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In this paper we propose a Kripke-style semantics for second order intuitionistic propositional logic and we
provide a semantical proof of the disjunction and the explicit definability property. Moreover, we provide a
tableau calculus which is sound and complete with respect to such a semantics.
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1 Introduction

We propose a Kripke-style semantics for second order intuitionistic propositional logic. Our semantics can be
viewed as a secondary semantics with nested domains in the sense of Skvortsov [6]. Namely, let F be a Kripke
frame, that is a partially ordered set, and let D(F) be the Heyting algebra of the upward-closed subsets of F . In
principal semantics, quantifiers ranges over all the elements of D(F) and, as proved in [6], the set of formulas
valid in such a semantics is non-recursively axiomatizable (according to [4] such a set is even non-arithmetical).
On the other hand, in secondary semantics propositional quantifiers range over proper subsets of D(F), and in
[6] some examples of axiomatizable logics with a secondary semantics are given.

The logic Ipl2 generated from our semantics corresponds to H2 of [6] and can be seen as a variant of the ones
of Gabbay [2, 3] and Sobolev [7]. Such a semantics has an impredicative character connected with the distinction
between pseudomodels and models, the latter being pseudomodels where every closed formula is simulated by
an appropriate propositional constant. The domain of every element of a model is a set of propositional constants
and propositional quantifiers range over these sets.

In this paper we prove that Ipl2 meets the disjunction property (A∨B ∈ Ipl2 implies A ∈ Ipl2 or B ∈ Ipl2)
and the explicit definability property (∃p A(p) ∈ Ipl2 implies A(H/p) ∈ Ipl2 for some formula H). Our proof
is semantical and, as far as we know, no semantical proof of constructivity for a secondary semantics has been
given in the literature. In the paper we also provide a tableau calculus T -Ipl2 for Ipl2 obtained by adding to a
standard tableau calculus for intuitionistic propositional logic (see, e. g., [1]) the rules for quantifiers and a special
rule. In the last section of the paper we show that T -Ipl2 is sound and complete.

2 Preliminaries

In this paper we consider the propositional second order language L generated by a (possibly empty) countable
set C of constant symbols, the set of logical constants ∧, ∨, →, ⊥, ∃, ∀ and a denumerable set of propositional
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variables V ; a, b, . . . (possibly with indexes) denote propositional constants and p, q, . . . denote propositional
variables. The set of second order propositional formulas (wff’s for short) is defined as follows: ⊥, any propo-
sitional variable and any propositional constant is a wff; if A and B are wff’s and p is a propositional variable,
then A ∧ B, A ∨ B, A → B, ∃p A and ∀p A are wff’s. Moreover, we use ¬A as an abbreviation for A → ⊥ and
A ↔ B as a shorthand for (A → B) ∧ (B → A).

The notions of free and bounded variable and the notions of open and closed wff are the usual ones. If A
is a wff, A(p1, . . . , pn) means that A contains at most the free variables p1, . . . , pn and A(H1/p1, . . . , Hn/pn)
denotes the simultaneous substitution of all the free occurrences of p1, . . . , pn in A with the wff’s H1, . . . , Hn, re-
spectively. Given a wff A, we denote with ∀A the universal closure of A, that is the wff ∀p1 . . .∀pnA(p1, . . . , pn),
where p1, . . . , pn are all the free variables occurring in A.

Let L be a language for second order propositional logic generated by a (possibly empty) countable set of
propositional constants C; a pseudomodel for L is a quadruple K = 〈P,≤,D,F〉, where

1. P = 〈P,≤〉 is a poset;

2. D : P −→ 2C, where C is a set of constants including C, is the domain function such that, for every α ∈ P ,
C ⊆ D(α) and, if α ≤ β, then D(α) ⊆ D(β);

3. F ⊆ P ×D, where D =
⋃

α∈P D(α), is the valuation relation such that, if 〈α, a〉 ∈ F then a ∈ D(α), and
if α ≤ β, then 〈β, a〉 ∈ F .
We associate with each element α of K the language LK(α) built over the set of propositional constants D(α).
Since the model has nested domains, α ≤ β implies L ⊆ LK(α) ⊆ LK(β). We denote with LK the language⋃

α∈P LK(α).
The forcing relation � between an element α ∈ P and a closed wff A ∈ LK(α) is inductively defined as

follows:
1. α � c iff 〈α, c〉 ∈ F ;

2. α � ⊥;

3. α � A ∧ B iff α � A and α � B;

4. α � A ∨ B iff α � A or α � B;

5. α � A → B iff, for all β ∈ P such that α ≤ β, if β � A, then β � B;

6. α � ∃p A(p) iff there exists c ∈ D(α) such that α � A(c/p);
7. α � ∀p A(p) iff, for all β ∈ P such that α ≤ β and for all c ∈ D(β), β � A(c/p).

