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HOW MUCH SWEETNESS IS THERE IN THE UNIVERSE?

ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Abstract. We continue investigations of forcing notions with strong ccc prop-
erties introducing new methods of building sweet forcing notions. We also
show that quotients of topologically sweet forcing notions over Cohen reals are
topologically sweet while the quotients over random reals do not have to be
such.

0. Introduction

One of the main ingredients of the construction of the model for all projective sets
of reals have the Baire property presented in Shelah [7, §7] was a strong ccc property
of forcing notions called sweetness. This property is preserved in amalgamations and
also in compositions with the Hechler forcing notion D and the Universal Meager
forcing UM (see [7, §7]; a full explanation of how this is applied can be found in
[3]). Stern [10] considered a slightly weaker property, topological sweetness, which
is also preserved in amalgamations and compositions with D and UM. We further
investigated the sweet properties of forcing notions in [6, §4], where we introduced
a new property called iterable sweetness and we showed how one can build sweet
forcing notions. New examples of iterably sweet forcing notions can be used in
constructions like [7, §7], [9], but it could be that there is no need for this — the
old forcing notions could be adding generic objects for all of them. In [4] we proved
that this is exactly what happens with the natural examples of sweet forcing notions
determined by the universality parameters as in [6, §2.3]: a sequence Cohen real —
dominating real — Cohen real produces generic filters for many of them.

In the present paper we show that sweetness is not so rare after all and we give
more constructions of sweet forcing notions. In the first section we present a new
method of building sweet forcing notions and we give our first example: a forcing
notion QT sc

associated with scattered subtrees of 2<ω. We do not know if the
iterations of “old” forcing notions add generic objects for QT sc

, but in Proposition
1.8 we present an indication that this does not happen. In the second section we
use our method to introduce two large families of sweet forcing notions, in some
sense generalizing the known examples from [6]. This time we manage to show
that some of our forcing notions are really new by showing that we have too many
different examples (in Theorems 2.9, 2.14).

In the last section of the paper we investigate the preservation of topological
sweetness under some operations. We note that a complete subforcing of a topolog-
ically sweet separable partial order is equivalent to a topologically sweet forcing (in
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Proposition 3.5). We also show that the quotient of a topologically sweet forcing
notion by a Cohen subforcing is topologically sweet (Theorem 3.7), but quotients
by random real do not have to be topologically sweet (Corollary 3.10).

0.1. Notation. Our notation is rather standard and compatible with that of clas-
sical textbooks (like Jech [2] or Bartoszyński and Judah [1]). In forcing we keep the
older convention that a stronger condition is the larger one. Our main conventions
are listed below.

(1) For a forcing notion P, ΓP stands for the canonical P–name for the generic
filter in P. With this one exception, all P–names for objects in the extension
via P will be denoted with a tilde below (e.g., τ

˜
, X
˜
).

The weakest element of P will be denoted by ∅P (and we will always assume
that there is one and that there is no other condition equivalent to it).

(2) The complete Boolean algebra determined by a forcing notion P is denoted
by BA(P). For a complete Boolean algebra B, B+ is B \ {0B} treated as
a forcing notion (so the order is the reverse Boolean order). Also, for a
formula ϕ, the Boolean value (with respect to B) of ϕ will be denoted by
[[ϕ]]B.

(3) Ordinal numbers will be denoted be the lower case initial letters of the Greek
alphabet (α, β, γ, δ . . .) and also by i, j (with possible sub- and superscripts).
Cardinal numbers will be called κ, λ, µ.

(4) For two sequences η, ν we write ν ⊳ η whenever ν is a proper initial segment
of η, and ν E η when either ν ⊳ η or ν = η. The length of a sequence η is
denoted by lh(η).

(5) The quantifier (∃∞n) is an abbreviation for (∀m ∈ ω)(∃n > m).
(6) The Cantor space 2ω and the Baire space ωω are the spaces of all functions

from ω to 2, ω, respectively, equipped with the natural (Polish) topology.

0.2. Background on sweetness. Let us recall basic definitions related to sweet
forcing notions.

Definition 0.1 (Shelah [7, Def. 7.2]). A pair (P, Ē) ismodel of sweetness whenever:

(i) P is a forcing notion,
(ii) Ē = 〈En : n < ω〉, each En is an equivalence relation on P such that P/En

is countable,
(iii) equivalence classes of each En are ≤P–directed, En+1 ⊆ En,
(iv) if {pi : i ≤ ω} ⊆ P, pi Ei pω (for i ∈ ω), then

(∀n ∈ ω)(∃q ≥ pω)(q En pω & (∀i ≥ n)(pi ≤ q)),

(v) if p, q ∈ P, p ≤ q and n ∈ ω, then there is k ∈ ω such that

(∀p′ ∈ [p]Ek
)(∃q′ ∈ [q]En

)(p′ ≤ q′).

If there is a model of sweetness based on P, then we say that P is sweet.

