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The superjump vJas introduced by Gandy [3] as a type 3 func­

tional that essentially is a uniform jump operator on the type-two 

functioEals. Harrington [5] gave a description of the sets recur­

sive in the super jump 3g .. He proved 

a Let pF be the ordinal for recursion in 3s, 2F, i.e. 

F 3g F F 
p ~ w1 ' Then p is the least ordinal recursively Mahlo 

in F. 

]2. LFF n {P(w) = 1-sc(3s, 2F) ( = those subsets of w recursive 
p 

in 3g and F) 

To do this, he defined a notion of strong recursion in the superjump. 

In his Ph.D. Thesis this notion is extended to higher type variants 

of the superjump, k+3g. Harrington's strong recursion theory in 

k+3s, k+2F will have the same total recursive functions, but fewer 

partial recursive functions. The computation theory will have strong 

properties such as stage comparison and Grilliot selection. 

In Normann [11] we defined a recursion theory on sets called 

E-recursion. We proved that there are deep connections between 

E-recursion and Kleene-recursion in normal functionals.. In this 

paper we will add a natural scheme of the jump of a relation to the 
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schemes of E-recursion. We will call the new theory 8-recursion. 

There will be a similarly deep connection between S-recursion and 

Harrington's strong recursion in the Superjump, as between E-recur­

sion and Kleene-theory in normal functionalso We will leave this 

connection unproved, but prove Harrington's results for 8-recursion .. 

Some of the arguments are adjustments of ideas from [6], particularly 

in Theorems 1 and 2 and lemma 3o 

We will use 8-recursion to give some characterizations of the 

envelopes and sections connected to strong recursion ~ the superjump. 

In the sequel we will assume familiarity with set-recursion and 

the companion theory (theory of codes for sets) for E-recursion. 

We will concentrate on the special arguments needed for lifting re-

sults from E-recursion to 8-recursion .. 

2.. E-recursion and 8-recursion 

E-recursion as defined in Normann [11] is obtained by adding 

indices to the schemes for rudimentary functions, and then a scheme 

of reflecticn (diagonalization) .. For a relation R and a set x, 

we defined 

Spec(R;x) = (M (R;x)) c f · · t y y _x, y ~n~ e 

where My(R;x) = {(e}E(R)(x,y1 , ..... ,yn); eEw, {y1 , ••• ,yn}~y} 
([e}E(R) is the partial function in E(R)-recursion theory with 

index e • We give [e}S(R) the same meaning for S(R)-recursion, 

(e }K will mean the Kleene-recursi ve function with index e ) • 

If we let I = type(k) , a E I and F a functional of type k+2 

we prove that 

a For A~ I, A is Kleene-recursive in if and 

only if A E Ma(F;I) 
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b For A ,::;: I , A is Kleene-semirecursive in k+2F, a, k+2E if and 

only if A is ~;-definable over 8pec(F) (if and only if for 

some ~0 -formula ~ with parameters from Ma(F;I) 

b E A <==> Jx E I'I {a, b } ( F ; I ) ~ ( x, b )) • 

The superjump k+38 is defined as the functional 

k 3 = .r 0 
+ 8(e,F) l 

1 

if {e}(F) has a value ([e}(F)t) 

if (e}(F) does not have a value ([e}(F)t) 

k+38 is not a normal functional. Recursion in k+3& does not 

satisfy stage comparison and that a subset of I is recursive in 

k+38 if and only if both it and it's complement are semirecursive. 

The reason for this misbehaviour seems to be that k+38(e,F) is de­

fined only for total F, while we need information only from a part 

of F to compute k+38(e,F). In E-recursion there are two natural 

candidates for the j1:.mp, either a complete ~*-definable set, or the 

spectrum itself. In defining 8-recursion we choose the latter. 

Definition. 

Define 8-recursion from E-recursion by adding the following 

scheme: 

{e}(x,y) = 8pec(Az[e1}(x,y,z);x) if AZ{e1}(x,y,z) is total on 

it' s spectrum over x e = (8, e1 ,n) 

As usual, we identify a function with its graph. 8-recursion is, 

like E-recursion, relativezed to arbitrary relations. 

Remarko It is essential that we require that Az[e1 }(x,y,z) is total 

on its spectrum. If we remove that requirement, we may let e1 be 

the index for diagonalization (e1 }(e2 ~a) = [e2}(a) o Then 

8pec(A(e2 ,a){e1 }(e2 ,a);I) would have as an element 

{(e2 ,a): {e2}(a) ~0} o But that set cannot be recursive. 
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On the other hand, there is no justification for requiring that 

AZ{e1}(x,y,z) is defined outside its spectrum., 

Inspecting the inductive definition of the S(R)-computations 

we see that 

and 

and 

{(8,e1 ,n)}8(R)(x,y) ~ (M ) f i~f 
y yE X 

Vz EM(= U f My){e1 }S(R)(x,y,z)~ 
yEx 

E(Fe ) 
Vy E xf ( z E ~ => :Je E w ( z = { e} 1 ( y, x) 

each ~ is rudimentary closed relative to 

(M ) f f= 2:* (F )-collection 
Y y Ex e1 

where xf means the set of finite subsets of }S(R)( _. 
x, F = AZ {e1 X,J,z)'P 

e1 

The length of this computation will then naturally be 

ll .... l\S(R) Sup {a., ( A1 ,x,y, z) ; a. E Spec(F ;x) and z E Spec(F ;x)} • 
e1 e1 