Given an open wff A ∈ LK(α), α � A iff α forces its universal closure, i. e., α � ∀A.
It is easy to check that the forcing relation meets the monotonicity condition:

Proposition 2.1 (Monotonicity condition) Let K = 〈P,≤,D,F〉 be a pseudomodel and let α ∈ P . For each
wff A ∈ LK(α), if α � A, then β � A for every β ∈ P such that α ≤ β.

The semantics based on the above notion of Kripke pseudomodel is a principal semantics, according to the
classification of [6]. Indeed, pseudomodels correspond to n-structures (where upward-closed subsets are iden-
tified with propositional constants) and the set of formulas valid in every pseudomodel coincides with the logic
H+

2 of [6], which is non-recursively axiomatizable. In [4] it is also proved that H+
2 is non-arithmetical.

To get a secondary semantics we introduce the following notion which corresponds to Sobolev completeness
(see [6]).

Definition 2.2 Let K = 〈P,≤,D,F〉 be a pseudomodel for L. K is a model for L iff, for every α ∈ P and
for every closed wff A ∈ LK(α), there exists c ∈ D(α) such that α � A ↔ c.

Given A ∈ L, A is valid, and we write � A, iff, for every model K = 〈P,≤,D,F〉 for L and for every α ∈ P ,
α � A. Fixed a language L, we denote with Ipl2 the set of all the valid wff’s of L.

The logic Ipl2 coincides with the logic H2 of [6] axiomatized by adding to a Hilbert-style calculus for intu-
itionistic propositional logic the following axioms and rules:

Bernays’ schemata: ∀p A(p) → A(c/p) and A(c/p) → ∃p A(p), where c is any term.

Comprehension schema: ∃q (q ↔ A), where q is not free in A.
A → B

∃p A → B
,

B → A

B → ∀p A
, where p is not free in B.
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3 A tableau calculus for Ipl2

We introduce a tableau calculus T -Ipl2 for second order intuitionistic propositional logic using the signs T
and F. A signed formula (swff for short) is a string of the form SA, where S ∈ {T,F} and A is a closed wff.

The meaning of the signs T and F is explained in terms of realizability. Given a model K = 〈P,≤,D,F〉
and α ∈ P . Then α realizes TA iff A ∈ LK(α) and α � A, and α realizes FA iff A ∈ LK(α) and α � A.
Given a swff H we write α � H to mean that α realizes H ; α realizes a set S of swff’s (and we write α � S)
iff α � H for every H ∈ S. A set S of swff’s is realizable iff there is an element α of a model K such that
α � S. A configuration is any finite sequence S1| . . . |Sj | . . . |Sn (with n ≥ 1), where every Sj is a set of swff’s;
a configuration is realizable iff at least an Sj is realizable. S is contradictory if either T⊥ ∈ S or there exists a
wff A such that {TA,FA} ⊆ S. The following fact is immediate:

Proposition 3.1 If a set of swff’s is contradictory, then it is not realizable.

The rules of the calculus T -Ipl2 are the following:

S,T(A ∧ B)
S,TA,TB

T∧ ,
S,F(A ∧ B)

S,FA | S,FB
F∧ ,

S,T(A ∨ B)
S,TA | S,TB

T∨ ,
S,F(A ∨ B)
S,FA,FB

F∨ ,

S,T(A → B)
S,FA,T(A → B) | S,TB

T→ ,
S,F(A → B)
ST ,TA,FB

F→ ,

S,T∀p A(p)
S,TA(c/p),T∀p A(p)

T∀ ,
S,F∀p A(p)
ST ,FA(a/p)

F∀ with a new,

S,T∃p A(p)
S,TA(a/p)

T∃ with a new,
S,F∃p A(p)

S,FA(c/p),F∃pA(p)
F∃ ,

S

S,T(H ↔ a)
special with H any closed wff, a new and not occurring in H .

In the above rules we use the notation S, H , where S is a set of swff’s and H is a swff, to denote the set S ∪ {H}.
Every rule of the calculus but the special-rule applies to a main swff, which is the swff that is in evidence in the
premise of the rule. As an example, T(A ∧ B) is the main swff of the rule T∧ while F∃pA(p) is the main
swff of the rule F∃. The rules F → and F∀ narrow the set S of swff’s to the certain part of S, that is the set
ST = {TX : TX ∈ S}.

