e,...,e7
Which are all funcions of n. The notation &;4; = €(e:) means that €;4.; > ¢; and for every
positive € there exists a § such that £;,4; < ¢ if &; < §. In other words, for every ¢ one can
find a n(e) such that €1,...,&41 are all less than € whenever n > n(e). We will end up
with the constraint e7 < 1/500, from which all the ¢’s and ny can be explicitely calculated.

G and G; are close to each other. We have four graph, Gy C G and crit G C disj G,.

Suppose that |E(G)| > (— — £1)n?. First we formulate the fact that Gy and G are close to
each other. Choose ¢, = 281 and m 2> 2/eq, then (3.4) imply that

(4.1) IB(Go)| > (5 — ea)n®

Moreover |E(G) \ E(Go)| < e1n®. This implies that there exists a g5 = £(g; ), such that for
almost all vertices z (i.e. with at most e3n exceptions) the folowing is true
(4.2) degg,(z) — degg(z) < e3n.
Note that the left hand side here is always nonnegative. Denote the set of vertices which
fail in (4.2) by Aj. (Here we can choose ¢3 = 2,/£3.)

Similar statements are true for crit G and disj Gy. (3.7) and (4.1) implies that

(4.3) (% + e2)n? < |E(disiGo)| < (% +e3)n?

Then (3.5), (3.6) imply that the same is true for |E(crit G)|. Hence we have |disj Gy —

crit G| < 2e5n?, which immediately implies the following. There exists a &4 = e(¢3) and a
subset Ay D Aj; such that [A4] < g4n and

(4.4) degaisj g, (%) — degeyis (%) < €4m
holds for all z ¢ A4. Note that the left hand side of (4.4) is always nonnegative. (We can
choose €4 = 2¢3.) _

We claim that there exists an €5 = e(e4) and a set 45 O A4 such that |As| < esn and
the following is true for all vertex z ¢ As.
(4.5) degg, (z) + degaisj g, (2) > (1 —&5)n.

Indeed, suppose on the contrary that [As| > esn, where ¢5 = 2e4. Let B C As \ 44 be an
arbitrary subset of size b ~ e4n. Delete B. Then for the obtained graph G; \ B we can
apply (2.4) and (2.5). We have
|B(Go)| + | disj Go| < |E(Go \ B)| +disi(Go \ B)|+ Y _ degg, () + degyigj g, (z)
rel
< (n—10)%/24 b1 —es)n.

Here the right hand side is less than (1 — £)n* and the left hand side is greater than
2|E(Go)) (by (3.7)). This contradicts to (4.1) if £4 > 2,/€2, say €4 = 3,/22. O
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crit G has a giant bipartite subgraph. Let v be a vertex with maximum degree in
Go, i.e. d = degg,(v), and for all z we have degg (z) < d. Denote Ng,(v) by D, and its
complement V(G)\ D by C. By (4.1) we have

1
(46) d> §n — E3T.

No edge of disj Gy is contained in D, hence

(4.7) deggijg,(y) Sn—d

holds for all y € D. Moreover (4.5) (and the choice of D) imply that
(4.8) degqig g, (y) >n—d—esn

holds for all y € D\ As. (4.1) and the above inequality (4.7) imply

(g~ e2n? <IB(Go)] < | disiGol < 5(3 dotais 6,(2)) < 5((n ~ d)(m ~ 1) + d(n ~ D).
Hence we have that
(4.9) d < 0.8n,
holds if ¢; is sufficiently small. (¢2 < 0.08.) Consider the bipartite subgraph of disj Gy,

induced by C and D, i.e. E(disjGo(C,D)) = {{z,y} € E(disjGo) : ¢ € C,y € D}. By
(4.8) there is a € = £(e5) and a Ag D As, |As] < €sn such that for all z € C'\ Ag we have

(4.10) degdisj go(C,D)(m) > d— EgM.

In other words disjGo(C, D) is almost a complete bipartite graph. Then (4.4) implies the
following is true for all x € C \ A¢

(4.11) ‘ INcrjt g(&’:) ] Dl >d— 2e¢n,
and for all y € D\ As
(4'12) INcrit G(y) n C[ >n—d— 2eggn.