Definition 0.2 (Stern [10, Def. 1.2]). A model of topological sweetness is a pair
M = (P,B) such that P = (P,≤) is a forcing notion, B is a countable basis of a
topology τ on P and

(i) ∅P is an isolated point in τ ,
(ii) if a sequence 〈pn : n < ω〉 ⊆ P is τ–converging to p ∈ P, q ≥ p and W is a

τ–neighbourhood of q, then there is a condition r ∈ P such that
(a) r ∈ W , r ≥ q,
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(b) the set {n ∈ ω : pn ≤ r} is infinite.

If there is a model of topological sweetness (P,B), then the forcing notion P is
topologically sweet.

Lemma 0.3 (See [6, Lemma 4.2.3]). Assume that (P,B) is a model of topological
sweetness.

(1) If p, q ∈ P, p ≤ q and q ∈ U ∈ B, then there is an open neighbourhood V of
p such that

(∀r ∈ V )(∃r′ ∈ U)(r ≤ r′).

(2) If m ∈ ω, p ∈ U ∈ B, then there is an open neighbourhood V of p such that
any p0, . . . , pm ∈ V have a common upper bound in U .

Definition 0.4 (See [6, Def. 4.2.1]). Let B be a countable basis of a topology on
a forcing notion Q. We say that (Q,B) is a model of iterable sweetness if

(i) B is closed under finite intersections,
(ii) each U ∈ B is directed and p ≤ q ∈ U ⇒ p ∈ U ,
(iii) if 〈pn : n ≤ ω〉 ⊆ U and the sequence 〈pn : n < ω〉 converges to pω (in

the topology generated by B), then there is a condition p ∈ U such that
(∀n ≤ ω)(pn ≤ p).

Proposition 0.5 (See [6, Proposition 4.2.2]). If P is a sweet forcing notion in
which any two compatible conditions have a least upper bound, then P is iterably
sweet.

1. sw–closed families and scattered trees

In this section we present a new method of building sweet forcing notions. This
method is, essentially, a generalization of that determined by the universality pa-
rameters of [6, §2.3].

Definition 1.1. (1) A tree is a family T of finite sequences such that for some
root(T ) ∈ T we have

(∀ν ∈ T )(root(T ) E ν) and root(T ) E ν E η ∈ T ⇒ ν ∈ T.

(2) If η is a node in the tree T then

succT (η) = {ν ∈ T : η ⊳ ν & lh(ν) = lh(η) + 1} and
T [η] = {ν ∈ T : η E ν}.

(3) For a tree T , the family of all ω–branches through T is denoted by [T ], and
we let

max(T )
def
= {ν ∈ T : there is no ρ ∈ T such that ν ⊳ ρ}

and

split(T )
def
= {ν ∈ T : |succT (ν)| ≥ 2}.

(4) A tree T is normal if max(T ) = ∅ and root(T ) = 〈〉.

Definition 1.2. Suppose that T is a family of normal subtrees of ω<ω. We say
that T is sw–closed whenever

(1) if T1 ∈ T , T2 ⊆ T1 and T2 is a normal tree, then T2 ∈ T ,
(2) if T1, T2 ∈ T , then T1 ∪ T2 ∈ T , and
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(3) if 〈Tn : n ≤ ω〉 ⊆ T is such that
(

∀n < ω
)(

Tω ∩ ω≤n = Tn ∩ ω≤n),
then

⋃

n≤ω

Tn ∈ T .

Definition 1.3. For a family T of normal subtrees of ω<ω we define a forcing
notion QT as follows.
A condition in QT is a pair p = (Np, T p) such that Np < ω and T p ∈ T .
The order ≤QT of QT is given by

p ≤QT q if and only if

Np ≤ N q, T p ⊆ T q and T q ∩ ωN
p
= T p ∩ ωN

p
.

The relation between the forcing QT and the family T is similar to that in the
case of the Universal Meager forcing notion UM and nowhere dense subtrees of
2<ω. Note that QT does not have to be ccc in general, however in many natural
cases it is.

Proposition 1.4. Assume that T is an sw–closed family of normal subtrees of ω<ω

such that every T ∈ T is finitely branching. Then QT is a sweet forcing notion in
which any two compatible conditions have a least upper bound (and consequently
QT is iterably sweet).

Proof. One easily verifies that QT is indeed a forcing notion and that any two
compatible conditions in QT have a least upper bound.
For an integer n < ω let En be a binary relation on QT defined by

q En p if and only if

N q = Np and T q ∩ ω≤ N q + n = T p ∩ ω≤ N q + n,
and let Ē = 〈En : n < ω〉. We claim that (QT , Ē) is a model of sweetness.
Conditions 0.1(i–iii) should be clear. To verify 0.1(iv) suppose that pi ∈ QT for
n ≤ i ≤ ω are such that pi Ei pω (for i < ω). Thus, for n ≤ i < ω, Npi = Npω and

T pi ∩ ω≤ Npi + i = T pω ∩ ω≤ Npω + i.

