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Abstract. R. Shore proved that every recursively enumerable (r.e.) set can
be split into two (disjoint) nowhere simple sets. Splitting theorems play an
important role in recursion theory since they provide information about the
lattice E of all r.e. sets. Nowhere simple sets were further studied by D. Miller
and J. Remmel, and we generalize some of their results. We characterize r.e.
sets which can be split into two (non)effectively nowhere simple sets, and r.e.
sets which can be split into two r.e. non-nowhere simple sets. We show that
every r.e. set is either the disjoint union of two effectively nowhere simple sets
or two noneffectively nowhere simple sets. We characterize r.e. sets whose
every nontrivial splitting is into nowhere simple sets, and r.e. sets whose every
nontrivial splitting is into effectively nowhere simple sets.
R. Shore proved that for every effectively nowhere simple set A, the lattice

L∗(A) is effectively isomorphic to E∗, and that there is a nowhere simple set
A such that L∗(A) is not effectively isomorphic to E∗. We prove that every
nonzero r.e. Turing degree contains a noneffectively nowhere simple set A with
the lattice L∗(A) effectively isomorphic to E∗.

1. Introduction and notation

Shore [5] introduced the concepts of nowhere simple and effectively nowhere
simple sets. Let A ⊆ ω. A is nowhere simple if A is r.e. and for every r.e. set
B with B − A infinite, there is an infinite r.e. set W such that W ⊆ B − A.
Let W0,W1, . . . be a standard recursive enumeration of all r.e. sets such that
(∀x)(∀t)[x ∈ We,t ⇒ x ≤ t]. A is effectively nowhere simple if A is r.e. and there
is a unary recursive function f such that for every e ∈ ω, Wf(e) ⊆ We − A and
(We −A is infinite ⇒ Wf(e) is infinite). Since simple sets are not nowhere simple,
every nonrecursive r.e. degree contains a set which is not nowhere simple. Shore
[5] and Miller and Remmel [3] have proven that every nonrecursive r.e. Turing
degree contains a nowhere simple set which is not effectively nowhere simple.
We denote the set of all nowhere simple sets by NS and the set of all effectively

nowhere simple sets by ENS. It is easy to show that NS and ENS are closed under
finite intersections. The set (NS - ENS) of all noneffectively nowhere simple sets is
denoted by NENS. Let E be the lattice of all r.e. sets, and for an r.e. set A, let
L(A) be the lattice of all r.e. supersets of A. Let E∗ (L∗(A)) be E(L(A)) modulo
the ideal of finite sets. The properties of nowhere simplicity, effective nowhere
simplicity, and noneffective nowhere simplicity are definable both in E and E∗ [3].
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For fixed recursive enumerations of r.e. sets W and B, W & B is the set of all
elements first enumerated inW and later in B, andW \B =def (W & B)∪(W−B).
We fix h·, ·i to be a recursive bijection from ω2 onto ω, which is strictly increasing
with respect to both coordinates. Let X,Y ⊆ ω. By X ≤T Y (X ≤1−1 Y ) we
denote that X is Turing (1-1) reducible to Y . As usual, ∅0 (∅00) is the first (second)
jump of ∅. For n ∈ ω, ω[n] =def {hn, ii : i ∈ ω}.

2. Splitting r.e. sets into nowhere simple sets

Shore Splitting Theorem [5]. Every r.e. set B can be split into two disjoint
nowhere simple sets A0 and A1.
Now we recall
Friedberg Splitting Theorem. Every r.e. set B can be split into two disjoint
r.e. sets A0 and A1 such that for every r.e. set W :
(1) (W −A0 is r.e. ∨ W −A1 is r.e.) ⇒W −B is r.e..
Friedberg’s strategy of splittingB intoA0 andA1 is based on satisfying the following
requirement for every r.e. set W :
(F) W & B is infinite ⇒ (W ∩A0 6= ∅ ∧W ∩A1 6= ∅).
Shore’s strategy of splitting B into A0 and A1 is based on satisfying the following
requirement for every r.e. set W :
(S) W & B is infinite ⇒ (W ∩A0 is infinite ∧ W ∩A1 is infinite).
Requirement (S) implies the following condition, which guarantees nowhere sim-
plicity of A0 and A1. For every r.e. set W, we have
(2) (W ∩A0 is finite ∨W ∩A1 is finite) ⇒W −B is r.e..
For W = ω −Ai, i ∈ {0, 1}, it follows from (2) that
(3) (A0 is recursive ∨ A1 is recursive) ⇒ B is recursive.
Since W = (W − Ai) ∪ (W ∩ Ai) for i ∈ {0, 1}, (2) and hence (3) follow from (1).
Thus, we have the following