So crit G(C, D) is almost a complete bipartite graph , as well.

It is impossible that for some vertex u both
(4.13) |Ng, () N C| > 2e¢n and [Ng,(u) N D| > 2e4n
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hold. Suppose on the contrary, and let z be a vertex from Ng,(u) N C \ A¢. Then, by
(4.11), at least d — 2e4n edges of crit G adjacent to y go into D. So there exists an edge
{z,y} of critG with y € Ng,(u) N D. But then (z,u,y) is the critical path belonging to
the critical pair {z,y} which contradicts the definition of Gy. O

Suppose that £ < 0.01. Call a vertex u of type C (or D) if it has more than 2e¢n G,
neighbors in C' (in D, rep.). Eventually, a vertex with a small Gy degree has no type. But
as every Gy degree in D\ Ag is between d and d — £¢n we obtain that they have types.
Now we distinguish between two subcases. More exactly, we eliminate the first one and
then show that the second one leads to the fact that G is a complete bipartite graph.

1) Suppose first that there are at least 4e¢n vertices from D\ Ag with type D. Denote
the set of these vertices in D'\ As by Do. fy € D\ Do \ As (i.e. it has type C) then
|NG,(y) N Do} < 2e6n. So the number of G; edges between D \ Dy and Dy is at most
| D\ Do|2een + {Ag||Do|. On the other hand every point in y € Dy has at least

(4.14) (D] —3een

Go) neighbors in D (by (4.5), (4.7) and (4.13)). So y has at least [D\ Dg| ~ 3c4n neighbors
 in D'\ Dy. This way we have obtained that

[Do|(|D] — |Do| = 3esn) < (1D] ~ | Do|)2e6n + €61/ Dol
which implies that
(415) ]Dgl > d — Begn.

So in this case D induce almost a complete graph (in Gg). Consequently, Dy does not
contain an edge from disj Gy (and from crit G) and there is no edge of G in Dy of type I,

Consider the induced bipartite subgraph G(C \ 4¢, Dy).

PROPOSITION 4.1. Let z € C'\ Do. Then degg(, p,) < 1, i.e there is at most 1 edge
of G from z to Dy.

Proof. Suppose that there are 2 such edges of G {z,11} and {z,y2} with y;,y2 € Dy.
We have that |Do \ Ng(y1)U Ng(y2)| is at most 6egn (by (4.14)). So there exists a critical
edge {z,z} with z € Dy and (z,y1,2) and (z, 92, z) are two distinct paths in G. (Here we
used that 1

,Dgl —Begn > d — 1llegn > -é-n —12¢6n > 0,

according to (4.14) and (4.6) if we suppose that ¢ < 0.04.) But this contradicts to the
criticality of {z,z}. [

Let F be the set of those vertices in Dy, which are not connected to C'\ 4 in G. We
claim that

(4.16) |F| < 15¢4n.
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Proof. Let |F| = f and suppose that f > 15¢¢n. The number of Go edges in F 1s at
least

(4.17) % F(f ~ Beqn).

Each of these edges has type II. Now we can easily give an upper bound on the number
of critical pairs {z,y}, such that z ¢ Do U (C \ Ag) and y € F. This is less than 6e¢nf,
which is less than (4.17). Hence there exists an edge {y,z} of Go in F such that it is a
part of the critical path (z,y,z), with ¢ € C'\ As. However, in this case {z,z} is an edge
of G connecting C \ A¢ and F, a contradiction. [

Denote Dy \ F by D;. For every y € Dy, let z = z(y) be a vertex of C' \ Ag such
that {z,y} € E(G). By Proposition 4.1 these second endpoints are all distinct. Let
Cy ={z(y) : y € D1}. Then (4.16) and (4.15) imply that

(4.18) %+56n>n—d2 €| = | Dyl >d~—2056n>g—21€6n.
Let |D;| = di. Consider an arbitrary edge {:c,y} of G between C; and D;. By (4.12) we
have that y € D; has at least d; — 2¢¢n crit G neighbors in C;. If {z',y'} € E(G) and
{z',y} is a critical pair, then either {z,z'} or {y,y'} is not in E(G). This implies, that

(4.19) degg(c,y(x) + degg(p,)(¥) < di + 2e6n.