Put N = Npω and T =
⋃

{T pi : n ≤ i ≤ ω}. It follows from 1.2(3) that T ∈ T ,
and plainly q = (N, T ) ∈ QT , q En pω and (∀i ≥ n)(pi ≤ q), finishing justification
of 0.1(iv).

Finally, to check 0.1(v) suppose that p, q ∈ QT , p ≤ q and n < ω. Let k = N q+n.
It should be clear that (∀p′ ∈ [p]Ek

)(∃q′ ∈ [q]En
)(p′ ≤ q′). �

Now we are going to present our first example of an sw–closed family: the family
of scattered subtrees of 2<ω.

Definition 1.5. (1) For a closed setA ⊆ 2ω, let rk(A) be the Cantor–Bendixson
rank of A, that is

rk(A) = min{α < ω1 : Aα = Aα+1},

where Aα denotes the αth Cantor–Bendixson derivative of A.
(2) We say that a tree T ⊆ 2<ω is scattered if it is normal and [T ] is countable.

The family of all scattered subtrees of 2<ω will be denoted by T sc.
(3) For a scattered tree T ⊆ 2<ω , let gT : [T ] −→ rk([T ]) and hT : [T ] −→ ω

be such that for each η ∈ [T ] we have

gT (η) = min{α < rk(T ) : η /∈ [T ]α+1}
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and

hT (η) = min{m < ω :
(

∀ν ∈ [T ]
)(

ν↾m = η↾m ⇒ (η = ν ∨ gT (ν) < gT (η)
)

}.

Proposition 1.6. Let T ⊆ 2<ω be a normal tree. Then T is scattered if and only
if there is a mapping ϕ : T −→ ω1 such that

(⊛)0ϕ,T

(

∀η, ν ∈ T
)(

ν ⊳ η ⇒ ϕ(ν) ≥ ϕ(η)
)

, and

(⊛)1ϕ,T

(

∀η ∈ split(T )
)(

ϕ(η⌢〈0〉) < ϕ(η) ∨ ϕ(η⌢〈1〉) < ϕ(η)
)

.

Proof. It should be clear that if there is a function ϕ : T −→ ω1 such that (⊛)0ϕ,T +

(⊛)1ϕ,T holds true, then the tree T contains no perfect subtree and hence T is
scattered.

We will show the converse implication by induction on rk(T ).
Suppose that T is a scattered tree. Choose {ηℓ : ℓ < n} ⊆ [T ], n < ω, such that

F
def
= {ηℓ↾hT (ηℓ) : ℓ < n} is a front of T and let

A
def
=

{

ρ ∈ T :
(

∃ℓ < n
)(

hT (ηℓ) < lh(ρ) & ρ↾(lh(ρ)− 1) ⊳ ηℓ & ρ ⋪ ηℓ
)}

.

Note that if ℓ < n, ν ∈ [T ] \ {ηℓ} and ν↾hT (ηℓ) = ηℓ↾h
T (ηℓ), then gT (ν) < gT (ηℓ).

Hence
(

∀ρ ∈ A
)(

rk(T [ρ]) < rk(T )
)

, so by the inductive hypothesis for each ν ∈ A

we may choose ϕν : T [ν] −→ ω1 such that (⊛)0
ϕν ,T [ν] + (⊛)1

ϕν ,T [ν] holds true. Put

α∗ = sup{ϕν(ν) : ν ∈ A} < ω1, k
∗ = max{hT (ηℓ) : ℓ < n}+ 1 and let ϕ : T −→ ω1

be defined by

ϕ(η) =















α∗ + k∗ − lh(η) if no initial segment of η belongs to F , and
α∗ + 1 if an initial segment of η belongs to F

but no initial segment of η belongs to A, and
ϕν(η) if ν ∈ A and ν E η.

One easily verifies that the function ϕ (is well defined and) satisfies (⊛)0ϕ,T +(⊛)1ϕ,T .
�

Proposition 1.7. T sc is an sw–closed family and consequently QT sc

is iterably
sweet.

Proof. Plainly T sc satisfies the conditions (1) and (2) of 1.2.
To verify 1.2(3) suppose that 〈Tn : n ≤ ω〉 ⊆ T sc is a sequence of scattered trees

such that
(

∀n < ω
)(

Tω ∩ 2≤n = Tn ∩ 2≤n). Let T =
⋃

n≤ω

Tn. We are going to

show that T is a scattered tree, and for this we have to show that [T ] is countable.

Note that if n < ω, ν ∈ 2<ω \ Tω and lh(ν) ≤ n, then ν /∈ Tn. Therefore, if

ν ∈ 2<ω \ Tω then [ν] ∩ [T ] ⊆
⋃

{[Tn] : n < lh(ν)}, so [ν] ∩ [T ] is countable. Hence
[T ] \ [Tω] is countable and thus (since [Tω] is countable) so is [T ].

The “consequently” part follows from 1.4 (remember that members of T sc are

subtrees of 2<ω so finitely branching). �

Recall that a forcing notion P has ℵ1–caliber if for every uncountable family
F ⊆ P there is a condition p ∈ P such that

∣

∣

{

q ∈ F : q ≤ p
}∣

∣ = ℵ1 (see Truss [11]).