Proposition 2.1. [1]The sets A0 and A1 obtained in Friedberg Splitting Theorem
are nowhere simple.

Miller and Remmel [3] have established the following equivalence:
(4) A ∈ ENS ⇔ (∃ r.e. T )[T ∩A = ∅ ∧ ∀i(Wi −A is infinite ⇒Wi ∩ T is infinite)].
An r.e. set T satisfying the matrix of the right-hand side of formula (4) is called a
witness set for A.

Proposition 2.2. In formula (4), (Wi∩T is infinite) can be replaced by (Wi∩T 6=
∅).
Proof. Let A ∈ ENS and let T be such that ∀i(Wi − A is infinite ⇒ Wi ∩ T 6=
∅). For i ∈ ω, let h(·, ·) be a (recursive) function such that Wh(i,0) = Wi and
Wh(i,x) = Wi − {0, . . . , x− 1} for x ∈ ω − {0}. Assume that Wi − A is infinite.
Then ∀x(Wh(i,x) − A is infinite). Hence ∀x(Wh(i,x) ∩ T 6= ∅). Thus, Wi ∩ T is
infinite.

Rodgers [4, Section 8.7] has introduced the following sets of r.e. sets:
C0 = the set of all recursive sets,
C1 = the set of all simple sets,
C2 = {A ∈ E − C0 : (∃ r.e. W )(W is infinite ∧ W ∩A = ∅ ∧W ∪A is simple)},
C3 ={A ∈ E : A is not creative ∧ (∀ r.e. B)[B ⊆ A⇒ (∃ r.e. W )(W is infinite
∧ W ⊆ A ∧W ∩B = ∅)]},
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C4 = the set of all creative sets.
Clearly, C0 ⊆ ENS and C1 ∩ NS = ∅. Shore [5] has shown that C2 ∩NS 6= ∅,

C3 ∩NS 6= ∅, and C4 ∩NS = ∅.
Theorem 2.3. The following are equivalent for an r.e. set A:
(i) A ∈ NENS;
(ii) A ∈ NS ∧ A /∈ C0 ∧ (∀ r.e. W )[A ∩W = ∅ ⇒ A ∪W is not simple];
(iii) A ∈ NS ∧ A /∈ C0 ∪ C1 ∪ C2.
Proof. (ii) ⇔ (iii) follows immediately.
(i)⇒ (ii): Assume that A ∈ NENS. Clearly, A ∈ NS and A /∈ C0. Let an r.e. set

W be such that A ∩W = ∅. Then, since W is not a witness set for A, there is an
r.e. set U such that U − A is infinite and U ∩W = ∅. Since A ∈ NS, there is an
infinite r.e. set R such that R ⊆ U −A. Since R ∩ (A ∪W ) = ∅, we conclude that
A ∪W is not simple.
(ii) ⇒ (i): Let A be as in (ii). Let an r.e. set W be such that A ∩W = ∅. It

follows that A ∪W is coinfinite, since otherwise A =∗ W , which contradicts the
assumption that A is nonrecursive. Since A ∪W is not simple, there is an infinite
r.e. set R such that R∩ (A∪W ) = ∅. Since R∩W = ∅, W is not a witness set for
A. Thus, A ∈ NENS.
Theorem 2.4. The following are equivalent for an r.e. set A:
(i) A is the disjoint union of two noneffectively nowhere simple sets;
(ii) A /∈ C0 ∧ (∀ r.e. W )[A ∩W = ∅ ⇒ A ∪W is not simple];
(iii) A /∈ C0 ∪ C1 ∪ C2.
Proof. (ii) ⇔ (iii) follows immediately.
(i) ⇒ (ii): Assume that A = A0 ∪ A1, where A0 ∩ A1 = ∅ and A0, A1 ∈ NENS.