Given a set S of swff’s, a rule R of T -Ipl2 is applicable to S if S contains a swff that can be used as main
swff of an application of R. A proof table is a finite sequence of applications of the rules of the calculus T -Ipl2,
starting from some configuration. The rules F∀, T∃ and special introduce as a parameter a new propositional
constant symbol a, that is a constant symbol not occurring in the previous configurations of the proof.

A proof table is closed iff all the sets Sj of its final configuration are contradictory. A proof of a wff B in
T -Ipl2 is a closed proof table in T -Ipl2 starting from the configuration {F∀B}.

As an exercise, the reader could build the proofs of the wff’s

∀p ((A → p) → ((B → p) → p)) → A ∨ B and ∀p (∀q (A(q) → p) → p) → ∃q A(q).

Such wff’s are the non trivial sides of the equivalences showing that in Ipl2 the logical constants ∨ and ∃ can
be expressed in terms of → and ∀. We remark that the proofs of such formulas use in an essential way the
special-rule.

Definition 3.2 (Consistent set) A set of swff’s S is consistent iff no proof table starting from any finite subset
of S is closed.

As we show in Section 5, the calculus T -Ipl2 is valid and complete with respect to our semantics. In particular
we prove the following version of the Completeness Theorem:

Theorem 3.3 (Completeness Theorem) Let S be a countable set of swff’s. S is consistent iff S is realizable.
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We point out that, as a consequence of Completeness Theorem and the definition of consistent set of swff’s,
the Compactness Theorem holds:

Theorem 3.4 (Compactness Theorem) Let S be a countable set of swff’s. S is realizable iff every finite subset
of S is realizable.

4 Disjunction and explicit definability properties

In this section we prove that Ipl2 satisfies the disjunction property (if A∨B ∈ Ipl2, then A ∈ Ipl2 or B ∈ Ipl2)
and the explicit definability property (if ∃p A(p) ∈ Ipl2, then A(H/p) ∈ Ipl2 for some wff H). We remark that
the syntactical constructivity proof for first order tableau calculus for intuitionistic logic (see, e. g., [5] cannot
be extended to T -Ipl2 for the presence of the special-rule. Indeed, a closed tableau proof for F∃p A(p) might
not start with an application of the F∃-rule. Our proof is semantical and, as far as we know, no semantical
constructivity proof for a secondary semantics has been given in the literature.

For the sake of simplicity we prove the disjunction property and the explicit definability property for closed
wff’s; the results can be easily generalized to the open case.

Theorem 4.1 If A ∨ B ∈ Ipl2, with A ∨ B a closed wff, then either A ∈ Ipl2 or B ∈ Ipl2.

P r o o f. Let L be the language over the set of constant symbols C. Let A ∨ B be a closed formula of L such
that A /∈ Ipl2 and B /∈ Ipl2; we prove that A ∨ B /∈ Ipl2. Let K1 = 〈P1,≤1,D1,F1〉 be a model for L with
root �1 such that �1 � A, and let K2 = 〈P2,≤2,D2,F2〉 be a model for L with root �2 such that �2 � B. We
can assume, without loss of generality, that P1 ∩ P2 = ∅. Let � be an element not belonging to P1 ∪ P2 and let
t∗ be a constant symbol not belonging to LK1

∪ LK2
. We define the structure K = 〈P,≤,D,F〉 as follows:

P =P1 ∪ P2 ∪ {�} ≤=≤1 ∪ ≤2 ∪{(�, α) : α ∈ P}

D(α)=




(D1(�1) ×D2(�2)) ∪ {t∗} ∪ C if α ≡ �,

D1(α) ∪ (D1(�1) ×D2(�2)) ∪ {t∗} if α ∈ P1,

D2(α) ∪ (D1(�1) ×D2(�2)) ∪ {t∗} if α ∈ P2,

F = F1 ∪ F2 ∪{〈α, (c, d)〉 : α ∈ P1 and 〈α, c〉 ∈ F1}
∪ {〈α, (c, d)〉 : α ∈ P2 and 〈α, d〉 ∈ F2} ∪ {〈α, t∗〉 | α ∈ P}.

