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SOME REMARES ON HEYTING MATRICES

by Josep M. Font

In the excellent book of W.A. Pogorzelski and P. Wojtylak "Ele-

ments of the theory of completeness in propositional logic" [PW ] the

class of Heyting algebras is used to define a semantic consequence

operator in the algebra of the propositional formulas. This operator

is of course equal to the usual (axiomatic) syntatic consequence.

The (rather methodological) purpose of this note is to point out that

this semantic operator is exactly the classical one obtained using

Heyting algebras as matrices in the ordinary way, and to explain why

we think the latter approach is, in a sense, more natural

than the former. We shall follow the terminology and notations of

[PW] quite closely, with a few exceptions.

Throughout this paper we shall denote by A = <A,",u,n,-> any

algebra of type (2,2,2,1) and by S = <Sthe algebra of

propositional formulas constructed in the usual way from a set At

of propositional variables; recall that any mapping v: At ► A

can be extended in a unique way to an homomorphism hV: ► A .

Now let A be a Heyting algebra, and for every BE A let us denote

by F(B) the least (implicative) filter of A containing B. Then

in page 79 of [ PW ] the consequence operation determined by A is

defined as follows; for each a e S and XES:

Accepted for publication in: Zeitschrift fUr Mathematische Logik und
Grundlagen der Mathematik.

-1-



■Ü) a£ j4(X) iff h (a)SF(h (X)) for every v: At —► A.

Thege «enstequence operators are used in pages 83 and 84 to define
¿ n h| ■

f^h^’^o-ySilIed filter consequenee operation:
'' (2) ■ - ' 06 FC(X) iff aeyí(X) for every Heyting algebra A.

This is thought of as a semantic consequenee operator, and in page

85 a completeness theorem is stated in the form Ded(X) = FC(X) where

we use Ded(X) instead of Cn(R , Sb(A.)UX), the syntactic conse-
o i

quences of X.

This semantic approach derives from the application of some

very general concepts of q-algebras to the particular case of Heyting

algebras. However, Heyting algebras can be also viewed as logical

matrices, and so there is a more classical semantic approach to intui-

tionistic propositional logic still using Heyting algebras. We recall

that a logical matrix is a pair rtt = <A, A* > where A is an algebra

and A* S A is the set of "distinguished elements". Then the matrix

consequenee associated with Ht is (page 61 of [ PW ]):

(3) a € ttl(X) iff hV(X)s A* implies hV(a)€ A for every v: At-» A

Any Heyting algebra can become a logical matrix by taking any filter

as the set of disguished elements; however, as we shall see at the

end of the note, it is enough to consider the case of the least fil¬

ter. So we put forward the following

(4) Definítions: Xf A is a Heyting algebra then the matrix asso-

clated with A is In[A] = <A, (1} > where 1 is the unit of A .
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Then according to (3) the matrix consequence associated with A

is Wl[,yt](X) = {aGS: hV(X)s{l) implies hV(a) = 1 for every

v: At ► A }.

(5) Proposition: If H is a filter of a Heyting algebra A, then

m [A\ < m^/H ].

Proof: lf is quite similar to the proof of Lemma 2.68 of [PW] , its

essential point being the use of the axiom of choice to find an embed-

ding of yí/H intoyt.B

(6) Theorem: yj = m[A¡ for every Heyting algebra A.

Proof: Let oGS and XS S be such that a€yí(X) and suppose

that v: At—► A is such that hV(X) S íl) . Then hV(o ) G F(hV(X)) =

= F({1)) = ti), that is hv(a) = 1. Therefore a e Ml[yl ](X).

Conversely suppose that a<£¿4(X): then there is a v: At-—*- A

such that hV(a) € F(hV(X)) and by a well-known property of Heyting

algebras there is a prime filter H of A such that h (oKh and

F(hV(X))£H. Now putting w = pov we find a w: At ► A/H such

that hW(a) ¿ [l] but hW(X)£{[l]}, that is, we have proved that

oí m[>4/H](X). But by (5) this implies that ngm[yl] (X).B

So we see that the consequence operator of [ PW ¡ actually is

the same as the matrix one, taking the unit as the only distinguished

element. In the rest of the paper we see that this is what one gets

in using any logical matrix, provided it is "good enough" for



the intuítionistic propositional calculus, We shall split this requi-

rement in two properties, each of a different character. We ñame the

first one after [ D]:

(7) Definítion: A logical matrix ttt is 3aid to be faithful (to

the intuí tionistic propositional calculus) iff Ded < til.

(tí) Lemma: A matrix Itl = <yí,A* > is faithful if and only if it

satisfies the two conditions:

a) hV(o)e A* for every v: At ► A and every theorem

a of the intuítionistic propositional calculus; and

b) A’ is closed under the application of Modus Ponens (that

is, if a€A* and a-l*b € A* then beA», for each a,b6A).