Proposition 1.8. (1) If a forcing notion P has ℵ1–caliber, then in VP there

is no tree T ⊆ 2<ω such that
(a) for every α < ω1 there is a countable closed set A ⊆ 2ω coded in V

such that rk(A) = α and A ⊆ [T ], and
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(b) T includes no perfect subtree from V.
Consequently, P does not add generic object for QT sc

.
(2) If b > ℵ1, then neither the Hechler forcing notion D nor its composition

D ∗ C with the Cohen real forcing add generic objects for QT sc

.

Proof. (1) Suppose toward contradiction that P has an ℵ1–caliber, p ∈ P and T
˜is a P–name for a subtree of 2<ω such that the condition p forces that both (a)

and (b) of 1.8(1) hold true for T
˜
. Then for each α < ω1 we may choose a scattered

tree Tα ⊆ 2<ω and a condition pα ∈ P such that (Tα ∈ V and)

rk([Tα]) = α and p ≤ pα and pα P “ Tα ⊆ T
˜

”.

Since P has an ℵ1–caliber we find a condition p∗ ∈ P such that the set

Y
def
= {α < ω1 : pα ≤ p∗}

is uncountable. Put T ∗ =
⋃

α∈Y

Tα. Clearly T ∗ is a non-scattered tree and (T ∗ ∈ V

and) p∗  T ∗ ⊆ T
˜
, contradicting (b).

Concerning the “consequently” part it is enough to note that if T
˜

sc is the canon-
ical QT sc

–name for a subset of 2<ω such that

QT sc “ T
˜

sc =
⋃

{

T p : p ∈ ΓQT sc

}

”,

then “ T
˜

sc is a tree satisfying 1.8(1)(a,b) ”.

(2) If the unbounded number b is greater than ℵ1, then both D and D ∗ C have
the ℵ1–caliber, so part (1) applies. �

Remark 1.9. The forcing notion QT sc

is somewhat similar to the universal forcing
notions discussed in [6, §2.3] and [4]. However it follows from 1.8(2) that if MA
holds true, then the composition C∗D∗C does not add generic real for QT sc

. This is
somewhat opposite to the result presented in [4, Theorem 2.1] and it may indicate
that the answer to the following question is negative.

Problem 1.10. Can a finite composition (or, in general, an FS iteration) of the
Hechler forcing notions add a generic object for QT sc

?

2. More sweet examples

In this section we will present two classes of sw–closed families of trees, producing
many new examples of sweet forcing notions. Let us start with extending the
framework of universality parameters to that of sw–closed families.

The sweet forcing notions determined by the universality parameters were in-
troduced in [6, §2.3]. In [4] we showed that, unfortunately, the use of them may
be somewhat limited because the composition of, say, the Universal Meager forcing
notions adds generic reals for many examples of the forcing notions determined by
universality parameters. However, as we will show here, families of universality pa-
rameters may determine forcing notions which cannot be embedded into the known
examples of sweet forcing notions.

Let us start with recalling definitions concerning universality parameters and the
related forcing notions. We will cut down the generality of [6, §2.3] and we will
quote here the somewhat simpler setting of [4]. Let H be a function from ω to ω\2.
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Definition 2.1. (1) A finite H–tree is a tree S ⊆
⋃

n≤N

∏

i<n

H(i) with N < ω,

root(S) = 〈〉 and max(S) ⊆
∏

i<N

H(i). The integer N may be called the

level of the tree S and it will be denoted by lev(S).
(2) An infinite H–tree is a normal tree T ⊆

⋃

n<ω

∏

i<n

H(i).

Definition 2.2. A simplified universality parameter p for H is a pair (Gp, F p) =
(G, F ) such that

(α) elements of G are triples (S, ndn, nup) such that S is a finite H–tree and
ndn ≤ nup ≤ lev(S), ({〈〉}, 0, 0) ∈ G;

(β) if: (S0, n0
dn, n

0
up) ∈ G, S1 is a finite H–tree, lev(S0) ≤ lev(S1), and

S1 ∩
∏

i<lev(S0)

H(i) ⊆ S0, and n1
dn ≤ n0

dn, n
0
up ≤ n1

up ≤ lev(S1),

then: (S1, n1
dn, n

1
up) ∈ G,

(γ) F ∈ ωω is increasing,
(δ) if:

• (Sℓ, nℓ
dn, n

ℓ
up) ∈ G (for ℓ < 2), lev(S0) = lev(S1),

• S is a finite H–tree, lev(S) < lev(Sℓ), and Sℓ ∩
∏

i<lev(S)

H(i) ⊆ S (for

ℓ < 2),
• lev(S) < n0

dn, n
0
up < n1

dn, F (n1
up) < lev(S1),

then: there is (S∗, n∗
dn, n

∗
up) ∈ G such that

• n∗
dn = n0

dn, n
∗
up = F (n1

up), lev(S
∗) = lev(S0) = lev(S1), and

• S0 ∪ S1 ⊆ S∗ and S∗ ∩
∏

i<lev(S)

H(i) = S.

