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We have two polynomial time results for the uniform word problem for a quasi-

variety Q:

• The uniform word problem for Q can be solved in polynomial time iff one

can find a certain congruence on finite partial algebras in polynomial time.

• Let Q? be the relational class determined by Q. If any universal Horn

class between the universal closure S(Q?) and the weak embedding closure

S̄(Q?) of Q? is finitely axiomatizable then the uniform word problem for

Q is solvable in polynomial time. This covers Skolem’s 1920 solution to

the uniform word problem for lattices and Evans’ 1953 applications of the

weak embeddability property for finite partial V algebras.

1 Introduction

In 1920 Skolem [14] showed that the decidability of Th∀(Lat), the universal theory of lattices, depended

solely on the decidability of ThC(Lat), the clause theory of lattices, and this in turn depended solely

on the decidability of Th∀H(Lat), the universal Horn theory of lattices. (In 1943 McKinsey [13] would

independently formulate the same result for any class K closed under direct products.) Skolem then proved

Th∀H(Lat) is decidable; and this, as we know, is equivalent to saying that the uniform word problem for

lattices is solvable. He was essentially using ideas from the modern subject of fixed point logic as well as

the construction of the free lattice completion of a partial lattice. We will return to Skolem’s method in

the last section. This remarkable piece of work was completely overlooked until early 1992. As it turns out,

the algorithm of Skolem for the uniform word problem of lattices is an efficient polynomial time algorithm,
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and it was rediscovered in the late 1980’s by Cosmadakis [5], and by Freese [7] (who implemented it in a

computer program). Cosmadakis used this to show that ThC(Lat) can be decided in polynomial time, and

that Th∀(Lat) is co-NP-complete.

In the following we use the abbreviated phrase “A weakly embeds into K” to mean there is a one-one

homomorphism from A into some member of K.

In 1943 McKinsey [13] showed that if a finitely axiomatizable variety K has the property

[
if a finite partial algebra weakly embeds into K

then it weakly embeds into some finite member of K

]
(1)

then the uniform word problem for K is solvable. He applied this to lattices and obtained an exponential

time algorithm.

In 1953 Evans [6] introduced finite partial K algebras for any variety K with a finite set of equational

axioms Σ, namely a finite partial algebra P needs to satisfy, for r(~x) ≈ s(~x) in Σ, respectively r(~x) ≈

f(s1(~x), · · · , sn(~x)) in Σ (we assume Σ is symmetric),

[
(i) r(~a), s(~a) are defined in P imply r(~a) = s(~a);

(ii) r(~a), s1(~a), · · · , sn(~a) are defined in P imply f is defined at (s1(~a), · · · , sn(~a)).

]
(2)

Then Evans proved that the uniform word problem for such K is solvable iff

[
there is an algorithm to determine which finite partial K algebras

weakly embed into K.

]
(3)

From this he extracted his method for proving that K has a solvable uniform word problem, namely

[
every finite partial K algebra weakly embeds into K.

]
(4)

He applied this to lattices, groupoids, loops and quasigroups.

In 1979 Grätzer [9] reworked Evans’ approach and showed that the uniform word problem for a finitely

axiomatizable variety K is solvable iff

[
there is an algorithm to determine which finite partial algebras

weakly embed into K.

]
(5)

At this time we do not know if having a polynomial time algorithm in either (3) or (5) will give the

solvability of the uniform word problem in polynomial time. (The converse holds in either case.) However
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(4) is a sufficient condition for the uniform word problem to be solvable in polynomial time. (We will return

to this fact at the end of the last section.) This lack of an ‘iff’ result for polynomial time algorithms led us to

search for a problem regarding finite partial algebras whose polynomial time solution would be equivalent

to the solvability of the uniform word problem in polynomial time. Our first goal is to demonstrate such

by showing, for any quasivariety K, that

[
there is a polynomial time algorithm to find the smallest congruence θ

on a finite partial algebra P such that P/θ weakly embeds into K

]
(6)

is indeed equivalent to K having a uniform word problem which is solvable in polynomial time.

