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We show that each partial order :S of height 2 can be represented 
by spheres in Euclidean space, where inclusion represents :S. If 
each element has at most k elements under it, we can do this in 
2k - I-dimensional space. This extends a result (and a method) of 
Scheinerman for the case k = 2. © 1993 John Wiley & Sons, Inc. 

A partial order :S on a set P is called a sphere order (in dimension n) if for 
each u E P there exists a ball Bu in /R" so that for all u, v E P one has 
u < v if and only if Bu C Bv. Sphere orders were introduced by Brightwell 
and Winkler [1], who posed the intriguing question of whether each partially 
order is a sphere order. They conjectured that the answer is negative. 

In [3], Scheinerman showed that each partial order on the vertices and 
edges of a graph (ordered by inclusion) is a sphere order in dimension 3. 
Here we extend Scheinerman's result (and his construction) to hypergraphs: 

Theorem. For any hypergraph H = (V, E), the partial order on V U E, 
given by 

x < y <=> x E V, y E E, x E y, (1) 

is a sphere order in dimension 2k - 1, where k is the maximum edge size 
of H. 

Since the reverse order to a sphere order is a sphere order again, in the 
same dimension, we could equally take for k the maximum degree of H. 

Another formulation of the theorem is that each partial order P 
of height 2 is a sphere order in dimension 2k - 1, where k : = 

maxuEP l{v E Plv < u}I. 
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The theorem follows directly from the following lemma (extending the 
lemma in [3]). Let C be the following curve in IR2k: 

C := {(I,x,x2,x3, ••. ,x2k- 1)lx E IR}. (2) 

Lemma. For each subset A of C with IAI = k there exists a ball B with 
B n C=A. 

Proof. Let A consist of the points 

(1 2 3 2k-l) ,ai,a;,ai, ... ,ai 

on C, for i = l, ... , k. Let the polynomials p(x) and q(x) be given by 

p(x) := 1 + x2 + x4 + ... + x4k-2, 

k 

q(x) := n (x - a;)2 . 

i==l 

(3) 

(4) 

Since q(x) has degree 2k, there exists a polynomial f(x) so that the 
polynomial 

r(x) := p(x) - f(x) · q(x) (5) 

has degree at most 2k - 1 (as we can reduce p(x) modulo q(x) to a 
polynomial of degree at most 2k - 1 ). 

Write r(x) = ro + r1x + r2x2 + · · · + r2k_ 1x 2k-l, and let g := ~ (ro, 
ri. r1, .. ., r2k-1). Then the ball B(g, llgll) with center g and radius llgll 
intersects C exactly in the set A. This can be seen as follows. 

Let z = (I,x,x2 , • •• ,x2k-I) be a point on C. Then 

Ilg - zll2 = llgll2 + llzll2 - 2gr z = llgll2 + p(x) - r(x) 

= llgll2 + f(x) · q(x). (6) 

Now the polynomial f(x) has no real zeros, since the polynomial h(x) := 
f(x) · q(x) has at most 2k real zeros (counting multiplicities). This follows 
from the fact that the 2kth derivative h(2kl(x) of h(x) has no real zeros, as 
it satisfies 

h(2kl(x) = (2k)! + (2k + 2)! x2 + (2k + 4)! x4 
2! 4! 

+ (4k - 2)! 2k-2 
... (2k - 2)!x (7) 

(since h(x) = p(x) - r(x) = ... + x2k + ... + x4k-4 + x4k-2). 
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As the main coefficient of f(x) is 1, we know that f(x) > 0 for all x E 11\t 
So Ilg - zll 2 = llgll2 if z EA and Ilg - zll 2 > llgll2 if z fl. A. I 

The theorem now follows by first observing that we may assume that 
each edge of H contains exactly k vertices (by adding dummy vertices). 
We take IV I arbitrary points on C, to be considered as balls of radius 0, 
representing the vertices of H. For each edge e of H we take the ball 
intersecting C exactly in the points representing the vertices in e. Since 
C is in a 2k - I -dimensional subspace of IR, we obtain a sphere order in 
dimension 2k - 1. 

We remark that our construction is related to the construction of cyclic 
polytopes (Gale [2]). 

Now one may ask: 

ls 2k - 1 best possible in the theorem (for fixed k)? (8) 

We do not know the answer to this question. However, if the balls associated 
with the vertices of the hypergraph have radius 0 (as is the case in our 
construction above) then 2k - 1 is best possible, as follows from the 
following proposition. 

Proposition. There is no subset V of 1R2k-2 such that IVI = 2k + 1 and 
such that for each subset X of V with IXI = k there exists a ball Bx 
satisfying Bx n V = X. 

Proof. Suppose such a set V exists. Then for any two disjoint subsets 
X, Y, of V with IXI = IYI = k one has that conv X n conv Y = 0, since 
conv(Bx \ Br) n conv(By \Bx) = 0. 

Let V = {vi. ... , v2k+ 1}. Let W be the linear subspace of IR 2k+ 1 consisting 
of all vectors w = (wi. ... , w2k+ 1) satisfying 

W1 V1 + · · · + Wzk+IVZk+I = 0, 

W1 + · · · + Wzk+I = 0 · 

Note that dim W =::: 2. 

(9) 

For any vector w = (w1, ••. , w2k+ 1), let p+(w) be the number of i E 
{1, ... ,2k + 1} satisfying w; > 0, and let p-(w) be the number of i E 
{1, ... , 2k + 1} satisfying w; < 0. Now W contains a nonzero vector w 
satisfying p + ( w) :::;; k and P- ( w) :::;; k. This can be seen as follows. 

LetW+ := {v E Wlp+(v) =::: k + l}andW- := {v E Wlp-(v) =::: k + 
1}. So W + and W- are two disjoint open subsets of W\{O}. Moreover, W + =F 
\W\{O} and w_ =F W\{O}, since w_ = -W+. Hence by the connectedness 
of W\{O}, W\{O} =F W+ U W-, implying that W\{O} contains a vector w 
satisfying p+(w):::;; k and p-(w) :5 k. 
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We may assume that w = (wi. ... , W2k+1) satisfies wi. ... , wk ~ 0, 
wk+i, ... , w 2k :5 0, W2H1 = 0 and w1 + · · · + wk = 1. Hence (-wk+il + 
· · · + (-w2k) = 1. In particular, both conv{vi. ... vk} and conv{vk+i. .. . , 
v2k} contain the vector 

This contradicts the fact that conv{v1, ••• vk} n conv{vk+i. ... , v2k} = 0. 
I 

Thus if IVI = 2k + 1 and E consists of all subsets of V of size k, then 
2k - 1 is best possible in the theorem if each ball associated with a vertex 
in V has radius 0. 
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