Defini tiQ£. Let R be a relation, x e set, y E xf 

}S(R) } } SMY(R;x) = {{e (y1 , .. u,yn,x); {y1 ,.0a,yn ~y, eEw 

S-Spec(R;x) = (SM (R;x)) f 
Y yEx 

3o S-recursion and the Superjumpo 

In this section we will let I = tp(k) for some fixed k ~ 0 • 

We also let F be a functio:nal of type k+2 .. Before we can prove 

our main reduction theorem for S(F)-recursion, we need some machinery 

for companion-theory .. 
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Definition.. Let A .S I xI • Assume that A is a transitive relatione 

Define "' by a~ b if A(a,b) and A(b,a)" We say that A is a 

code for a set x if A/"' is isomorphic to (TC(x), E) • Suitable 

references to the theory of codes will be Sacks [12] and [13], and 

Normann [10] and [11]. 

Lemma 1. The relation '·A is a code 1 is recursive in k+3s o 

~oof. The relation 1 A is a code 1 may be defined by some quanti­

fiers over I + ' A is a well-founded relation 1 • Since k+2E is 

recursive in k+3s , the lemma is triv1al for k > 0. 

For k = 0: The relation ' A is well founded 1 is semirecursi ve 

in 2E , and since 3s is a jump-operator it will be recursive in 3s o 

Lemma 2. There is a function f partially recursive in k+3s F 
' 

such that if A1 , ••• ,An are codes for sets x1 , ..... ,xn and 

(e}S(F)(x1 ,o •• ,xn)t, then A.a,bf (e,(A1 , ••• ,An),a,b) is a total 

characteristic function for a code for (e}S(F)(x1 ,.o .. ,xn). 

If A1 , " .. ",An are codes for x1 ,". o ,xn and (e }S(F) (x1 , • ., o ,xn)t , 

then 

f( e, (A1 , .... ,An), a, b) will not b0 defined for any a, b .. 

Proof.. We use the recursion-theorem, and define f by induction on 

the length of the computation (e }S(F) (x1 ," ... ,xn) • There will be 

8 cases, according to the type of the index e " The proof is by 

standard manipulations on codes (see Sacks [13] or Normann [10]) in 

all cases except scheme 8 : 

(e} (x,y) = Spec( A.z (e1 }(x,y, z) ;x) • 

As an induction hypothesis, assume that f is defined and recursive 

and acts as it shall for all shorter computations. 
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.... 
Let codes for x,y be given. What we will do will be uniformly 

recursive in these codes. 

Let Fe = A.z (e"'l }(x,y, z) o 

1 

The idea is to define another function G whi~h is total, recursive 

in k+3s F 
' 

apply k+3s 

and the codes and 'equivalent' to Fe. 
1 

on G to define Spec(G) = Spec(F ) • 
e1 

Then we can 

Claim "1 o Let A be a code for a computation tree T for some 

(e}F(R)(y,x)-computation for y E xf. We may then recursively 

decide if we may replace R by F 
e.., 

in the computation or not. 

Proof. We here assume that Fe.., is total on Spec(F ) • e.., If F 
e1 

diverges on some critical argument in T ' our procedure will diverge. 

We will use the recursion theorem to define the following recursive 

function p on A • 

Let a E field A .. we will let p(a) = 1 if we in the computation 

coded by a have used a part of R different from F • Otherwise 
e1 

we will let p(a) = 0 • 

p is precisely defnined this way: 

If a codes a computation cr and for eome code b for a subcomputa-

tion ,. of cr , p (b) = 1 , then p (a) = 1 .. 

IT for all codes b for sub computations 'T of cr , p (b) = 0 , and 

cr is not an application of R, let p(a) = 1 • (This takes care of 

the initial computation.) 

If for all codes b for sub computations ,. of cr ' p(b) = 0 and 

(J is an application of R, we must check if this application actually 

is an application of Fe • We may assume as an induction-hypothesis 
1 

that all applications of R in subcomputations of cr actually are 

applications of Fe • Let the application be z1 n R • We get a 
1 
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code for z1 and z1 E Spec(Fe1:x). 

dom(z1 ) = [y 1 ; :3y2(y1 ,y2 ) E z1 } • Using 

So F is total on 
e1 

f , the code for z1 , and 

standard manipulations on codes, we may compute a code for z1 n Fe • 
1 

From T we have a code for z1 n R. 

If these two codes code the same set, let p (a) = 0 , otherwise, 

let p(a) = 1 0 

Now A codes a computation in F 
e1 

if p is constant 0 on A. 

0 Cle.im 1 o 

Now, define 

G(A,B) 

if A is a code for a com:putation-trAe in 
E(F e )-recursion leading from x and some y E xf 

1 
to a set z, and B is a code for F (z) • 

e1 
otherwise 

Claim 2o G is recursive in k+3s F 
' 

and the codes. 

Proof. We use the same assumptions as in claim 1. If they do not 

hold, our procedure for computing G will give a partial functional. 

We will describe an algorithm for computing G. 