Then we will use this result to give what we think is the correct global perspective from which to view

the concrete successes of Skolem and Evans. Let K? be the relational version of K, i.e., replace each n-ary

function symbol f by an n + 1 ary relation symbol rf , and make the obvious changes in the members of

K to get the members of K?. Let S(K?) be the class of substructures of K?, and let S̄(K?) be the class

of structures which can be weakly embedded (i.e., there is a one-one homomorphism) into K?. S(K?) and

S̄(K?) are both elementary classes axiomatizable by universal Horn sentences. The condition that we want

to draw attention to is

[
there is a finitely axiomatizable universal Horn class H with S(K?) ⊆ H ⊆ S̄(K?).

]
(7)

We will show that (7) implies the uniform word problem for a quasivariety K is solvable in polynomial

time; and we claim that Skolem’s and Evans’ applications will be special cases of (7).

Throughout we will assume that we are working with finite languages L of algebras.

2 Partial Algebras

A basic tool for analyzing polynomial time uniform word problems is the use of partial algebras. In this

section we make the appropriate definitions and list the basic results needed. In the following P and Q

are partial algebras in a given language L of algebras.

Definition 1. A mapping α : P → Q is a morphism from P to Q if, for any n-ary operation f , if

f(p1, · · · , pn) is defined in P then f(αp1, · · · , αpn) is defined in Q and αf(p1, · · · , pn) = f(αp1, · · · , αpn).

We write α : P → Q if α is a morphism from P to Q. A morphism α : P → Q is a weak embedding

if α is one-one; we write α : P
1−1
−→ Q in this case.
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Definition 2. An equivalence relation θ on P is a congruence of P if for each n-ary operation f we

have

p1θp
′
1, · · · , pnθp

′
n

f(p1, · · · , pn) is defined

f(p′1, · · · , p
′
n) is defined





⇒ f(p1, · · · , pn)θf(p
′
1, · · · , p

′
n).

Con P is the set of congruences of P.

Definition 3. Let θ ∈ ConP. Define P/θ to the the partial algebra with universe P/θ and operations

defined by f(p1/θ, · · · , pn/θ) = p/θ if there are p′i with piθp
′
i and f(p′1, · · · , p

′
n) is defined and in p/θ.

Definition 4. Define Πi∈IPi on Πi∈IPi by f(p1, · · · , pn) = p iff f(p1(i), · · · , pn(i)) = p(i) for all i ∈ I.

Definition 5. An expansion P̂ of P is any partial algebra on P such that for each operation symbol f in

L, the domain of fP is a subset of the domain of f P̂, and f P̂ agrees with fP on the domain of the latter.

With these definitions it is straightforward to verify the following (see Burmeister [3], Grätzer [9]):

• If α : P→ Q and Q̂ is an expansion of Q then α : P→ Q̂.

• ∆,∇ ∈ ConP.

• If α : P→ Q then Kerα ∈ ConP.

• If θ ∈ ConP then ν : P→ P/θ, where ν is the natural map.

• If α : P → Q and θ is a congruence of P with θ ⊆ Kerα then, with ν the natural map from P to

P/θ, there is a (unique) morphism β : P/θ → Q such that β ◦ ν = α. If θ = Kerα then β is a weak

embedding.

• Con P is closed under
⋂
.

Definition 6. For K a class of algebras, P
1−1
−→ K means P weakly embeds into K.

A key definition is the following.

Definition 7. For K be a class of algebras let

µK(P) =
⋂
{θ ∈ ConP : P/θ

1−1
−→ K}.

Using the above properties we have

• If K is a quasivariety then µK(P) is the smallest congruence θ of P such that P/θ
1−1
−→ K.
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3 The Word Poblem

We briefly review the definitions. Given a language L of algebras, a presentation Π for this language is an

ordered pair 〈G,R〉 where G is a set of generators (i.e., constants) and R is a set of defining relations (i.e.,

ground equations) over L ∪ G. A word w for Π is a ground term in the language L ∪ G.

The word problem for a class K of L algebras is concerned with determining, for any presentation Π,

which ground equations w ≈ w′ follow from Th(K), the first-order theory of K, and the defining relations

R, i.e., when Th(K) ∪ R ` w ≈ w′ holds. (We will write this as Π `K w ≈ w′.) Usually one considers

the word problem for varieties K, for then to each presentation Π there corresponds an algebra A, with

generators named by the generators of Π, such that Π `K w ≈ w′ holds iff A |= w ≈ w′. Such an algebra

A also exists when K is a quasivariety; then A is in the variety generated by K, but not necessarily in K.