It follows that A is nonrecursive, since A0 is nonrecursive and A0 = A1∪A. Let an
r.e. setW be such that A∩W = ∅. Since A∪W = A0∪(A1∪W ), A0∩(A1∪W ) = ∅
and A0 ∈ NENS, it follows, by Theorem 2.3, that A ∪W is not simple.
(ii) ⇒ (i): Let A be as in (ii). Let A be split into nowhere simple sets A0 and

A1 using Shore’s splitting strategy. Then (2) is satisfied and, by (3), A0 and A1
are nonrecursive. We will prove that A0 ∈ NENS by showing that it satisfies (ii) of
Theorem 2.3. Let an r.e. set W be such that A0∩W = ∅. By (2), we conclude that
W−A is r.e.. It follows that A∪W is coinfinite, since otherwise A =∗ W−A, hence
A is r.e., contradicting the fact that A is nonrecursive. Since A ∪W is not simple,
there is an infinite r.e. set R such that R ∩ (A ∪W ) = ∅ and, thus, R ∩ A0 = ∅.
Therefore, A0 ∪W is not simple, so A0 ∈ NENS. Similarly, A1 ∈ NENS.
It follows from Theorems 2.3 and 2.4 that every noneffectively nowhere simple

set is the disjoint union of two noneffectively nowhere simple sets.

Theorem 2.5. The following are equivalent for an r.e. set A:
(i) A is the disjoint union of two effectively nowhere simple sets;
(ii) A ∈ C0 ∨ (∃ r.e. W )[A ∩W = ∅ ∧A ∪W is simple];
(iii) A ∈ C0 ∪ C1 ∪ C2;
(iv) Every splitting of A into two nowhere simple sets is into effectively nowhere
simple sets.

Proof. (ii) ⇐⇒ (iii) and (iv) ⇒ (i) follow immediately.
(i)⇒ (ii): Assume that A = A0∪A1, where A0∩A1 = ∅ and A0, A1 ∈ ENS. Let

Ti be a witness set for Ai, i ∈ {0, 1}. Let W =def T0 ∩T1. Clearly, A∩W = ∅ since
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Ai ∩ Ti = ∅ for i ∈ {0, 1}. Let S =def A ∪W . If S is cofinite, then A =∗ W , hence
A is recursive. Now assume that S is coinfinite. We will show that S is simple.
Assume otherwise. Then there is an infinite r.e. set U such that U ∩ S = ∅. Since
U ∩A0 = ∅, it follows that U ∩ T0 is infinite. Similarly, since (U ∩ T0) ∩A1 = ∅, it
follows that (U ∩ T0) ∩ T1 = U ∩ S is infinite, which is a contradiction.
(ii) ⇒ (iv): Let (ii) be satisfied. Assume that A is split into nowhere simple

sets B0 and B1. We will show that B0 ∈ ENS. If B0 is recursive, then B0 ∈ ENS.
Assume that B0 is not recursive. Then A is not recursive. LetW be a corresponding
r.e. set for A. Since A∪W = B0∪ (B1∪W ) and B0∩ (B1∪W ) = ∅, it follows that
B0 ∪ (B1 ∪W ) is simple. Thus, by Theorem 2.3, B0 /∈ NENS. Hence B0 ∈ ENS.
Similarly, B1 ∈ ENS.
Corollary 2.6. Every r.e. set is either the disjoint union of two effectively nowhere
simple sets or of two noneffectively nowhere simple sets.