Proof: Quite trivial. For the "if" part, use the Compactness and

the Deduction Theorems for Ded. ■

The second requirement is that the matrix does not show "unne-

cessary" differences between its elements. It has been used since

the appearance of the earliest studies of logical matrices in the

thirties (for instance, from [ LT ] and [ T ] through [MT] to [L], and

related Works of these and other authors), though mixed with other

properties and under different ñames, such as "regular", "normal",

and so on. We have singled out it and given it one of these ñames;

(9) Definition: A logical matrix Ttl = <j4,A*> is said to be regular

iff for each a,be A, if a b 6 A» and b-^* a 6 A* then

a=b.
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and b -l*a e A*, is a congruence relation of A ;

(b) A* constitutes a single equivalence class under R; and

(c) The "quotient matrix" til/R - <>4/R,A*/R> is faithful and

regular, and ttl = tfl/R.

Proof: (a) Given several elements of the matrix a,b,c€A we can

always define a valuation v: At —► A such that hV(a) = a, hV(g ) =

= b and hV(Y) = c for some o.B.yGS; taking into account that

til is faithful and Lemma 8 , we see that A* ineludes all elements

of A with the algébrale "form" of a theorem of the intuitionistic

calculus. Now the theorems a * a and (o*8)*((8*y)*(o*y)) imply

that R is an equivalence relation, and, with ( a * 8) * (( y * o ) * (y *6)),

that it is a congruence with respect to -* . The theorems a-B* a,

a'B * B and (y + a) * ((y*B)*(y*a-8)) make the trick for O ,

their duals (for +) do the same for U , and the case of - requires

only (o^B)* (~B *~a).

(b) If a R b, we have a-* b e A*, so from a 6 A* we get

be A* by applying Modus Ponens; if a,be A* then the theorems

a * (B * a ) and 8 * (a* 6) imply that b-* a 6 A* and a-l» b e A*,

that is, a R b. Therefore A* constitutes exactly one equivalence

class.

(c) Part (b) in particular tells us that R is a "congruence

of the matrix" til and then it is known (see the proof in [ W], for

instance) that the quotient matrix ttl/R = <yí/H, A*/R> is equivalent

(as a matrix) to ttt, that is, that ttl = ftl/R.% Therefore, ttl/R is

also faithful. Finally, in the quotient [a] —^-* [b] 6 A*/R iff
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iff a—^b e A*, so the fact that A* constitutes a single equiva-

lence class implies that IH/R is regular. ■

Now we can see why in the case of Heyting algebras we restric-

ted us, in (4), to A»=(l) . If H is a filter of a Heyting algebra

A> then <yt,H> is a faithful matrix, the congruence defined in 10(a)

is the congruence associated with H, and therefore the quotient

matrix is <j4/H, [ H]>. But [H]={[1]} is the unit of yí/H, that

is, the "general" matrix <yl,H> is equivalent, by theorem 10, to

a matrix of the type chosen in definition (4). In our last result

we see that this class of matrices is the class of all quotients ob-

tained in the preceding theorem.

(11) Theorem: Let tn = <A, A* > be a logical matrix. Then m is

faithful and regular if and only if A is a Heyting algebra

and A*={1) where 1 is the unit of A-

Proof: Suppose ttt is faithful and regular. Then 10 (b) tells us that

for all a,be A*, a-^+b € A* and b—^ a 6 A*, therefore a=b.

That is, A* has only one element, say 1. Now we define a binary

relation on A: a£b if a -1* b = 1. Using the same techniques of

theorem 12 and the same theorems quoted there, it is easy to see that

<_ is an order relation on A and 1 is its máximum, and moreover

that <A,n,u> is a lattice. The theorem ( a * (8 * y)) (a’B* y )

implies that for each a,b,ceA, a < b-1* c iff aflb < c, that

is, A is a relatively pseudo-complemented (or implicative) lattice.

Then from a* (~a*B) we find that an-a = bn-b = 0 for all a,be A,

and so there is a minimum 0 of A. Finally the theorems
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~a*(a + a'~a) and ( a->-a • ~a ) ■* ~a allow us to see that ~a is deduc

ble from o* o‘~a and conversely, therefore in j4 -a = a -1* 0 for

all aeA. That is, we conclude that yl is a Heyting algebra and

1 is its unit.

For the converse part of the theorem, it is well-known that

any Heyting algebra with its unit is a faithful matrix, and it is

indeed regular because a-l*b = b-I* a = 1 implies a=b. ■

(12 ) Corollary. A logical matrix ttl is faithful if and only if there

is a Heyting algebra yt such that 1H = ttl[yl].

Proof: If ttl is faithful then theorem 10 implies that ttl = ttt/R

and that ttt/R is faithful and regular, therefore by theorem U A/R

is a Heyting' algebra and A*/R = (1) where 1 is the unit of yl/R.

In other words, ttt/R =m[»4/R] and so ttl =ttt[j4/R]. The converse is

trivial. ■

This corollary sufficiently expresses our conclusión: Heyting

matrices are "all" faithful matrices; taking theorem 6 into

account we see that from them we can obtain the algebraic semantics

of [ PW ] for the intuitionistic propositional calculus. We have pre-

sented detailed proofs for this restricted case because our interest

in these remarks was mainly methodological. However a large number

of calculi can be treated in a similar way, and we must say the theory

of abstracts logics of Brown, Suszko and others (see [BS] and related

works) provides a general framework for a lot of cases with several

extremely general results. It is rather surprising that this



powerful approach has been neglected in [PW].

The author wishes to express his thanks to Dr. V. Verdú for

his valuable comments on the general subject and contents of this

note.
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