The uniform word problem for K is said to be solvable if there is an algorithm which decides if Π `K

w ≈ w′ for every finite presentation Π for L and for every pair of words w,w′. [A word of caution: some

authors use the phrase word problem to mean the word problem for the infinitely generated free algebra in

a variety K, i.e., for the equational theory of K. This is not the convention used here.]

It is easy to see that the uniform word problem for K is solvable iff the universal Horn theory Th∀H(K)

is decidable since

Th(K) ∪R ` w ≈ w′ iff Th(K) `
∧
R → w ≈ w′.

This simple connection between the uniform word problem and the universal Horn theory is our main

reason for extending the definition of the uniform word problem to arbitrary classes K of L algebras — we

are really studying universal Horn theories, but we want the reader to remember the important application

to traditional uniform word problems.

4 Partial Algebras and the Word Problem

Given a presentation Π = 〈G,R〉 for the language L, and words w,w′ , we define the partial algebra TΠ,w,w′

to be the restriction of the ground term algebra T for the language L∪G to the subterms of w,w ′ and the

subterms of all s and t for which s ≈ t ∈ R.

For any L ∪ G algebra A there is a unique morphism from T to A (as T is absolutely free), and this

restricts to the unique morphism α : TΠ,w,w′ → A. Let ϕ be the congruence on TΠ,w,w′ generated by

{〈s, t〉 : s ≈ t ∈ R}. Then A |= w ≈ w′ iff ϕ ⊆ Kerα. Define PΠ,w,w′ = TΠ,w,w′/ϕ. Then for any L ∪ G

algebra A there is a most one L ∪ G morphism β : PΠ,w,w′ → A, and such exists iff A |= R.
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Now suppose A is an L∪G algebra which satisfies R, and let β : PΠ,w,w′ → A (the unique morphism).

Then A |= w ≈ w′ iff 〈w,w′〉 ∈ Kerβ. This leads to a basic result.

Proposition 8. Let K be a quasivariety of L algebras, and let Π = 〈G,R〉 be a presentation for L, and

let w, w′ be words. Then

Π `K w ≈ w′ iff 〈w,w′〉 ∈ µK(PΠ,w,w′). (8)

Proof. Clearly Π `K w ≈ w′ iff every L∪G algebra A whose L reduct A|L is in K and which satisfies

R also satisfies w ≈ w′. For such an A let β : PΠ,w,w′ → A (the unique morphism). Then, as noted above,

A |= w ≈ w′ iff 〈w,w′〉 ∈ Kerβ. Now A|L ∈ K implies µK(PΠ,w,w′) ⊆ Kerβ; and for a suitable choice of

A we have equality. Thus

A |= Th(K) ∪R implies A |= w ≈ w′

holds iff 〈w,w′〉 ∈ µK(PΠ,w,w′).

This leads to the following decidability result.

Proposition 9. The uniform word problem for a quasivariety K is solvable iff there is an algorithm to

find µK(P) for P any finite partial L algebra.

Proof. Suppose the uniform word problem for K is solvable. Given a finite partial algebra P let R

be the finite set of ground equations f(p1, · · · , pn) ≈ p which hold in P, and let Π = 〈P,R〉. Then for

p1, p2 ∈ P we have 〈p1, p2〉 ∈ µK(P) iff Π `K p1 ≈ p2, so we can effectively find µK(P).

Conversely, suppose we can effectively find the µK(P). Then to decide if Π `K w ≈ w′ we simply

determine if 〈w,w′〉 ∈ µK(PΠ,w,w′).

Using this (or simply working through the proof in [9]) one has the following straightforward general-

ization of Grätzer’s result for finitely axiomatizable varieties.

Corollary 10. The uniform word problem for a quasivariety K is solvable iff (5) holds.

The main reason we focus on the construction of µK(P) is the following polynomial time version of

Proposition 9.
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Proposition 11. The uniform word problem for a quasivariety K is solvable in polynomial time iff there

is a polynomial time algorithm to find µK(P) for P any finite partial L algebra.