It is easy to check that K is a pseudomodel for L. Now, let H be an intuitionistically valid wff. Since �1 � H
in K1 and K1 is a model, there exists t1 ∈ D1(�1) such that �1 � H ↔ t1 in K1 and hence 〈�1, t1〉 ∈ F1;
similarly, there exists t2 ∈ D2(�2) such that 〈�2, t2〉 ∈ F2. Let α ∈ P such that �1 ≤ α and H ∈ LK(α),
we denote with τ1H the wff of LK1

(α) obtained by replacing every occurrence of t∗ in H with t1 and every
occurrence of (c, d) in H with c. Analogously, given α ∈ P such that �2 ≤ α and H ∈ LK(α), we denote with
τ2H the wff of LK2

(α) obtained by replacing every occurrence of t∗ in H with t2 and every occurrence of (c, d)
in H with d. It is easy to prove, by induction on the structure of H , the following facts:

(i) For every α ∈ P such that �1 ≤ α and every H ∈ LK(α), α � H in K iff α � τ1H in K1.

(ii) For every α ∈ P such that �2 ≤ α and every H ∈ LK(α), α � H in K iff α � τ2H in K2.
To prove that K is a model for L we have to show that, for every α ∈ P and every closed H ∈ LK(α), there
exists a constant cH ∈ D(α) such that α � H ↔ cH in K. Let us suppose that �1 ≤ α. Since K1 is a model and
τ1H ∈ LK1

(α), there exists c ∈ D1(α) such that α � τ1H ↔ c in K1. Since τ1(H ↔ c) ≡ τ1H ↔ c, by (i) it
follows that α � H ↔ c in K . The proof is similar if �2 ≤ α. Now, let us suppose that α ≡ �. If � � H in K ,
then cH ≡ t∗ is the required constant. Let us assume that � � H . Since H ∈ LK(�1) ∩ LK(�2), by the above
discussion there exist c ∈ D(�1) and d ∈ D(�2) such that �1 � H ↔ c in K and �2 � H ↔ d in K. Since
τ1(H ↔ c) ≡ τ1(H ↔ (c, d)), by (i) we get �1 � H ↔ (c, d) in K; similarly �2 � H ↔ (c, d) in K . Let us
prove that � � H ↔ (c, d) in K . Let α ≥ � such that α � H ; then α ≥ �1 or α ≥ �2, hence α � (c, d). Let
α ≥ � such that α � (c, d); then (by definition of F ) α ≥ �1 or α ≥ �2, hence α � H in K . This proves that K
is a model. To conclude the proof we must show that � � A ∨ B in K. But, �1 � A by (i) (being τ1A ≡ A) and
�2 � B by (ii) (being τ2A ≡ A); therefore � � A ∨ B in K.
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We remark that, differently from the case of first order intuitionistic logic, the above proof cannot be directly
extended to the case of explicit definability. We need some auxiliary definitions and results. Given a wff A, we
denote with A[H/c] the wff obtained by replacing every occurrence of the constant symbol c in A with the wff H .
This notation extends in the obvious way to swff’s and sets of swff’s. It is easy to prove the following result:

Lemma 4.2 Let K be a model, let S be a set of swff’s and let H1, H2 be any two wff’s. For every element α
of K, α � S[H1/c], T(H1 ↔ H2) implies α � S[H2/c].

In the proof of explicit definability we use the following fact:

Lemma 4.3 Let S be a set of swff’s, let H be a closed wff and let c be a constant symbol not occurring in H .
S[H/c] is realizable iff S,T(H ↔ c) is realizable.

P r o o f. Let K be a model and α an element of K such that α � S,T(H ↔ c). From Lemma 4.2 it immedi-
ately follows that S[H/c] is realizable in K. Conversely, let K = 〈P,≤,D,F〉 and α ∈ P such that α�S[H/c].
Since K is a model, there exists d ∈ D(α) such that α � H ↔ d. If d ≡ c, by Lemma 4.2 we get α � S,
hence S,T(H ↔ c) is realizable in K. If d �≡ c, let c′ be a constant symbol not occurring in LK and let
K ′ = 〈P,≤,D′,F ′〉 be the model where D′ and F ′ are defined as follows:

D′(γ) =

{
D(γ) if c /∈ D(γ),
D(γ) ∪ {c′} otherwise,

〈γ, b〉 ∈ F ′ iff one of following cases holds: b �≡ c and b �≡ c′ and 〈γ, b〉 ∈ F ,

b ≡ c and 〈γ, d〉 ∈ F ,

b ≡ c′ and 〈γ, c〉 ∈ F .