Miller and Remmel [3, Thm. 12] have proven that in every nonzero r.e.
degree, there is an r.e. set A which is not nowhere simple, such that A is not the
disjoint union of two effectively nowhere simple sets (hence A is not simple). As a
consequence of this result and Theorem 2.5, we have the following

Corollary 2.7. In every nonzero r.e. degree, there is an r.e. set A which is not
nowhere simple and which is not half of a splitting of a simple set.

Definition 2.1. (i) A splitting of an r.e. set into two disjoint nonempty sets is
called nontrivial if both subsets are nonrecursive.
(ii) A set A is maximal in a set B if A is r.e., A ⊆ B, B−A infinite, and there is
no r.e. set W such that A ⊆W ⊆ B and both B −W and W −A are infinite.
(iii) A set A is simple in a set B if A is r.e., A ⊆ B, B −A infinite, and there is
no infinite r.e. set W such that W ⊆ B −A.
Thus, A is nowhere simple if and only if it is not simple in any r.e. set B. Shore

[5, Thm. 11] has constructed an r.e. set A such that A is not nowhere simple and
A is not simple in any nowhere simple set.
Downey and Stob [1, Thm. 1.7] have proven that there is a nonrecursive

effectively nowhere simple set A0 which is not half of a nontrivial splitting of a
simple set B such that condition (F) is satisfied.

Theorem 2.8. Let A be an r.e. set.
Every nontrivial splitting of A into two r.e. sets is into nowhere simple sets
⇔ (A ∈ NS ∨ A is maximal in some recursive set).
Proof. ⇐-part: Assume that A ∈ NS and that A = A0∪A1, where A0∩A1 = ∅. In
order to prove that A0 is nowhere simple, assume that W is an r.e. set such that
A0 ⊆W and W −A0 is infinite. If W ∩A1 is infinite, W ∩A1 is a required r.e. set
since W ∩A1 ⊆W −A0. Otherwise, W −A must be infinite. Since A ∈ NS, there
is an infinite r.e. set R such that R ⊆W −A, and hence R ⊆W −A0. Thus A0 ∈
NS.
Now, assume that A is maximal in a recursive set B. Then A ⊆ B and B−A is

infinite. Let A = A0∪A1, where A0∩A1 = ∅ and A0, A1 are nonrecursive r.e. sets.
We will show that A0 ∈ ENS by showing that A1 ∪ B is a corresponding witness
set. Assume that A1∪B is not a witness set. Then there is an r.e. set W such that
A0 ⊆ W , W − A0 is infinite and W ∩ (A1 ∪ B) = ∅. Since A is maximal in B, we
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conclude that B −W is finite, hence A1 =∗ W ∪B. Thus A1 is r.e., contradicting
the fact that A1 is nonrecursive. Similarly, we prove that A1 ∈ ENS.
⇒-part: Assume that A is not nowhere simple and that A is not maximal in

any recursive set. We will prove that there is a nontrivial splitting of A into two
r.e. sets, at least one of which is not nowhere simple. Since A is not nowhere
simple, there is an r.e. set W such that A ⊆ W , W − A is infinite and W − A
does not contain an infinite r.e. subset. If W is nonrecursive, let U =def W . If W
is recursive, then A is not maximal in W , so there exists an r.e. set U such that
A ⊆ U ⊆ W and both W − U and U − A are infinite. U is nonrecursive, since
otherwise W − U =W ∩ U would be an infinite r.e. set contained in W −A.
In any case, there is a nonrecursive set U such that A ⊆ U , U −A is infinite and

U−A does not contain an infinite r.e. subset. Now we split U into two nonrecursive
r.e. sets, U0 and U1. Let Ai =def Ui ∩A for i ∈ {0, 1}. Assume that both U0 −A0
and U1 −A1 are infinite. Then A0 /∈ NS and A1 /∈ NS. Hence both A0 and A1 are
nonrecursive, as required in a nontrivial splitting. Now, for example, assume that
U0 − A0 is infinite and U1 − A1 is finite. Clearly, A0 /∈NS, so A0 is not recursive.
In addition, A1 is nonrecursive since A1 =∗ U1.