Proof. Use the same steps as in the proof of Proposition 9, noting that in the direction (⇒) we apply

a polynomial time algorithm polynomially many times to find µK(P); and in the direction (⇐) observe

that one can construct PΠ,w,w′ in polynomial time.

Example 12. Kozen’s result [11], that the uniform word problem for the class K of all L algebras is

solvable in polynomial time, is clear since µK(P) = ∆ in this case.

Example 13. Evans’ condition (4) says that µK(P) is the smallest congruence of P closed under (2)(i)

and (ii); hence µK(P) can be found in polynomial time if (4) holds.

Let us say a few words about the limitations of (4). Evans knew that this does not hold for all varieties

with solvable uniform word problem. With the development of complexity we have a new indicator that

the uniform word problem will not be polynomial time, and hence (4) cannot hold. Namely if we show the

uniform word problem is co-NP-hard then we expect the uniform word problem to require superpolynomial

time, and (4) to fail — else P = NP.

Examples where the uniform word problem is co-NP-hard include: any finitely generated non-nilpotent

variety of rings (see Burris & Lawrence [4]), any non-trivial finitely generated variety of lattices (see

Bloniarz, Hunt, & Rosenkrantz [2]), any variety generated by a finite nonsolvable group (Lawrence), and

any congruence distributive variety generated by a two-element algebra (Berman & Blok [1] and Willard).

In all of the above examples we actually use the fact that the equational theory (or the equivalence problem)

is co-NP-complete.

In general we can see very little relation between the equational theory and the uniform word problem

for K, except that the latter is at least as difficult as the former. For groups we have an extreme case

where the equational theory is polynomial time but the uniform word problem is unsolvable. All finitely

generated quasivarieties have, of course, a simply exponential solvable uniform word problem.

We would like to know the answer to the following question.

Problem 1. Are the polynomial time versions of (3) or (5) in the first section equivalent to the solvability

of the uniform word problem in polynomial time?
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We remark that it is easy to show that the polynomial time versions of (3) and (5) are equivalent

conditions; and both hold if the uniform word problem is solvable in polynomial time.

Cosmadakis [5] showed that the universal theory of lattices is co-NP-complete since the uniform word

problem is solvable in polynomial time. If the polynomial time version of (5) holds for any nontrivial class

of L algebras K then we can easily show that Th∀(K) is co-NP-complete. Actually one can say a bit more

in this direction.

Proposition 14. For any nontrivial quasivariety K the following are equivalent:

(a) Determining if a finite partial algebra weakly embeds into K is an NP problem.

(b) The universal theory Th∀(K) is co-NP-complete.

(c) The uniform word problem for K is co-NP.

Proof. (a) ⇒ (b): Since K is a nontrivial class its universal theory must be co-NP-hard as one can

interpret propositional formulas as universal formulas by simply replacing a propositional variable Pi by

xi ≈ yi. Next, if ϕ is a universal sentence which does not hold in K then there is a small finite partial

algebra which can be weakly embedded in K which witnesses the fact that ϕ does not hold. From (a) it

follows that the collection of universal sentences which do not hold in K is NP, so the universal theory of

K is co-NP.

(b)⇒ (c) is trivial as Th∀H(K) ⊆ Th∀(K).

(c) ⇒ (a): Let P be a finite partial algebra, and let tables(x1, · · · , xn) be a conjunction of atomic

formulas which describe the partial operations of P. Then P
1−1
−→ K iff tables(x1, · · · , xn)→ xi ≈ xj is not

in Th∀H(K) for i < j; and this is in NP.

An interesting example regarding Proposition 14 is that of commutative semigroups, where each finite

presentation Π has a word problem solvable in polynomial time, but the uniform word problem for com-

mutative semigroups is exponential space complete (due to Mayr & Meyer [12]; see also Kharlampovich &

Sapir [10]).

5 The Role of Finitely Axiomatizable Universal Horn Theories

Let L be a language of algebras and let L? be the corresponding language of relational structures obtained,

as we described in the first section, by replacing each n ary f in L by an n + 1 ary rf . Then, for each
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(partial or total) L algebra A there is a corresponding L? structure A? such that

A |= f(a1, · · · , an) ≈ a iff A? |= rf (a1, · · · , an, a).