Given a wff A of LK′ , let us denote with τA the wff of LK obtained by replacing every occurrence of c with d
and every occurrence of c′ with c. It is easy to check that, for every β ∈ P and for every closed A ∈ LK′(β),
β � A in K ′ iff β � τA in K. Since α � H ↔ d in K and τ(H ↔ c) ≡ H ↔ d (indeed, c and c′ do not
occur in H), we get α � H ↔ c in K′. Since α � S[H/c] in K and τ(S[H/c]) ≡ S[H/c] (indeed, c and c′

do not occur in S[H/c]), we get α � S[H/c] in K ′. From Lemma 4.2 we deduce that α � S in K′ and hence
α � S,T(H ↔ c) in K ′.

To prove the explicit definability property, we show how to construct a countermodel for a closed wff ∃p A(p)
of L over the set C of constant symbols, assuming that

(i) For every closed wff H of L, A(H/p) /∈ Ipl2.

We assume, without loss of generality, that C is denumerable.
Our proof shows how to build a countermodel for ∃p A(p) starting from a family K of countermodels for the

formulas A(H/p). The essential point of the proof is to select the countermodels of K in such a way that, for
every closed formula H of L there exists a constant cH such that H ↔ cH is valid in every model of K. This
means that every closed wff H is simulated by the same constant symbol cH in every model of K. To build up
the countermodel K for ∃p A(p), we glue together the models of K adding a root � whose domain contains the
constant symbols cH .

Let H1, H2, . . . be an enumeration of the closed wff’s of L. Since C is denumerable, we can define the set
of swff’s S = {T(H1 ↔ c1), T(H2 ↔ c2), . . . }, where c1, c2, . . . are constant from C and, for every n ≥ 1,
cn does not occur in H1 ↔ c1, . . . , Hn−1 ↔ cn−1, Hn and in ∃p A(p). We remark that S establishes a one-
to-one correspondence between the closed formulas of L and the constant symbols of C. Let d1, d2, . . . be an
enumeration of the constant symbols of C. For every n ≥ 1, let Sn = {FA(dn/p)} ∪ S. We prove the following
non-trivial fact:

(ii) For every n ≥ 1, Sn is realizable.

Indeed, let us suppose that Sn is not realizable. Then, by the Compactness Theorem, there exists k ≥ 1 such that
Φ = {FA(dn/p),T(H1 ↔ c1), . . . ,T(Hk ↔ ck)} is not realizable. We have two cases.
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C a s e 1 . dn �≡ c1, . . . , dn �≡ ck. By Lemma 4.3, {FA(dn/p)} is not realizable, hence A(dn/p) ∈ Ipl2 and
this contradicts (i).

C a s e 2 . dn ≡ cj for some 1 ≤ j ≤ k. In this case Φ can be rewritten as

Φ = {FA(cj/p),T(H1 ↔ c1), . . . ,T(Hj ↔ cj), . . . ,T(Hk ↔ ck)}.

If j > 1, we can apply Lemma 4.3 to get the non realizable set

{FA(cj/p),T(H1
2 ↔ c2), . . . ,T(H1

j ↔ cj), . . . ,T(H1
k ↔ ck)},

where, for all 2 ≤ i ≤ k, H1
i ≡ Hi[H1/c1]. We can iterate the above procedure (j − 2) times (for instance, in

the next step c2 does not occur in H1
2 ) until we get the non realizable set

{FA(cj/p),T(Hj−1
j ↔ cj), . . . ,T(Hj−1

k ↔ ck)}

(note that, if j = 1 this set coincides with Φ). Applying Lemma 4.3 one more time (noticing that cj does not
occur in ∃p A(p)), we get the non realizable set {FA(Hj−1

j /p),T(Hj
j+1 ↔ cj+1), . . . ,T(Hj

k ↔ ck)}. Since

cj+1, . . . , ck do not occur in A(Hj−1
j /p), further applications of Lemma 4.3 allow us to deduce that the set

{FA(Hj−1
j /p)} is not realizable. Thus A(Hj−1

j /p) ∈ Ipl2 against (i). This concludes the proof of (ii).

We use the sets Sn to define the family of countermodels K. By (ii), for every n ≥ 1 there exists a model
Kn = 〈Pn,≤n,Dn,Fn〉 with root �n such that �n � Sn in Kn. Let K = 〈P,≤,D,F〉 be the structure defined
as follows:

P =
⋃

n≥1 Pn ∪ {�} where � is a new element, ≤ =
⋃

n≥1 ≤n ∪{(�, α) : α ∈ P},

D(α)=

{
Dn(α) if α ∈ Pn,

C if α ≡ �,
F =

⋃
n≥1 Fn ∪ {〈�, c∗〉},

where c∗ is the constant symbol of C such that T(∀p (p → p) ↔ c∗) belongs to S (note that c∗ is the only
constant forced in �).