Definition 2.3. Let p = (G, F ) be a simplified universality parameter for H. We
say that an infinite H–tree T is p–narrow if for infinitely many n < ω, for some
n = ndn < nup we have

(T ∩
⋃

n≤nup+1

∏

i<n

H(i), ndn, nup) ∈ G.

The family of all p–narrow infinite H–trees will denoted by T ∗(p,H).

Proposition 2.4. If p is a simplified universality parameter, then T ∗(p,H) is an
sw–closed family (of finitely branching normal trees). Consequently, QT (p,H) is an
iterably sweet forcing notion.

Proof. It is should be clear that T ∗(p,H) satisfies 1.2(1,2). The proof of 1.2(3) is,
basically, included in the proof of [6, Proposition 4.2.5(3)]. �

The examples of simplified universality parameters include the following.

Definition 2.5 (Compare [4, Definition 1.7, Example 1.9(2)]). Suppose that the
function H is increasing and g ∈ ωω is such that (∀i ∈ ω)(0 < g(i) < H(i)). Let

A ∈ [ω]ω . We define Gg,A
H

as the family consisting of ({〈〉}, 0, 0) and of all triples
(S, ndn, nup) such that

(α) S is a finite H–tree, ndn ≤ nup ≤ lev(S), A ∩ [ndn, nup] 6= ∅, and

(β) for some sequence 〈wi : i ∈ A ∩ [ndn, nup]〉 such that wi ∈ [H(i)]≤g(i) (for
i ∈ A ∩ [ndn, nup]) we have

(

∀η ∈ max(S)
)(

∃i ∈ A ∩ [ndn, nup)
)(

η(i) ∈ wi

)

.
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Proposition 2.6. Assume that H, g, A are as in 2.5, and F (n) =
∏

i≤n

H(i)2 (for

n ∈ ω). Then p
g,A
H

def
= (Gg,A

H
, F ) is s simplified universality parameter (and even it

is a regular universality parameter in the sense of [4, Definition 1.14]).

The universality parameters pg,A
H

from 2.6 are related to the strong PP–property
(see [8, Ch VI, 2.12*], compare also with [5, §7.2]). Note that an infinite H–

tree T is p
g,A
H

–narrow if and only if there exist sequences w̄ = 〈wi : i ∈ A〉 and
n̄ = 〈nk : k < ω〉 such that

•
(

∀i ∈ A
)(

wi ⊆ H(i) & |wi| ≤ g(i)
)

, and
• nk < nk+1 < ω for each k < ω, and
•
(

∀η ∈ [T ]
)(

∀k < ω
)(

∃i ∈ A ∩ [nk, nk+1)
)(

η(i) ∈ wi

)

.

It should be clear that the intersection of a family of sw–closed sets of normal
trees is sw–closed. So now we are going to look at the intersections of the families

of pg,A
H

–narrow trees.

Definition 2.7. Let H, g be as in 2.5 and let ∅ 6= B ⊆ [ω]ω .

(1) Put T (B) = T g
H
(B)

def
=

⋂
{

T ∗(pg,B
H

,H) : B ∈ B} and PB = QT (B).
(2) Let T

˜
B be a PB–name such that

PB
“ T
˜
B =

⋃

{

T p : p ∈ ΓPB

}

”.

(3) For a set A ∈ [ω]ω put

SA =
{

η ∈
⋃

n<ω

∏

i≤n

H(i) :
(

∀i ∈ lh(η) ∩A
)(

η(i) = 0
)}

.

Lemma 2.8. Suppose that H, g are as in 2.5.

(1) Let A,C ∈ [ω]ω. Then the tree SA is p
g,C
H

–narrow if and only if A ∩ C is
infinite.

(2) Let ∅ 6= B ⊆ [ω]ω. Then, in VPB , T
˜
B is an infinite H–tree such that

(a) if T ∈ V is an infinite H–tree which is p
g,B
H

–narrow for all B ∈ B,
then there is an n < ω such that

(

∀ν ∈ T
˜
B

)(

∀η ∈ T
)(

n = lh(ν) < lh(η) ⇒ ν⌢η↾[n, lh(η)) ∈ T
˜
B

)

,

(b) if an infinite H–tree T ∈ V is not pg,B
H

–narrow for some B ∈ B, then
(

∀n < ω
)(

∃η ∈ T
)(

lh(η) > n & (∀ν ∈
∏

i<n

H(i))(ν⌢η↾[n, lh(η)) /∈ T
˜
B)
)

.

Theorem 2.9. Suppose that P is a ccc forcing notion, P“ 2ℵ0 = κ ”, κ < 22ℵ0
.

Then there is a family B ⊆ [ω]ω such that P does not add the generic object for the
(iterably sweet) forcing notion PB.

Proof. Note that if U is a uniform ultrafilter on ω, then (∀A,B ∈ U)(|A ∩B| = ω)

and hence, by 2.8(1), for every A ∈ U and every B ∈ U , the tree SA is pg,B
H

–narrow.