Theorem 2.9. Let A be an r.e. set.
Every nontrivial splitting of A into two r.e. sets is into effectively nowhere simple
sets
⇔ (A ∈ ENS ∨ A is maximal in some recursive set).
Proof. ⇐-part: Assume that A ∈ ENS. It follows, by Theorem 2.5 (also by Propo-
sition 6 in [3]), that every splitting of A into two r.e. sets is into effectively nowhere
simple sets.
If A is maximal in a recursive set then, by the ⇐-part of the proof of Theorem

2.8, every nontrivial splitting of A into two r.e. sets is into effectively nowhere
simple sets.
⇒-part: Assume that A is not effectively nowhere simple and that A is not

maximal in any recursive set. We will prove that there is a nontrivial splitting of
A into two r.e. sets, at least one of which is not effectively nowhere simple. If A
is not nowhere simple, then the conclusion follows by the ⇒-part of the proof of
Theorem 2.8. Now assume that A ∈ NENS. Hence A is nonrecursive. Moreover,
by Theorem 2.3, A /∈ C0 ∪ C1 ∪ C2. Now we split A into two nonrecursive r.e. sets
A0 and A1. By Theorem 2.5, A is not the disjoint union of two effectively nowhere
simple sets, so not both A0 and A1 are effectively nowhere simple.

Corollary 2.10. (i)[3, Thm. 8(a)] Every nontrivial splitting of a maximal set M
into two r.e. sets is into effectively nowhere simple sets.
(ii) [3, Prop. 11] Let M be a maximal set and let R be an infinite recursive subset
of M . Then every nontrivial splitting of M − R is into effectively nowhere simple
sets.

Proof. (i) M is maximal in ω.
(ii) M −R is maximal in R.

Theorem 2.11. Let A be an r.e. set.
A is the disjoint union of two r.e. sets, neither of which is nowhere simple
⇔ (∃ r.e. X,Y )[X ∩ Y = A ∧ A is simple both in X and Y ].
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Proof. ⇒-part: Let A = A0 ∪ A1, where A0 ∩ A1 = ∅ and A0, A1 /∈NS. Since A0
is not nowhere simple, there is an r.e. set W0 such that W0 − A0 is an infinite
set which does not contain any infinite r.e. subset. Hence W0 ∩ A1 is finite. Let
U0 =def W0−A1. Since A1 is not nowhere simple, there is an r.e. set W1 such that
W1 − A1 is an infinite set which does not contain any infinite r.e. subset. Hence
W1∩U0 is finite. Let U1 =def W1−U0. Now we define X = U0∪A and Y = U1∪A.
Clearly, A is simple in both X and Y , and X ∩ Y = A.
⇐-part: Assume that A is simple in both X and Y , where X and Y are r.e. sets

such that X ∩ Y = A. By the reduction principle for r.e. sets, there are r.e. sets U
and V such that U ⊆ X, V ⊆ Y , U ∪ V = X ∪ Y and U ∩ V = ∅. Now we define
A0 = A ∩ U and A1 = A ∩ V . Clearly, A0 and A1 are not nowhere simple.

Recall that a set A ⊆ ω is r-maximal if A is r.e., coinfinite and there is no
recursive set R such that both R ∩ A and R ∩ A infinite. Clearly, every maximal
set is r-maximal. The converse does not hold. Also, there are simple sets which are
not r-maximal (see [6, p. 211]).

Corollary 2.12. (i) Every nonmaximal hh-simple set A is the disjoint union of
two r.e. sets, neither of which is nowhere simple.
(ii) Every simple set A which is not r-maximal is the disjoint union of two r.e.
sets, neither of which is nowhere simple.

Proof. (i) Since A is not maximal, there exists an r.e. set X such that A ⊆ X and
both X − A and X are infinite. Since A is hh-simple, there exists an r.e. set Y
such that A ⊆ Y , X ∩ Y = A and X ∪ Y = ω. Hence Y −A is infinite. Since A is
simple, it is simple both in X and Y .
(ii) Let R be a recursive set such that both R∩A and R∩A are infinite. Define

X = R ∪A and Y = R ∪A.