Summing up (4.19) for all edge of G connecting C; and D); we obtain that

(4.20) \E(G(C))| + |B(G(D))| < %dl(dl +2eqm) < -;-nz + %&,n?.

It is obvious that the number of edges of G not included in €y U D; is not more than

(4.21) (n —2d;)d < 42¢n?

: ) 1
Finally the sum of (4.20) and (4.21) is less than §n2 — een? if we suppose that e < 0.002.
This contradicts to (4.1). |

2) We may suppose that the number of vertices in D\ As with type D is less than
4zgn. Then for almost all but at most 4egn vertices y of D\ Ag the following holds. y has
at least n — d — 3egn crit G neighbors in C by (4.12) and it has at least n — d — g5n — 2g¢n
Go neighbors as well, by (4.5) and (4.13). So it has at least n — d — 6g¢n G neighbors in C
of type I. Then it is easy to see that a similar statement is true for the points of C, too.
That is , there exists a 67 = ¢(¢s) and a set A7 D As, |A7| < e7n such that every vertex
y € D\ Az has |C| — e7n G neighbors of type I in C and every vertex z € C'\ A7 has at
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least [D| — e7n G neighbors of type I in D. (Here we used that 0.4n < d < 0.8n. We can
define ¢7 as 10,/23.)

Consequently, D \ A7 does not contain any edge from &, neither from crit G. (Neither
from Gy and disj Gy, but from now on we won’t deal with Gy, we return to investigate
directly G.) Split A7 into three parts. Let Ag consist of those vertices of A; whose degree
is at most 0.4n. Let Cs (Dg) consists of those vertces of A7 \ As which have more than 0.2n
G neighbors in D\ A7 (in C'\ A7, resp.). As a type I edge I;evér appears in a triangle we
have that Cs N Dg = §. Furthermore, there is no edge of G neither from crit § connecting
Cs to C'\ A7 (Ds to D\ A, resp.). Hence if v € Cs then it has at least 0.4n neighbors in
D. Obviously, we have that the number of edges adjacent to As is

(4.22) < 0.4n|As|.

For brevity use the notations C' = C\ 47U Cs, ¢’ = |C'l and D' = D\ A, U D, d' = |D'].
Now we classify the edges of G in C' U D'.

(i) First of all we have the edges connecting C' and I'.
11/C) In this class we have those edges {u,v} which are contained in C' (so in Cs) and
g
are part of a critical path (u,v,w) with w € D',

(ii/D) The definition is analogous to (ii/C), i.e. {u,v} € E(G) belongs to this class 1f'
u,v € Dy and there is a critical path (u,v,w) with w € C".

(ii) The rest of the edges in C' U D',

Consider an edge {u,v} of type (iii). Say, it is included in Cs. As u and v have a lot
of common neighbors in D' the type of {u,v} is II. Then it is a part of a critical path
(u,v,w), and by definition, w ¢ D'. But w ¢ C', too, otherwise we could find several
common neighbors of u and w. So {u,v} belongs to a critical pair {u,w} with w € As.
The number of such critical pairs is bounded above by |A~|[As}, hence

(4.23) #(213) < |A7]|As| < ern|ds|.

For each edge {u,v} from the class (ii) one can associate a critical pair {u,w} such that
one of » and w lies in C' and the other lies in D’ but {u,w} is not an edge of G. The pair
{u,w} does not belong to another edge of type (ii) so in this way we have that the number
of edges in the class (ii) is not more than the number of non-edges between C' and D'. In
other words the number of edges of types (i) and (ii) is at most [C'|[D’|. This and (4.22)
and (4.23) give

(4.24) IE(G)| <cdd' +(n— —d')(04n + e7n).