Let A, B be given. First decide of both A and B are codes.. If 

they are not, let G(A,B) = 1 o Assume they are codes. 

We have already noticed that well-foundedness is recursive in 

k+3s , so we may recursively decide if A is the code of a relati v­

ized computation-tree or not.. If not, let G(A,B) = 1. If it is, 

we may by claim 1 decide if A is coding a tree for a computation 

relative to Fe • If not, let G(A,B) = 1. 
1 

If it is, we get a 

computation tree T computing a set z in Spec(F e ;x) , and we 
1 

for F ( z) • 
e1 

If B and from A effectively compute a code C 

code the same set, we let G(A ,B) = 0 • Otherwise we let G(A,B) 

This ends the proof of claim 2. 

may 

c 

= 1. 
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... ... 
Now, let A,B be the codes for x,y resp. Let C be a com-

... 
plete r. e. - G,A,B subset of I D Using k+3s we see that C will 

be recursive in k+3s,F uniformly in A,B. From c, G we may ef-
.... 

fectively construct a code for Spec(G,A,B;I) • 
... 

x E Spec(G,A,B;I) since A is a code for x .. 
... 

Let (M.a) a E I = Spec(G,A,B;I) " For z E Spec(F ;x) 
e1 

the following 

definitions of the relation 1 F ( z) = u 1 are valid 
e1 

' F e1 ( z) = u ' ~ 'V b ( z, u E M.b => :30 ,B E I\ (B is a code for u , 

C is a code for a computation from x and some 

y E xf leading to z , and G(G,B) = 0) 

<=:-> 'V b ( z, u E 1'\ => 'V C ,B E 1'\ (B is a code for u , 

C is a code for a computation from x and some 

y E xf leading to z => G(C,B) = 0) 

This shows that Spec(F ;x) will be w- L:* (G)-definable over 
e'l ... 

Spec ( G, A , B ; I ) • But then we may extract a code for Spec(Fe;x) 
.... 

from A and Spec(G,A,B;I) • 

By the effectiveness of these arguments we may use the recursion 

theorem to prove lemma 2. 

Theorem 1. Let I = tp(k) , F a functional of type k+2 o 

a The relation 

{(e,a): {e}S(F)(a,I)JJ 

is semirecursive in k+3s , F .. 

b If a subset A of I is S(F)-recursive in aEI, then A 

is recursive in k+3 S,F,a. 

c If a subset A of I is S(F)-semirecursive in a E I, then 

A is semirecursive in k+3 S,F,a. 

These are all immediate consequences of lemma 2o 
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Our next result will show that the recursive sets will be the 

same in the two theories. This will not hold for semirecursion. 

Theorem 2. There is a primitive recursive function p such that if 

K k+3 ~ ~ 
[e} (F, S,f,a) ~ k 

then 

Proof. We will use the recursion theorem for primitive recursion. 

In all cases except when we apply k+3s we will just imitate what 

happens in Kleene-re~ursion. When the Kleene computation seems to 

apply k+38 , we will in the S(F)-theory forget the require~ents of 

totality and thereby intro~uce some more computations. 

So we regard the case 

k+3 ~ - k+3 k+3 -[e}(F, 8,f,a) ~ S(Af[e1 }(F, 8,f,f,a)) 

Let p(e) be an index for the following 8(F)-computation: 

Find 8pec(Af [p(e1 )) 8 (F) (f,f,I)) 

and by inspection compute k+38(G) for any total extension G of 

(All computation-trees for G will be in 

8(F) -Spec(G;I) = Spec(Af[p(e1 )) (f,f,I))) 

This ends the proof of theorem 2. 

We have now verified that the concepts of total recursion are 

the same for Kleene-recursion in k+38 and 8-recursion over type(k)o 

Our next task is to show that semi-recursion in 8-recursion behaves 

better than semirecursion in k+38~ This is shown by proving that 

8-recursion satisfies stage comparison. 
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Lemma 3. Let R be a relation. Uniformly in R there is an index 

e such that for any pair cr, T of computation-tuples 

if II cri!S(R) < I! T II S(R) (where II T II S(R) = ro if Tt) 

if IITI!S(R) < 1!crJl 8 (R) and II'T'IIS(R) < ro .. 

Proof. We will drop the superscript S(R) • We define e by use 

of the recursion theorem. The definition is by 64 cases according 

to the schemes used in cr and T • ThG 49 cases where there is no 

use of scheme 8 are treated as in E-recursion. (Normann [11]) 

Moreover, all cases where one of the computations is an initial one, 

are trivial. We give case 8.8, which is the most complicated. 

Let 
~ . ~ 

cr: (e1 J(x,y).:::. Spec(A.y(e2}(y,x,y);x) 

T: (d1 }(u;w).::: Spec(A.w(d2 }(w,u,~);u) 

We will assume that either cr~ or T ~ , and as an induction hypo­

thesis that the lemma is established for any subcomputation of a or 

T • It will be clear from the definition that if both a and 'T' 

diverge, then the described computation on a and 'T' will diverge. 

We will use the assumptions to define another function G which 

will be total, and such that Spec(G;x U u U (e) U (u}) will contain 

sufficient information to decide if II a II < II rll or II rll _::: II a II .. G 

will be defined just on the ordinals, which is no real restriction. 