Also by 2.8(1), for every A ∈ [ω]ω the tree SA is not p
g,ω\A
H

–narrow.
Now, if U ′,U ′′ ⊆ [ω]ω are two distinct uniform ultrafilters on ω, then we may

pick A ∈ [ω]ω such that A ∈ U ′ and ω \A ∈ U ′′. Then the tree SA

• is pg,B
H

–narrow for every B ∈ U ′, but

• is not p
g,ω\A
H

–narrow, ω \A ∈ U ′′.
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Therefore, by 2.8(2), the interpretations of the names T
˜
U ′ , T

˜
U ′′ by the correspond-

ing generic filters must be different. Since there are 22ℵ0
ultrafilters on ω we easily

get the conclusion. �

Corollary 2.10. There exists an iterably sweet forcing notion Q which cannot be
embedded into the forcing notion constructed in [7, §7].

Let us present now a different class of sw–closed families of normal trees and
corresponding forcing forcing notions.

Definition 2.11. The sw–closure clsw(T ) of the family T is the smallest family

T ∗ of subtrees of ω<ω which includes T and is sw–closed.

Clearly, clsw(T ) is well defined for any family T of normal subtrees of ω<ω.

Lemma 2.12. (1) Suppose that T ∗ is a normal subtree of ω<ω and let T ∗

be the family of all normal subtrees of T ∗. Then T ∗ is sw–closed. Conse-
quently, if T ⊆ T ∗, then clsw(T ) ⊆ T ∗.

(2) Assume that T is an sw–closed family of normal subtrees of ω<ω and
A ⊆ ωω is a closed set. Let

T −(A) =
{

T ∈ T : [T ] ∩ A is nowhere dense in A
}

.

Then T −(A) is sw–closed.

(3) If T is a family of normal subtrees of ω<ω, T ⊆ ω<ω is a normal tree and
(

∀T ′ ∈ T
)(

[T ] ∩ [T ′] is nowhere dense in [T ]
)

,

then T /∈ clsw(T ).

Proof. (1) Should be clear.

(2) Clearly T −(A) is closed under finite unions. Assume now that Tn, Tω ∈ T −(A)

are such that
(

∀n < ω
)(

Tω ∩ ω≤n = Tn ∩ ω≤n) and let T =
⋃

n≤ω

Tn. We want

to show that T ∈ T −(A). Since T is sw–closed we see that T ∈ T , so we need to

show that [T ] ∩ A is nowhere dense in A. To this end let S ⊆ ω<ω be a normal
tree such that A = [S] and suppose that ν ∈ S. Since Tω ∈ T −(A), we may find
η0 ∈ S such that ν ⊳ η0 and η0 /∈ Tω. Then, by our assumptions on 〈Tn : n ≤ ω〉,
also for each k ≥ lh(η0) we have η0 /∈ Tk. Since Tn ∈ T −(A) (for n < lh(η0)), the
set

⋃

n<lh(η0)

[Tn] ∩ A is nowhere dense in A and hence we may find η ∈ S such that

η0 ⊳ η and η /∈
⋃

n<lh(η0)

Tn. Then we also have ν ⊳ η ∈ S and η /∈ T .

(3) Follows from (2). �

Definition 2.13. (1) For a set A ∈ [ω]ω let T A be the collection of all normal

subtrees T of 2<ω such that
(

∀ν ∈ split(T )
)(

lh(ν) ∈ A
)

.

(2) For a family A ⊆ [ω]ω let TA = clsw
(
⋃

{T A : A ∈ A}
)

.

Theorem 2.14. Suppose that P is a ccc forcing notion, P“ 2ℵ0 = κ ”, κ < 22ℵ0
.

Then there is a family A ⊆ [ω]ω such that P does not add the generic object for the
(iterably sweet) forcing notion QTA.

Proof. Let us start with some observations of a more general character.

Claim 2.14.1. Assume that T is an sw–closed family of subtrees of 2<ω such that
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(⊛) for every η ∈ 2ω and T ∈ T we have

T −2 η
def
= {ν ∈ 2<ω : ν +2 (η↾lh(ν)) ∈ T } ∈ T .

Let T
˜
T be a QT –name such that

QT “ T
˜
T =

⋃

{

T p : p ∈ ΓQT

}

”.

Then, in VQT

, T
˜
T is a subtree of 2<ω such that

(1) for every T ∈ T there is an n < ω such that
if ν0 ∈ T∩2n, ν1 ∈ T

˜
T ∩2n, and ν0 ⊳ η ∈ T , then ν1

⌢η↾[n, lh(η)) ∈ T
˜
T ,

(2) for every normal tree T ⊆ 2<ω such that T /∈ T , T ∈ V, we have
(

∀n < ω
)(

∃η ∈ T
)(

lh(η) > n & (∀ν ∈ 2n)(ν⌢η↾[n, lh(η)) /∈ T
˜
T )

)

.