It is immediate to check that K is a pseudomodel for L. Moreover, for every α ∈ Pn and B ∈ LKn
(α),

α � B in Kn iff α � B in K . Let us prove that K is a model for L, that is, for every α ∈ P and every closed
wff B of LK(α), there exists a constant b ∈ D(α) such that α � B ↔ b in K. If α ∈ Pn, the assertion holds
since Kn is a model. Let us assume that α ≡ �. If � � B in K , then b ≡ c∗ is the required constant. Let us
assume that � � B. Since B is a closed wff of LK(�) and LK(�) = L, there exists k ≥ 1 such that B ≡ Hk and
T(Hk ↔ ck) ∈ S. It follows that B is simulated by ck in all models Kn; indeed, �n � S in Kn for every n ≥ 1,
hence �n � Hk ↔ ck for every n ≥ 1. Let α ≥ � such that α � Hk. Since α �= �, there exists j ≥ 1 such that
�j ≤ α, hence α � ck. Let α ≥ � such that α � ck. Clearly ck �= c∗ (since Hk �≡ ∀p (p → p)), hence �j ≤ α
for some j ≥ 1; thus α � Hk. This implies that � � Hk ↔ ck, hence K is a model for L.

Now, let us assume that � � ∃p A(p). Then there exists b ∈ D(�) such that � � A(b/p). On the other hand,
there exists j ≥ 1 such that b ≡ dj , hence �j � A(dj/p). But this yields a contradiction since FA(dj/p) ∈ Sj

and �j � Sj . We can conclude:

Theorem 4.4 If ∃p A(p) ∈ Ipl2, with ∃p A(p) a closed wff, then there exists a closed wff H such that
A(H/p) ∈ Ipl2.

5 Soundness and completeness of T -Ipl2

To conclude the paper we prove that the tableau calculus T -Ipl2 is sound and complete with respect to Ipl2.
As usual, the main step of the Soundness Theorem consists in proving that the rules of the calculus preserve

realizability.

Lemma 5.1 Let S be a set of swff’s, let K = 〈P,≤,D,F〉 be a model, and let α ∈ P such that α � S. If R

is a rule of T -Ipl2 applicable to S, then there exist a set S′ in the configuration obtained by applying R to S, a
model K ′ = 〈P ′,≤′,D′,F ′〉, and β ∈ P ′ such that β � S′.
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P r o o f. The proof requires a careful analysis of the various rules; we only analyze some relevant cases.
Special-rule: Let S, T(H ↔ a) be the configuration obtained by applying the special-rule to S. Here we

assume, without loss of generality, that a is not a constant symbol of LK . Since H is a closed wff of LK(α) and
K is a model, there exists a constant c ∈ D(α) such that α � H ↔ c. Now, let us consider the pseudomodel
K ′ = 〈P,≤,D′,F ′〉 where

D′(γ) =

{
D(γ) if c /∈ D(γ),
D(γ) ∪ {a} otherwise,

F ′ = F ∪ {〈γ, a〉 : 〈γ, c〉 ∈ F}.

It is easy to check that, for every γ ∈ P and every B(p) ∈ LK′(γ) such that a does not occur in B(p),
γ � B(a/p) in K ′ iff γ � B(c/p) in K . This implies that, for all B ∈ LK(γ), γ � B in K ′ iff γ � B in K .
It follows that K′ is a model. Moreover α � S in K′ and α � H ↔ a in K ′ and this concludes the proof.

F∀-rule: We have to prove that ST ,FA(a/p) is realizable. Let us assume, without loss of generality, that a is
not a constant symbol of LK . If α � F∀p A(p), then α � ∀p A(p). Hence there exist β ≥ α and c ∈ D(β) such
that β � A(c/p) (clearly β � ST ). Now, let us consider the pseudomodel K′ = 〈P,≤,D′,F ′〉 where D′ and F ′

are defined as above. Reasoning as in the previous case, we can prove that K ′ is a model and β � ST ,FA(a/p)
in K′.