We will let G(a) describe what we, with the help of stage comparison 

so far, can say about the part of the two spectra that is constructed 

at level a • 

For the purpose of this definition, let 

(X,Y,U,Z) = {O}><XU {1}xYU {2}xUU {3)xZ 



- 11 -

Definition of G.. Each G(a) will be a tuple (~ '~'~'~) where 

~ is c. partial function on it , ~ a family of spaces indexed over 

xf and ~ a family of spaces indexed over uf • 

If A. is a limit ordinal, we let X~ = U xY, HY = U nY .. 
~ y <A. ~ ~ y <A. ~ 

(It will follow from the construction that this makes sense.) 

To compute G(a+1) we regard two cases 

Case 1. If :G = Spec(~ ;x) or ~ = Spec(~ ;u) , let G(a.+1) = G(a) .. 

Case 2.. Otherwise. We define ~+1 as followso 

f For x1 E x , let 

1 E(~) ~ 
c~+ ) = ((s} (x~,x); 1 x1 1 

f For u 1 E u , let 

E(H~) ~ 
c:t::+1) = ( (s J ( u1 'u); 2 u 1 

For y E ~+1 , let 

T..a.+1 ... ..a.+1 .... -
.tt1 (y) = z if 3w E x2 ((e}((e2 ,y,x,y),(d2 ,w,u,v)) =0 

1\ (e2 J(y ,x,y) = z) 

For w E ~+1 let 

T..a.+1 .. ..a.+1 ... ~ 
.tt2 ( W) = q if 3y E ..A.1 ( ( e } ( ( d2 , W , U, V) , ( e 2 , y, X, y) ) = 0 

1\ (d2}(w' u, v) = q) 

It is E-recursive to decide between case 1 and 2a 

Letting G(Q) = (0,0,0,0) we use the induction hypot~esis and the 

assumption to prove the following by induction on o. : 

a ~ is an initial segment of Spec(A.y{e2 }(y,x,y);x) 

if the latter exists 
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b ~ is an initial segment of Spec(Aw(d2 }(w,u,~);u) 
if the latter exists 

c For y E ~, 

AWE ~((e}((e2 ,y,x,y),(d2 ,w,u,~)) is total, and if the 

value of the computetion is 0 for some w then [e2 } (y ,x,y)J 

d For w E ~ 

e 

So 

AYE ~((e}((d2 ,w,u,~),(e2 ,y,x,y)) is total, and if the 

value of the computation is 0 for some y then {d2 )(w,u,~)~ 

For at least one i E {1 .. 2} is total on r.. 
l. 

The proof is straightforward. 

G will be recnrsive in ... -r,cr,x,u,y,v and G will be total. 

Let M = Spec(G;x U u U {x} U {u}) • 

Claim.. At least one spectrum obtained by a or 'T will be included 

in M .. 

Proof. Let a = On n M.. We regard two caseso 

Case 1.. In defining G(a+1) we are in case 1 .. 

By symmetry we may assume that ~ = Spec(~) • 

Since G- n M is definable from G and M we see that ~ n M 

is definable from G and M.. But then Spec(G) ~ M, so 

~ ~ M .. 

Case 2. In defining G(a+1) we are in case 2. 

By the argument of case1, this actually means that both ~ 

and H2 are partial.. But this is impossible by ~ above .. 
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By inspection of M and M n G one may decide the proper 

value of (e)( a, T) • 

The other cases where scheme 8 is involved,are treated in the 

same manner, by a recursive function G one tries to imitate the 

construction of the actual spectrum until either the spectrum is 

complP.ted or the other computation terminates. 

This ends the proof of lemma 3. 

As usual we now obtain Gandy's selection theorem for numbers, 

and that a set is recursive in some parameters if and only if both 

it and its complement are semirecursive in the parameters. We also 

have established sufficient properties to claim that sk+2(F)-recur­

sion theory over tp(k) is equivalent to Harrington's strong recur­

sion in k+3s, k+2F. 

4. Functions and relations 

One of the properties of set-recursion is that for any relation 

R, there is a function F of type k+2 such that E(R)-recursion 

over type k is the same as E(F)-recursion over type k • 

This is established for k = 0 in Harrington-Kechris-Simpson [7] and 

for k:> 0 independently in Kechris [8] and Norm.ann [10]. For a 

general proof, see Normann [11]. 

We will prove that this result also is true for S-recursion. 

We prove the result for I = tp(k) , but it may be proved with the 

.3ame generality as the parallell result in Norm.ann [11]. 

Definition. Let R be a relation. Define FR by 

Jo if f is a code for a set X 

FR(f) = I 
'" 1 otherwise. 

and R(x) 
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where we say that f:I - w is a code if f is the characteristic 

function of a codeG 

Lemma 4. FR is S-recursive in I relative to R. 

Proof. By lemma 1, the relation 1 f is a code 1 is k+3s-recursi ve, 

and thus S-recursive by theorem 2. In E-recursion there is an 

index e such that if f is a code for x , then {e }(f, I) = x • 

The lemma then follows. 