Proof of the Claim. (1) Suppose that p ∈ QT and T ∈ T . Let 〈ηℓ : ℓ < 2N
p

〉
list all elements of 2ω which are constantly zero on [Np, ω). It follows from our
assumption (⊛) that

(

∀ℓ < 2N
p)(

T −2 ηℓ ∈ T & T p −2 ηℓ ∈ T
)

.

Since T is sw–closed we may now conclude that (by 1.2(2))

T0
def
=

⋃

ℓ<2Np

(T −2 ηℓ) ∪
⋃

ℓ<2Np

(T p −2 ηℓ) ∈ T ,

and hence also (by 1.2(1))

T1
def
= {η ∈ T0 : (lh(η) ≤ Np & η ∈ T p) ∨ (lh(η) > Np & η↾Np ∈ T p)} ∈ T .

Now, letting N q = Np and T q = T1 we get a condition q ∈ QT stronger than p and
such that

q  (∀ν0 ∈ T ∩ 2N
q
)(∀ν1 ∈ T

˜
T ∩ 2N

q
)(∀η ∈ T [ν0])(ν1

⌢η↾[N q, lh(η)) ∈ T
˜
T ).

(2) Now suppose that p ∈ QT , n < ω and T ⊆ 2<ω is a normal tree which does
not belong to T . Let N = Np+n and let 〈ηℓ : ℓ < 2N〉 list all elements of 2ω which

are constantly zero on [N,ω). It follows from (⊛) that T0
def
=

⋃

ℓ<2N

(T p −2 ηℓ) ∈ T

and since T /∈ T we may conclude by 1.2(1) that T \ T0 6= ∅. Pick η ∈ T \ T0 6= ∅
and note that necessarily lh(η) > N ≥ n. Letting N q = lh(η) and T q = T0 we get
a condition q ∈ QT stronger than p and such that

q  (∀ν ∈ 2n)(ν⌢η↾[n, lh(η)) /∈ T
˜
T )

)

.

�

Claim 2.14.2. If T is a collection of normal subtrees of 2<ω such that the demand
in 2.14.1(⊛) holds for T , then also clsw(T ) satisfies this condition. Consequently,
for each A ⊆ [ω]ω, (⊛) of 2.14.1 holds true for TA.

Proof of the Claim. Should be clear. �

Claim 2.14.3. Suppose that A ∈ [ω]ω and A ⊆ [ω]ω are such that
(

∀B ∈ A
)(

|A \B| = ω).

Then T A * TA.
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Proof of the Claim. Let T = {ν ∈ 2<ω : (∀n < lh(ν))(ν(n) = 1 ⇒ n ∈ A)}.
Plainly T ∈ T A. Also, for every B ∈ A and T ′ ∈ T B the set [T ] ∩ [T ′] is nowhere
dense in [T ], so by 2.12(3) T /∈ clsw

(
⋃

{T B : B ∈ A}
)

= TA. �

Now choose a family I ⊆ [ω]ω of almost disjoint sets, |I| = 2ℵ0 .
Suppose that A,B ⊆ I, A 6= B, say A ∈ A\B. Then (∀B ∈ B)(|A \B| = ω) and

hence (by Claim 2.14.3) we get T A * TB, so we have a normal tree T ∈ TA \ TB.
Now look at Claim 2.14.1 — by 2.14.2 it is applicable to QTA , QTB and we get from
it that if TA, TB ⊆ 2<ω are trees generic over V for QTA , QTB , respectively, then

•
(

∃n < ω
)(

∀ν ∈ TA ∩ 2n
)(

∀η ∈ T
)(

lh(η) > n ⇒ ν⌢η↾[n, lh(η)) ∈ TA

)

,

•
(

∀n < ω
)(

∃η ∈ T
)(

lh(η) > n & (∀ν ∈ 2n)(ν⌢η↾[n, lh(η)) /∈ TB

)

.

Hence TA 6= TB. Since P satisfies the ccc and P“ 2ℵ0 = κ ” and κ < 22ℵ0
, we may

find a family F of subsets of I such that |F| = κ and

P “ for no A ⊆ I with A /∈ F , there is a QTA–generic filter over V ”.

�

One should note that the examples of sweet forcing notions which cannot be
embedded into the one constructed in [7, §7] which we gave in this section are not
very nice — it may well be that the parameters A,B needed to define them are not
definable from a real. Even the candidate for a somewhat definable example from
the previous section, the forcing notion QT sc

, is not Souslin. Thus the following
variant of [6, Problem 5.5] may be of interest.

Problem 2.15. Is there a Souslin ccc iterably sweet forcing notion Q such that no
finite composition of the Universal Meager forcing notion adds a Q–generic real?
Such that the forcing of [7, §7] does not add Q–generic real?

3. Subforcings, Quotients and likes

Topological sweetness, as defined in 0.2, is a property of particular representation
of a forcing notion. It is only natural to ask if a forcing notion having a topologically
sweet dense subforcing is topologically sweet, or, in general, if a forcing notion
equivalent to a topologically sweet one is topologically sweet. We start this section
with some results in these directions.