If K is a class of (partial or total) L algebras then S(K?), the class of substructures of members of K?,

corresponds to some of the partial algebras P such that P
1−1
−→ K; namely we have

P
1−1
−→ K iff P̂? ∈ S(K?) for some expansion P̂ of P.

On the other hand S̄(K?), the class of structures that can be weakly embedded into K?, is precisely

{P? : P
1−1
−→ K}. If K is an elementary class then one can show S(K?) and S̄(K?) are closed under

ultraproducts, and hence they are also elementary classes; and as they are closed under substructures they

are universal classes, i.e., axiomatizable by universal sentences. If K is an elementary class closed under

direct products, then one can furthermore show that S(K?) and S̄(K?) are closed under direct products as

well, and hence they are universal Horn classes.

Definition 15. For any class C of structures let Cfin be the class of finite members of C. If there is an

algorithm to determine which finite structures are in Cfin then we say Cfin is effectively recognizable.

Examples of classes C with Cfin effectively recognizable include any finitely axiomatizable C, or more

generally, any L reduct of a class axiomatized by finitely many (higher order) statements.

Lemma 16. Let K be a class of L algebras such that there is a class C with Cfin effectively recognizable

and S(K?) ⊆ C ⊆ S̄(K?). Then one can effectively determine if a finite partial algebra P
1−1
−→ K.

Proof. Observe that for a finite partial algebra P, P
1−1
−→ K iff there is an expansion P̂ such that

P̂? ∈ Cfin. Now P has only finitely many expansions P̂, and as P̂? ∈ Cfin can be checked, we have the

desired algorithm.

Proposition 17. If K is a quasivariety and Cfin is effectively recognizable with S(K?) ⊆ C ⊆ S̄(K?)

then the uniform word problem for K is solvable.

Proof. Use the previous lemma and Corollary 10.

We do not know if a polynomial time version of Proposition 17 holds.
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Problem 2. If K is a quasivariety and S(K?) ⊆ C ⊆ S̄(K?) with Cfin recognizable in polynomial time

does it follow that the uniform word problem for K is solvable in polynomial time?

From Proposition 17 and known results on unsolvable word problems we can conclude that for K =

groups, rings, semigroups, etc., for any choice of C with S(K?) ⊆ C ⊆ S̄(K?), we have Cfin is not effectively

recognizable; hence in particular C is not finitely axiomatizable, nor a reduct of a finitely axiomatizable

class.

Theorem 18. Let K be a quasivariety such that there is a finitely axiomatizable universal Horn class H

with S(K?) ⊆ H ⊆ S̄(K?). Then the uniform word problem for K is solvable in polynomial time.

Proof. Let Σ be a finite set of universal Horn sentences axiomatizing H. Let θ be a binary relation

symbol and define Σ(θ) to be the following set of universal Horn sentences:

i. replace ≈ in members of Σ by θ;

ii. add the congruence axioms:

xθx, xθy → yθx, xθy ∧ yθz → xθz

x1θx
′
1 ∧ · · · ∧ xnθx

′
n ∧ rf (x1, · · · , xn, x) ∧ rf (x

′
1, · · · , x

′
n, x

′)→ xθx′

For P a finite partial L algebra let P?(θ) denote the expansion of P? by a binary predicate θ. The

key observation is that since Σ(θ) is a set of universal Horn statements there is a smallest extension P̂

of P and a smallest θ such that P̂(θ) satisfies Σ(θ). This is because, as Skolem observed, universal Horn

sentences can be thought of as rules for generating simultaneously a monotone sequence of extensions of

the predicates; so starting with P?(∅) we obtain in polynomial time the least fixpoints of the monotonically

increasing rf and θ. This θ is clearly a congruence on P, and indeed the smallest congruence such that

P/θ has an expansion P̂/θ whose relation version P̂/θ
?
is in H. But then θ is the smallest congruence such

that P/θ
1−1
−→ K, i.e., θ = µK(P). We have a polynomial time algorithm to find µK(P), so by Proposition

9 the uniform word problem is solvable in polynomial time.