We cannot prove the other direction of the lemma, since R may 

contain information about sets not codable. But for our purpose it 

will be sufficient to do so for R n S-Spec(R) • 

Lemma 5. In 

some a E I 

S(R)~recursion there is an index 

and some x, {e1 JS(R\a,I) = x, 

is a code for x • 

e 

then 

such that if for 
~ S(R) tel (e1 ,a,I) 

Proof. We define e by the recursion-theoremo We may use the same 

argument as in lemma 2, except in case 6, relativization to R. But 

there we may use lemma 4. 

Theorem 3. 

a S-Spec(FR) = S-Spec(R) for any relation R 

b For a E I , A ;:: I 

A is S(R)-recursive in a,I ~> A is S(FR)-recursive in a,I 

( 4<> A is Kleene-recursive in a F k+3s) 
' R' 

.£. For a E I , A ~ I 

A is S(R)-semirecursive in a,I 4<> A is S(FR)-semirecursive 
in a, I 

( A · t 1 · · · F k+3s ) ~ ~s s rong y se~recurs~ve ~n a, R' 
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Proof .. 

a 
S(FR) 

Let x = (e1 } (a, I) .. By lemma 4, there is an index e2 

such that x = (e2}S(R)(a,I) o 

Now, let y = (e2}S(R)(a,I) o From the pro0f of lemma 5 we see 

that the construction of a code for y is actually a computation 

in FR. But then y is S(FR)-recursive in a,I .. 

b This is just a special case of ..§!_ • 

c To obtain .£ we need the following claim: 

A subset A of I is S(R)-semirecursive in a,I if and only 

if there is a set Q recursive in a,I such that 

b E A ~ :3x E SM(a,b)(R) Q(b,x) 

Proof. I.f A= {b; (e}S(R)(a,b,I)~}, Jet 

Q(b,x) ~ x is a computation-tree for (e}S(R)(b,a,I). 

On the other hand, let Q be given and let A be defined from Q 

as above. By the Gandy selection operator obtained from lemma 3, we 

describe a partial function recursive in a,I and defined just on A. 

5. Equivalences to the S(R)-theories 

The following considerations are valid for most notions of com­

putation-theories, see e.g. Fenstad [1] or [2] or Moldestad [9]o So, 

let @ be a computation-theory on a computation domain I • We say 

that @ is p-normal if we lBl-recursively may compare lengths of 

computations in @ , i.e. ® satisfies lemma 3 of this paper. If 

@ is p-normal, ® will allow a selection operator for numbers 

(Grilliot [4], see also Moldestad [9]). 
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Definition. Let e be a computation-theory on the computation­

domain I • We call e weakly normal if = on I is 8-recursi ve, 

e is p-normal and there is an index e such that 

if v b E I ( e 1 ) 8 (~, b ) = o 

if VbEI [e 1 ) 19 (a,b),~ and ThEI (e1 ) 19(;,b)~O. 

We define the notion of a code over I as in section 3, and we 

define Spec(®) = (1'1a(®))a E I by 

xEMa(®) ~there is a code for x that is ®[a)-recursive. 

Let R8 = ( (a , a.) ; a E e A II a II 8 = a. ) • 

We call (Spec(e) ,R8) the companion of e • 

Remark. Spec(@) will be E(R8 )-recursively closed and satisfies 

~*(R8 )-collection. 

Lemma 6. A subset A of I is ®[a)-semi-computable if and only 

if it is ~*(R8 ,a) definable over Spec(®). 

Proof. Assume A is ®[a]-semicomputable, 

b E A ~ {e} 8(a,b)~ for some a. 

Then 

b E A ~ 3n E ::n:.:r ::Ja. E Ma b (e) ( ( ( e , a, b , n) , a.) E R8 ) 
' 

On the other hand, let A be ~*(R8 ,a)-definable. Let ~ be a 

~0-formula such that 

bE A ~ 3x E Ma b(e) cp (x,a,b,R8 ) 
' 

~ 3e E JliJ ( e is an index for a code for a set x 

such that ~(x,a,b,R8 ) • 

Given a code for x , we may decide ~(x, a, b ,R8 ) E(R8 )-recursi vely 



- 17 -

in that code. The relation 1 A is a code 1 is semirecursive in 

E-recursion, and we may compute x uniformly in a code for x. By 

Gandy-selection we see that A is semirecursive. 

Definition. 

a Let a. be an ordinal. Let f :c _. a. • We call f normal if 

f is strictly monotone and continuous. 

b Let (Ma) aEI be a family of structures indexed over I , R a 

relationo (Ma)aEI is R-admissible over I if 3ach Ma is 

rudimentary closed in R , and <M ) satis~ies ~*-collection a aEI 

over I. A function f:M - M is closed in <M ) if for a aEI 

each a E I, if x E Ma then f(x) E Ma. 

f is w- b.* if the graph of f is weakly A *-definable. 

c Let (Ma) aEI be a family R-admissible over I • 

(M ) is weakl':r R-Mahlo if the following is satisfied: a aEI '' 

Let a. = sup (On n Ma ; a E I) 

Let f: a. _. a. be normal, closed in (Ma) aEI and weakly A* (R) • 

Then there is a family (Na)aEI R-admissible over I such that 

f is closed in (Na) aEI , for each a Na :: Ma, and for at 

least one a E I , the inclusion is proper. 

The following theorem is proved with 7arious degrees of generality 

in Harrington-Kechris-Simpson [7], Normann [10], Kechris [8] and 

Moldestad [9]. 