From the previous lemma it immediately follows that, if a configuration is realizable, then the configuration
obtained by applying to the former configuration one of the rules of T -Ipl2 is realizable. This leads to the
Soundness Theorem. Indeed, let us assume that S is not consistent. Then there exist a finite subset S′ of S and
a closed proof-table for S′. If S is realizable, then there exist a model K = 〈P,≤,D,F〉 and α ∈ P such that
α � S. Hence α � S′ and, by Lemma 5.1, a contradictory set of swff’s is realizable against Proposition 3.1.

Theorem 5.2 (Soundness) Let S be a set of swff’s. If S is realizable, then S is consistent.

The Completeness Theorem has the following form: If a countable set S of closed swff’s is consistent,
then there is a model K together with an element α of K such that α � S. Our proof is based on a general
method allowing us to build up, for every consistent set S of swff’s, a model K(S) whose root realizes S. The
construction of K(S) consists of two main steps. In the first step, starting from a consistent set of swff’s S, we
construct two sets S∗ and S, called the saturated set of S and the node set of S, respectively. The set S will
be the root of the model K(S), and the swff’s in S will determine the forcing relation in S. In the second step
we construct the successor sets of S. The model K(S) will be constructed by iterating the two steps on the new
elements, and so on.

Given a swff H , we call extension(s) of H the set(s) R1
H , . . . ,Rn

H (where n ∈ {1, 2}) coinciding with the sets
in the configuration obtained by applying the rule related to H in T -Ipl2 to the configuration {H}. Moreover,
given a set S of swff’s we denote with Π(S) the set of the constant symbols occurring in the swff’s of S.

Given a countable and consistent set S of closed swff’s and a set Π of constant symbols including Π(S), let
C′ be a denumerable set of constants such that Π ∩ C′ = ∅. We take from C′ the constant symbols needed to
build up the saturated set of S. It is easy to check that under the above assumptions C′ contains enough symbols
to construct such a set.

Let L be the language over the set of constants Π ∪ C′ and let us consider an enumeration εS: A1, . . . , An, . . .
of the swff’s of S and an enumeration εL: Φ1, . . . , Φn, . . . of the closed wff’s of L. We inductively define a
sequence {Si}i∈ω whose elements are sets of closed swff’s as follows: S0 = ∅. Given Si = {H1, H2, . . . } and
given c ∈ C′ such that c does not occur in Π ∪ Π(

⋃
h≤i Sh) and in Φi+1, then

Si+1 =
⋃

Hj∈Si
U(Hj , i) ∪ {Ai+1,T(Φi+1 ↔ c)},

where, setting

S′
j =U(H1, i) ∪ · · · ∪ U(Hj−1, i) ∪ {Hj, Hj+1 . . . , Ai+1, Ai+2, . . . },

Π′
j =Π ∪ Π(

⋃
h≤i Sh) ∪ Π(U(H1, i) ∪ · · · ∪ U(Hj−1, i)) ∪ {c} ∪ Π({Φi+1}),

the set U(Hj , i) is defined as follows:
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1. If Hj is a swff of the kind T(A∧B), F(A∧B), T(A∨B), F(A∨B) or T(A → B), then U(Hj , i) = RHj ,
where RHj is any extension of Hj such that (S′

j \ {Hj}) ∪ RHj is consistent.

2. If Hj ≡ T∀p A(p), then U(Hj , i) is {T∀p A(p),TA(c1/p),TA(c2/p), . . . }, where {c1, c2, . . . } = Π′
j .

3. If Hj ≡ F∃p A(p), then U(Hj , i) is {F∃ pA(p),FA(c1/p),FA(c2/p), . . . }, where {c1, c2, . . . } = Π′
j .

4. If Hj ≡ T∃p A(p), then U(Hj , i) is {TA(d/p)}, where d ∈ C′ and d /∈ Π′
j .

5. In all the other cases U(Hj , i) = {Hj}.

It is easy to prove, by induction on i ≥ 0, that if S is consistent, then every Si is consistent. Hence, it is always
possible to find a set U(Hj , i) satisfying the above conditions.

The saturated set of S w. r. t. Π is the set S∗ =
⋃

i≥0 Si. We remark that such a set is not unique since different
choices of the enumerations εS and εL give rise to different S∗.

Given a set of swff’s V , we say that a swff H ∈ V is final in V iff one of the following cases holds:

· H is either of the form Tc or Fc, with c a constant symbol or c ≡ ⊥;

· H is either of the form F(A → B), T∀pA(p) or F∀p A(p);
· H is of the form T(A → B) and TB /∈ V .