Example 19. If we let K be the class of all L algebras then S(K?) = S̄(K?); and this class is axiomatized

by statements asserting the rf are partial functions. Thus again we have Kozen’s result that the class K

of all L algebras has a polynomial time uniform word problem.
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Example 20. Skolem’s 1920 paper defined lattices as relational structures axiomatized by the following:1

Skolem’s Rules
1. x ≤ x

2. x ≤ y ∧ y ≤ z → x ≤ z

3M . Mxyz → z ≤ x ∧ z ≤ y

3J . Jxyz → x ≤ z ∧ y ≤ z

4M . Mxyz ∧ w ≤ x ∧ w ≤ y → w ≤ z

4J . Jxyz ∧ x ≤ w ∧ y ≤ w → z ≤ w

(x ∼ y means x ≤ y and y ≤ x in the following)

5M . Mxyz ∧ x ∼ x′ ∧ y ∼ y′ ∧ z ∼ z′ →Mx′y′z′

5J . Jxyz ∧ x ∼ x′ ∧ y ∼ y′ ∧ z ∼ z′ → Jx′y′z′

6M . ∀x∀y∃zMxyz

6J . ∀x∀y∃zJxyz

His main result shows that any finite model M of 1–5 can be weakly embedded in model of 1–6 with

no expansion of ≤ on M. He then uses 1–5 to analyze universal Horn sentences, starting with what is

essentially T?
Π,w,w′ and using 1–5 to generate the minimal fixpoints M,J,≤ of 1–5.

A straightforward reading of Skolem’s proof shows, in our terminology, that he used 1–5 to generate

µLat(P). Another way of viewing Skolem’s result is simply that 1–5 axiomatize the universal closure of

his structures; or, factoring out the congruence determined by ≤, and using x ≤ y as an abbreviation for

x ∧ y ≈ x, the following is a finite axiomatization of S(Lat?):

x ≤ x

x ≤ y ∧ y ≤ x→ x ≈ y

x ≤ y ∧ y ≤ z → x ≤ z

r∧(x, y, z)→ z ≤ x ∧ z ≤ y

r∨(x, y, z)→ x ≤ z ∧ y ≤ z

r∧(x, y, z) ∧ w ≤ x ∧ w ≤ y → w ≤ z

r∨(x, y, z) ∧ x ≤ w ∧ y ≤ w → z ≤ w.

Next we note that Evans’ condition (4) can be translated as universal Horn formulas in the language

L?. For example, to say that the associative law x1(x2x3) ≈ (x1x2)x3 holds, where defined, could be

expressed by:

Mx2x3y1 ∧Mx1y1y2 ∧Mx1x2y3 ∧My3x3y4 → y2 ≈ y4.

1Skolem used different notation for join, meet and the ordering relation.
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And to say that if the left side is defined and the maximal subterms of the right side are defined implies

the right side is defined could be expressed (in view of (2)(i)) by

Mx2x3y1 ∧Mx1y1y2 ∧Mx1x2y3 →My3x3y2.

Example 21. One can view Evans condition (4) as asserting that the universal Horn class H defined

by translating (2)(i),(ii) into relation form in the language L?, plus axioms to state the rf define partial

functions, is finitely axiomatizable and satisfies S(K?) ⊆ H ⊆ S̄(K?).

Example 22. For K the variety of commutative semigroups we see that S(K?) is not finitely axiomatizable

(as the uniform word problem requires exponential space).

Example 23. Let K be a finitely generated quasivariety with a co-NP-complete uniform word problem, as

in the examples mentioned after Example 13, e.g. distributive lattices. Then one expects that any universal

Horn class H with S(K?) ⊆ H ⊆ S̄(K?) is not finitely axiomatizable — otherwise P = NP.

Finally, we are interested in knowing more about the interaction of the classes K, S(K?), and S̄(K?).

If any elementary class E with S(K?) ⊆ E ⊆ S̄(K?) is finitely axiomatizable, so is K? (just add axioms to

Ax(E) that say the rf define total functions), and hence so is K. However we do not know of any other

connections involving finite axiomatizability; and we do not know if there are any quasivarieties K such

that S(K?) and S̄(K?) are not finitely axiomatizable but the uniform word problem for K is solvable in

polynomial time.

Acknowledgement: These investigations have benefited considerably from past discussions with Ralph

Freese on the uniform word problem for lattices, and on the software he has written for such. The main

result, Theorem 18, was discovered while the author was lecturing at the University of Lisbon on Universal
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