Theorem 4. Let e be a weakly normal computation-theory on I. 

Then @ is equivalent to E(R)-recursion in I for some R if and 

only if Spec(®) is not weakly R9-Mahlo. 
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We will prove a similar result for S-recursion .. 

Definition. Let (Ma) aEI be R-admissible over I. 

a (Ma>aEI is strongly R-Mahlo if the following is sati3fied: 

Let f : a ... a be norma!, closed in is w- 6"'(R). a 

Then there is a family (Nb)bEI that is R,a-admissible over I 

such that f is closed in (Nb)bEI and (Nb)bEI E Ma• 

b (Ma)aEI is werudy hyPer-R-Mahlo if the following is satisfied: 

Let f : a ... a be normal, closed in (Ma) aEI anc. w- 6 * (R) • 

Then there is a strongly R-Mahlo family (Na)aEI ~ (Ma)aEI such 

that f is closed in (Na) aEI • 

Remark. If k = 0_, then I= w so Ma = ~ for all a,b E I. 

Then these notions coincide with admissible, recursivaly Mahlo and 

recursively hyper Mahlo. There will be no distinction between the 

weak and strong Mahlo-property. 

Lemma z. Let R be an arbitrary relation. S-Spec(R;I) is the least 

strongly R-Mahlo family over I • 

Proof .. 

i S-Spec(R;I) is strongly R-Mahlo. Let S-Spec(R;I) = (Ma)aEI• 

Proof. Let f be 6;(R), normal and closed in (M(a,b))bEI .. 

By the Gandy selection operator for numbers, f is S(R)-recursive 

and there is an S(R)-recursive function f 1 : On ... Codes such that 

f 1 (a.) is a code for f(a). 

Let 
r 1 

G(a,b) = , 
"'o 

if b E f 1 (a) 

if b f. f 1 (a) 

Then Spec(R,G,a; I) E Ha. Spec(R,G,a; I) will have the wanted 

properties. 



- 19 -

ii S(R)-recursion is closed within any strongly R-Mahlo family 

locally of type k+1 (or type I ) 

code in Ma )o 

( i e x EM <=> x has a 
g • a 

Proof. Let (Ma}aEI be strongly R-Mahloo By induction on the 

length of computations we will prove that the partial function 

Ae,x (e}S(R)(x) is closed in (Ma>aEI and that the relation 

(e}S(R) (x) ~ y is w-2::*-definable in (Ma) aEI , by proving that the 
.... 

computation-tree also will be in Ma when x E Ma• 

For all schemes except scheme 8 this is known from E-recursion. 

So assume {e}S(R)(x) ~ Spec(Ay(e1 }(y,x);x1). 
.... 

By the lnduction hypothesis, the function Ay[e1 )(y,x) will be 

w-~*-definable. in the parameters. Define f by 

f(O) = 1 f(A) = U f(y) when A is a limit. 
y<A 

Let f(a+1) be the least ordinal y ~ f(a)+1 such that we in 

order to define Specf(a)(Ay(e1}(y,x);x1 ) only need computations 

(e1 } (y ,x) of length < y • 

We use the fact that (Ma) aEI is locally of type k+1 to prove 

that whenever the parameters are in Ma ' then f is closed in 

(M(a,b))bEI and f is 't!IJ"-~~-definableo Let (Nb)bEI E Ma be 

R-admissible such that f is closed in (Nb)bEI • Then 

Ay[e1 JCx,y) is w-~*-definable over (Nb)bEI' so 

Spec(Ay{e1}(x,y);x1 ) is a definable subfamily of (Nb)bEI and thus 

an element of Ma • By a similar argument we see that the computation­

tree will be in Ma • 

In theorem 4 we used the notion of equivalent theories. We 

must make this notion precise. 
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Definition. Let e 1 and e2 be two weakly normal theories on I 

( E and S-recursion restricted to I may be regarded as such theories) 

and R9 and Re are t. *-definable in eo.ch other. 
1 2 

The two theories will be equivalent iff the semirecursive sets are 

the same. 

Theorem _2. Let e be a weakly normal theory on I. Then the 

following two statements are equivalent: 

i There is a relation R such that e is equivalent to S(R)-

recursion over I. 

ii Spec(e) is strongly R8-Mahlo but not weakly R9-hyper-Mahloo 

Let I = tp(k) o 

Let e be a weakly normal theory on I • 

Then the two statements are equivalent: 

i There is a type k+2-functional F such that -
to st~ong recursion in k+3s,F. 

e is equivalent 

ii Spec(e) is strongly R9-Mahlo but not weakly hyper-R9-Mahloo 

This is a consequence of theorems 3 and 5 .. 