The node set of S w. r. t. Π is the set S = {H : H is final in S∗} We also call S the node set related to S∗.
Since any finite subset of S is contained in some Si, it follows that S is consistent.

Given a node set S of a consistent set of swff’s S, the successor sets of S are defined as follows:

· If F(A → B) ∈ S, then ST ∪ {TA,FB} is a successor set of S.

· If F∀p A(p) ∈ S and c is a constant symbol such that c /∈ Π(S∗), then ST ∪ {FA(c/p)} is a successor set
of S.

Given a consistent set S of closed swff’s of L, the structure K(S) = 〈P,≤,D,F〉 is defined as follows:

· Let S be a node set of S w. r. t. Π(S), then S ∈ P and D(S) = Π(S∗).
· For every Γ ∈ P and every successor set U of Γ, let U be a node set of U w. r. t. D(Γ) ∪ Π(U). Then U

belongs to P , U is an immediate successor of Γ and D(U ) = Π(U∗).
· ≤ is the transitive and reflexive closure of the immediate successor relation.

· For every Γ ∈ P and for every c ∈ D(Γ), 〈Γ, c〉 ∈ F iff Tc ∈ Γ.

It is easy to check that K(S) is a pseudomodel forL. In particular, Γ ≤ ∆ implies D(Γ) ⊆ D(∆). Indeed, if ∆
is an immediate successor of Γ, then ∆ is the node set w. r. t. D(Γ) ∪ Π(∆) of a successor set ∆ of Γ. Hence, the
set ∆∗ contains a swff of the kind T(c ↔ d) for every constant symbol c ∈ D(Γ), thus D(Γ) ⊆ Π(∆∗) = D(∆).
As for the valuation relation, if 〈Γ, c〉 ∈ F , then Tc ∈ Γ and, being Tc ∈ ΓT , Tc belongs to every successor set
U of Γ. Moreover, since Tc ∈ U implies that Tc is final in U∗, Tc ∈ U . Thus, 〈Γ, c〉 ∈ F implies 〈∆, c〉 ∈ F
for every ∆ ≥ Γ.

Now, we prove the main lemma:

Lemma 5.3 Let S be a countable and consistent set of closed swff’s and let K(S) = 〈P,≤,D,F〉 be the
pseudomodel defined above. For every Γ ∈ P and for every swff H ∈ Γ∗, Γ � H .

P r o o f. The proof is by induction on the structure of H .
Basis. If H ≡ Sc ∈ S∗ with c a constant symbol and S ∈ {T,F}, then, since Sc is a final swff in Γ∗, Sc ∈ Γ.

If S is T, then Tc is realized in Γ by the definition of forcing; if S is F, then, since Γ is consistent, Tc cannot
belong to Γ, hence Γ �� c, which implies that Fc is realized in Γ.

Step. The proof goes on by cases according to the structure of H . Here we only give some illustrative
examples.

C a s e H ≡ T(A → B). We have to prove that, for every ∆ such that Γ ≤ ∆, either ∆ �� A or ∆ � B. Let
us consider ∆ ≥ Γ, we have two cases:

1. If FA ∈ ∆∗ then, by induction hypothesis, ∆ �� A.

2. If FA /∈ ∆∗, then there exists Θ ∈ P such that Γ ≤ Θ ≤ ∆, {T(A → B),TB} ⊆ Θ∗ and T(A → B) /∈ Θ.
By induction hypothesis Θ � TB, hence ∆ � B.
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C a s e H ≡ F∀p A(p). Since H is final in Γ∗, H belongs to Γ. By construction there exists an immediate
successor ∆ of Γ which is the node set of a successor set ∆ of Γ containing a swff FA(c/p). Since FA(c/p) ∈
∆∗, by induction hypothesis ∆ � FA(c/p) and hence Γ � ∀p A(p).

Now, given a consistent set S of closed swff’s, let Γ be any element of K(S) and let A be any closed wff
of LK(S)(Γ). By construction of Γ∗ there exists a constant c of LK(S)(Γ) such that T(A ↔ c) ∈ Γ∗. By the
previous lemma Γ � T(A ↔ c), hence Γ � A ↔ c. Thus we have:

Lemma 5.4 Let S be a countable and consistent set of closed swff’s. The structure K(S) = 〈P,≤,D,F〉
defined above is a model.

By Lemmas 5.3 and 5.4 it immediately follows:

Theorem 5.5 (Completeness) Let S be a countable set of swff’s. If S is consistent, then S is realizable.
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