3. Semilowness properties of nowhere simple sets

We recall that a set
X is semilow iff {e :We ∩X 6= ∅} ≤T ∅0,
X is semilow1.5 iff {e :We ∩X is infinite} ≤1−1 {e :We is infinite}, and
X is semilow2 iff {e :We ∩X is infinite} ≤T ∅00.

Maass [2, Lemma 2.1] has shown that if A is r.e., then A is semilow1.5 if and only
if there is an enumeration of A, simultaneously with an enumeration of r.e. sets
(Ue)e∈ω, such that for every e ∈ ω, We =

∗ Ue and (Ue \ A is infinite ⇒ Ue ∩ A is
infinite). Maass [2] has further proven that for an r.e. set A, L∗(A) is effectively
isomorphic to E∗ (L∗(A) ∼=eff E∗) if and only if A is infinite and semilow1.5.
Shore [5] has proven that the complement of every nowhere simple set is

semilow2. The converse is not true since maximal sets are not nowhere simple
and their complements are semilow2. Shore [5] has proven that for every effec-
tively nowhere simple set A, A is semilow1.5, and hence, if A is infinite, L∗(A)
is effectively isomorphic to E∗. Shore [5] has also constructed a (noneffectively)
nowhere simple set A such that L∗(A) is not effectively isomorphic to E∗ (see also
[3, Thm. 3]). The following theorem supplements these results.

Theorem 3.1. Every nonzero r.e. Turing degree contains a noneffectively nowhere
simple set A such that A is semilow1.5 (and hence L∗(A) ∼=eff E∗).
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Proof. Let δ be a nonzero r.e. Turing degree and let C be an r.e. set of degree δ.
Let B =def {hn, ii : n ∈ C ∧ i ∈ ω}. We consider the following enumeration of B.
Let B−1 =def ∅.
Stage s: For every n ∈ Cs, let k be the greatest number such that hn, ki ≤ s+1.

Enumerate all elements among hn, 0i , . . . , hn, ki which are not in Bs−1 into Bs.
Now A is constructed as in Theorem 4 of [5], to be a thick subset of B. For every

e ∈ ω, we have a unique marker ∆e.
Construction
Stage s. For every e ≤ s, check whether there is an element x ∈ ω[n] for some

n > e, such that x ∈ We,s − As and no element of ω[n] is marked by ∆e. Place
∆e on the least such element x, if it exists. Enumerate all unmarked elements of
Bs −Bs−1 into As.
First, we show that the enumeration of B has the property:

(P) if n ∈ C and e ∈ ω, then for all but finitely many i ∈ ω, hn, ii ∈ B \We.
Assume that n ∈ Ct. Let x ∈ ω[n] be such that x > t. Then x /∈ We,t (since

x > t). Thus, if x ∈ We, then there is s > t such that x ∈ We,s+1 −We,s. Hence
x ≤ s+ 1, and x ∈ Bs.
In order to prove that A is semilow1.5, it is enough to show that for every e ∈ ω,

(We \ A is infinite ⇒ We ∩ A is infinite). Assume otherwise. That is, for some
e,We \A is infinite and We ∩A is finite. Then We & A is infinite. Since As ⊆ Bs,
by (P) there is no single n ∈ C such that (We & A) ∩ ω[n] is infinite. Hence there
are infinitely many n ∈ C such that (We & A) ∩ ω[n] 6= ∅. Let x ∈ ω[n] be such
that n > e and x ∈We & A. Then for some s, x ∈We,s−As. Therefore, there is a
marked element y ∈ ω[n] such that y ∈We. Hence y ∈ A. Thus, We ∩A is infinite,
which is a contradiction.
Now, as in Theorem 4 of [5], we show that A is a nowhere simple set of degree

δ and, as in Theorem 3 of [3], we show that A is not effectively nowhere simple.

Harrington and Soare (unpublished) have recently proven that there is a nowhere
simple set A such that L∗(A) is not isomorphic to E∗.
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