When k = 0, we are regarding normal theories over :m, and we then 

observe: 

p_orollary 5.2. Let e be a normal theory on w • Then e is 

equivalent to strong recursion in 2F,3S for some F if and only if 

the companion of e is recursively Mahlo, but not recursively hyper-

Mahlo. 
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Proof of theorem 5. 

i => ii - - Let 8 and R be given, Spec(8) = S-Spec(R;I) =(Ma)aEI' 

R8 and R are ~* in each other .. 

e and R will induce two different hierarchies on (Ma) aEI' 

call them (M~)aEI from 8 and (~)aEI from S(R) • Let R be 

defined from Re by 'the ~*-formula ~ I and Re from R by 

'the ~*-formula 'f ' • 

Define g1(a) = f.l~:!.a such that R n (~)aEI is definable 

over (!'1~) aEI by ~ . 
Define g2(a) = f.l~~a such that Re n (:f~) aEI is definable 

over (N!)aEI by 'f 0 

and will be 

Moreover, at fix-points A 

~*-definable and closed in (Ma>aer• 

for g1 resp. g2 , R n (M~) will be 

A 
~*(R8)-definable over (Ma)aEI A Crespo statement for R8 , (Na) aEI 

and R) • 

We may no'I/IT show that (Ma) aEI have the same Mahlo-properties 

w. r. t. R and R8 • 

Let f be a normal ~*-function. Let f1 = feg1,o,g2 • 

f1 is normal, ~*-definable and if f is closed in (Ma) aEI' 

f1 is closed in (Ma) aEI • 

Moreover, a fix-point for f 1 will be a fix-point for f, g1 and g2 • 

Claim 1. Spec(EJ) is strongly R8-Mahlo. 

Proof .. Let f be a normal ~;-function closed in (Ma,b>bEI o 

Since (Ma)aEI is strongly R-Mahlo (lemma 7), f 1 is closed in 

an R-admissible subfamily <N(a,b))bEI E Ma. But a. is a fix-point 

of f 1 , so R8 is ~* over <N{a,b))bEI, so <N{a,b)) is R8-

adm.issible .. 
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Claim 2. Spec(e) is not weakly hyper-R8-Mahlo. 

Proof .. Assume it is. By the argument of claim 1 it follows that 

S-Spec(R,I) is weakly hyper-R-Mahlo, which is false by lemma 7 .. 

ih => i Assume that Spec(®) is strongly R8-Mahlo but not 

wealdy R6-hyper-Mahlo o Let f be a counterexample to hyper­

Mahloness.. Define 

RY = { (a, b , y) ; a and b 

lla\1 8 < llb\1 8 < f(y)J .. Let 

~*(R8 ) over Spec(e) o 

are ®-computations and 

R = U RY • R is clearly 
y EOn 

Claim 3. Spec(®) is the least strongly R-Mahlo family over I • 

Proof. Since Spec(®) is strongly R8-Mahlo and R is ~*(R8 ) 

we may use the arguments from i => ii to see that Spec(®) is 

strongly R-Mahlo. On the other hand, if there is a subfamily 

(Na)aEI that is strongly R-Mahlo, it is sufficient to prove that 

f is closed in (Na)aEI and that R8 is ~*(R)-definable over 

(Na) aEI • 

,e. f isclosedin (Na)aEr• 

Let a E Na. Then {(a, b): a and b are ®-computations and 

\lall 8 < llbll 8 < f(a)} E Na since Na is rudimentary closed in R. 

But this is a prewellordering of length f(a) , so f(a) E Na .. 

b R8 is ~*(R)-definable over (Na>aEI: 

(a,a) E R8 if for some b E I, (a,b,a+1) E R and a has 

rank a in the prewellordering { ( c, d) ; ( c, d ,a+1) E R} • 

This proves claim 3. 

By lemma 7 , ii => i will hold, and theorem 5 is established. 
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6. The sections of S(R)-theories 

In Sacks [12] and [13] the notion of abstract k+1-sections is 

defined and it is proved that they are exactly the k+1-sections of 

normal functionals k+2F • 

In this section we vdll give a similar characterization of the 

k+1-section of k+3g, k+2F , i o e. the subsets of tp(k) recursive 

in k+3s, k+2F. Both characterizations and proofs are suitable 

adjustments of the arguments of Sackso 

In this section we will restrict ourselves to recursion in 

I = tp(k) • The b-part may however always be generalized to normal 

recursion on two domains (Moldestad [9]). 

Definition of Abstract k+3s-section 

a k = 0 .. A is an abstract 3s-section if 

i A is an abstract 1-section (Sacks [12]) i.e. 

Each ele:!D.ent in A has a code in A 

A is admissible and satisfies b. -DC 
0 

ii If cp is a 60 -formula and y E An and 

A }::: Vx 3y cp(x,y,y) 

then there is an abstract 1-section B such that 
~ ~ 

y E B E A and B != Vx 3y cp(x,y,y) 

b k > 0. A is an abstract k+3s-section if there exists a set B 

such that A E B , A is countable in B 

and B have the following properties: 

A "< L: B and both A 
1 

i They are rudimentary closed and satisfies r:1-collection 

(admissible with gaps) and are locally of type k+1 • 

ii They are closed under 8-recursion. 
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Remark. i and ll play the same role in both definitions. ii 

gives the appropriate variant of the Mahlo-property. 

Theorem 6. Let F be of type k+2 • Let x E A <=:> x has a code 

recursive in F, k+3s. Then A is an abstract k+1s-section. 