Here the right hand side is at most |n?/4], as desired. O
Equality can hold in (4.24) only if As = @, and then there is no edge of type (iii) (by
(4.23)). Moreover every non-edge between C' and D' must be a critical pair. There is no
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edge between C'\Cs and Cj (and between D'\ Dg and Ds), so there is no critical pair which
is non-edge outside Cs U Dg. So, K(C'\ Cs, D'\ Dg) is a subgraph of G, and all of its edges
have type I. Suppose that |E(G(Cs))| > |E(G(Ds))|, and let P = {v € Cs : degg(c,) > 0},
p = |P|. Then

(4.25) |B(G(Cs))| + |E(G(Ds )l < p(p — 1) < ernp.

If z € P then there are at least n/4 edges {z,y}, y € D' of type II. Indeed, there is an
edge {z,z} contained in P, and then all the edges from = to D' N N(z) N N(z) have type
II. So the number of edges of type II between Cs and D' is at least pn/4. Each such an
edge is a part of a critical path of lenght two, with a critical pair between C' and D'. So
the number of non-edges between C’ and D' is much more than (4.25), if p > 0. Thus
|E(G)| 2 |n*/4] implies that p = 0. That is, G is a bipartite graph, and then a complete
bipartite one. [J ‘

'5. REMARKS, PROBLEMS

We can construct a large non-bipartite minimal graph M of diameter 2 as follows. Let
ViM)=XUY U {z} where | X|=|(n-1)],|Y|=[(n—1)],and let z € X,y €Y. The
graph M obtained from the complete bipartite graph KX(X,Y") by deleting the edge {z,y}
and adding the edges {z, 2z} and {z,y}. With a little more effort the above proof gives the
following slightly stronger statement.

THEOREM 5.1. Suppose that G is a minimal graph of diameter 2 over n elements,
n > ng. If |[E(G)| = [(n — 1)2/4] + 1, then either G is a complete bipartite graph, or it is
isomorphic to M. O

Let now G be an arbitrary graph with n vertices. Let k be an integer and define disj;, §
as follows. The pair {z,y} belongs to disj, G if they have at most k common neighbors,
t.e. [IN(z) N N(y)| < k. In this way disjG defined above is just disjo G. If we use directly
the Szemerédi lemma instead of Theorem 3.2, then we can obtain the following statement,
which was the essence of the proof presénted in the Section 3. '

THEOREM 5.2. Let k be a fixed integer. - Then from any graph ¢ over n vertices one
can remove o{(n?) edges such that the following holds. If z and y had at most k common

neighbors in G then in the obtained new graph Gy they have no common neighbor anymore.
Le., disj, G C disjGi. O

The following conjecture generalizes our main theorem.

CONJECTURE 5.3. Let G be a graph over n vertices and suppose that every two vertex
is connected by at least k paths of length at most 2. Suppose further that G is. minimal
with respect this property. Then |E(G)| < (k—1D)(n—k+ 1)+ [(n -k +1)%/4].
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Here the extremal graph would be complete 3-colored graph with parts of sizes [(n —
k+1)/2], [(n~k+1)/2] and k~1. Caccetta and Higgkvist raised the following conjectures
which also generalize Conjecture 1.1.

CONJECTURE 5.4 [CH]. If G is a minimal graph of diameter 2, then d' < [V (G)|,
where d' denotes the average edge degree in G, i.e.

d= ) (deg(a)+deg(y))= Y (deg(c))?/|EQ)I-

{z,3}€E(Q) zeV(G)

. CONIECTURE 5.5 [CH). If G is a minimal graph -of diameter k, with k > 2, then
1E(G)] < (1 + o(1))n?/2(k + 1)2. | |

The conjectured extremal graph consists of two complete bipartite graphs K(Aq, A1)
and K(Ag—1,A4r) where |4;] ~ n/(k + 1), and |4;] = |Ax—1], and |4,]| disjoint path of
length k& — 2 connecting the points of 4; to Ar_;. The method presented in this paper
does not seem to be applicable in proving Conjecture 5.4, but maybe useful to attack the
last one.. To find further problems (and results) about diameter eritical graphs one can
see, e.g., [Chu] or [B]. ;
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