Proof. Let (Ma)aEI = S-Spec(F) • A = M for a recursive. a 

a F 'F 
k = 0. Here A = L F, where p is the least ordinal recur-

p 
sively Mahlo in F (Harrington [5]) • Assume 

-+ 
A 1= Vx Jy cp(x,y,y) • 

Define 

g(y) F F .... = 1-LS Vx ELy Jy E LS cp(x,y ,x) 

g is closed in some F-admissible ordinal a.0 , and 

LF will be an abstract 1-section • 
a.o 

b k > 0 • Let c be a complete S(R)-semirecursive subset of w • 

Let B = Me • By Gandy's selection operator for numbers we may 

use a proof due to Harrington [6] (see also Moldestad [9]}to see 

that A <l: B • Since c i.n a way acts as an enumeration of A, 
1 

A E B and A is countable in B • Clearly both A and B are 

closed under S-recursion. 

This proves theorem 6. 

Theorem 7. If A is an abstract k+3s-section, then there is some 

functional F of type k+2 such that A is the k+1-section of 

F,k+3s. 

Proof. By theorem 3 it is sufficient to find a relation P such 

that A is the sets S(P)-recursive in tp(k) • 

~ k = 0 • We vTant to find P such that A is the least P-rec:ur­

si vely Mru"llo structure .. 
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Define a set of conditions lP by 

p E lP if p ~ On, p E A and no ordinal < rank(p) is 

p-recursively Mahlo. p _:: q if p = q n rn(p) • 

... 
If cp is a 

P ~r cp(x,P) 

~0-formula with parameters 

if rJ>rn(p) != cp(i,p) a 

x , a::~.d p E lP , we say 

For other formulas 

p ft- ::Jx cp if for some x E L~n(p) p ! l- cp(x) 

p!!-cpV¢ if pl!-cp or pH-~ 

p H- .., cp if V' q ~ P qJ,t cp ( q does not force cp ) 

Let P be lP-generic over A (or actually the union of a JP­

generic set from lP) • 

i 
p 

Lrn(p) = A • 

Proof .. 
p 

Lrn(P) c A since each p E A. 

Let x E A , and let y ;;: w be a code for x .. 

Let p be any condition. Let q = p U (rn(p) +n ; n E y) 

Then y E L~n(q)+1 • Since P is generic, y will be in V ( ) rnp 

for some initial p ,S P, and since rn(P) is admissible, 
p 

y E Lrn(P) • 

ii rn(P) is P-recursively Mahlo. 

Proof o Assume (A,P) 1= V'x ::Jy cp(x,y ,P) • 

Since P is generic, there is an initial p _s P such that 

p U-V'x ::Jy cp(x,y,P) , 

so V'q ~ p V'x ::Jr.?:: q r U- ::Jycp(x,y,P) • 

Let B E A be an abstract 1-section such that p E B and 

B t= V'q~p V'x ::Jr:::q r II- ::Jycp(x,y,P) o 

Let p' be an extention of p that is generic over B • 
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I 

Then B = r{:n(p 1 ) • Let f3 > rn(p) be the least admissible 

ordinal such that 
I q F 'r/X ::Jy cp(x,y ,p 1 ) • 

Let q = pI n s 0 Then q E lP' q ~ p and for any proper ext en-

tion r > q, 

r 11- ::JB ( B is admissible in P and 'r/x E B ::Jy E B cp(x,y,P)) o 

Since P is generic, this shows a variant of recursive Mahloness. 

b k > 0. Define a set of conditions lPA (lPB) by 

p E lP A if p E A , p c On xI and for a = rn(p) , 

i 

ii 

a is S(p)-recursive in I (without parameters outside w ) 

q _::: p if q is an end-extention of p (i..e. (S,a) E q,p =e­

S~rn(p)). 

Let P be 1PA-generic over A. (It will be clear from the argu­

ment what sort of generity we needo) We may assume that P E B 

since A is countable in B • 

Let (Na>aEI = S-Spec(P,I), o recursive. We will prove that 

N =A. 
0 

A c N • 
- 0 

Proof. Let x E A , p a condition. Let y be a code for x • 

Let q=pU{(rn(p),a);aEy). 

Clearly q is a condition, and if P extends q, rn(p) E N0 

(since p is a condition) and y E N0 .. Then x E N0 as well. 

Since P is generic, x E N0 • 

N c A o 
0-

Let x E N0 .. Then x = {e)S(P) (I) 

If this computation is 

x = (e)S(p)(I) 

for some e E w. 
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for some initial condition p .s, P , then x E A since A is 

closed under S-recursion. 

If we need cofinally much information about P to compute x, 

the computation still takes place in B since P E B and B 

is closed under S-recursion. Let a be the supremum of the 

ordinals occuring in the computation, and let P0 = PU (a,O). 

Then P0 E JPB o 

Let p c P be initial. Then 

B ~ ::Jq2:_ p [e }S( q) (I)~ • 

Since A <2:: B , 
1 

A t= ::Jq2:_p [e}S(q)(I)~. 

This contradicts the fact that P is generic. 

This ends the proof of theorem 7. 

So N ;: A. 
0 

Corollary 7.1 .. Let 8 be a weakly normal computation-theory on I 

such that Spec(e) is strongly R8-Mahlo. Then for some functional 

F of type k+2, k+1- sc (8) = k+1- sc (k+3s, F) • 

Corollary 7.2. For each k , there is a normal functional F of 

type k+2 such that 

k+1- sc ck+3s, F) = k+1 - sc ck+3E) • 
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