Definition 3.1. We say that a forcing notion P has a GLB–property provided that
for every p0, . . . , pk ∈ P, k < ω, there is q ∈ P such that

(α) q ≤ pi for i ≤ k, and
(β) if q∗ ∈ P satisfies (∀i ≤ k)(q∗ ≤ pi), then q∗ ≤ q.

Remark 3.2. If B is a Boolean algebra, then B+ is a forcing notion with the GLB–
property. Also the forcing notions R and A defined in 3.8 later have this property.

Proposition 3.3. Suppose that a forcing notion P has the GLB–property and Q ⊆
P is its dense subforcing. If Q is topologically sweet, then so is P.

Proof. Let (Q,B) be a model of topological sweetness and let τ be the topology on
Q generated by B. For sets U0, . . . , Uk ∈ B, k < ω, define

W (U0, . . . , Uk) = {p ∈ P : (∀i ≤ k)(∃q ∈ Ui)(p ≤ q)},

and let
B∗ =

{

W (U0, . . . , Uk) : k < ω & U0, . . . , Uk ∈ B
}

∪
{

{∅P}
}

.
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It should be clear that

• B∗ is closed under finite intersections, and
• it is a countable basis of a topology τ∗ on P, and
• ∅P is an isolated point in τ∗.

We are going to show that the topology τ∗ satisfies the demand of 0.2(ii). So
suppose that a sequence p̄ = 〈pn : n < ω〉 ⊆ P is τ∗–converging to p ∈ P and
q ≥ p and W is a τ∗–neighbourhood of q. Pick U0, . . . , Uk ∈ B such that q ∈
W (U0, . . . , Uk) ⊆ W and let qi ∈ Ui (for i ≤ k) be such that q ≤ qi. Furthermore,
for i ≤ k, let {V i

n : n < ω} be a basis of τ–neighbourhoods of qi ∈ Q such that
(∀n0 < n1 < ω)(qi ∈ V i

n1
⊆ V i

n0
⊆ Ui).

Since p ∈ W (V 0
n , V

1
n , . . . , V

k
n ) ∈ B∗ (for each n < ω) and the sequence p̄ τ∗–

converges to p, we may choose an increasing sequence 〈mn : n < ω〉 ⊆ ω such that
(

∀n < ω
)(

pmn
∈ W (V 0

n , V
1
n , . . . , V

k
n )

)

. Then we may also pick p∗n,i (for n < ω

and i ≤ k) such that pmn
≤ p∗n,i ∈ V i

n. Fix i ≤ k and look at the sequence

p̄∗i = 〈p∗n,i : n < ω〉: clearly it τ–converges to qi. Consequently, we may easily
choose (be repeated application of 0.2(ii) for τ) conditions q∗i ∈ Q such that

• qi ≤ q∗i ∈ Ui for i ≤ k, and
• (∃∞n < ω)(∀i ≤ k)(p∗n,i ≤ q∗i ).

Since P has the GLB–property we may pick q∗ ∈ P such that

(α) q∗ ≤ qi for i ≤ k, and
(β) if r ∈ P is weaker than q∗0 , . . . , q

∗
k, then r ≤ q∗.

Then, plainly, q∗ ∈ W (U0, . . . , Uk) and q ≤ q∗ and (∃∞n < ω)(pmn
≤ q). �

Proposition 3.4. Assume that P is a topologically sweet forcing notion. Then
there is a model (P,B∗) of topological sweetness such that all members of B∗ are
downward closed.

Proof. Let (P,B) be a model of topological sweetness. For U ∈ B put W (U) =
{p ∈ P : (∃q ∈ U)(p ≤ q)}, and let B∗ = {W (U) : U ∈ B}. Note that if p ∈
W (U0) ∩ W (U1) and p ≤ p0 ∈ U0, p ≤ p1 ∈ U1, then there is V ∈ B such that
p ∈ V and V ⊆ W (U0)∩W (U1) (remember 0.3(1)). Hence we easily conclude that
B∗ is a base of a topology τ∗ on P. Similarly as in 3.3 one shows that (P,B∗) is a
model of topological sweetness. �

Proposition 3.5. Assume that P is a topologically sweet and separative partial
order, Q is a forcing notion. Suppose also that

(∀q ∈ Q)(∃p ∈ P)(p P “ there is a Q–generic G
˜
⊆ Q over V such that q ∈ G

˜
”).

Then Q is equivalent to a topologically sweet forcing notion.

Proof. It follows from our assumptions on P that it is (isomorphic to) a dense subset
of BA(P)+ and hence, by 3.3+3.4, there is a model (BA(P)+,B) of topological
sweetness such that all members of B are downward closed. By the assumptions
on Q,P we also know that BA(Q) is a complete subalgebra of BA(P); let π :
BA(P) −→ BA(Q) be the projection. Put

B′ = {U ∩BA(Q)+ : U ∈ B}.

We claim that (BA(Q)+,B′) is a model of topological sweetness. It is easy to
verify 0.2(i), so let us only argue that 0.2(ii) holds true. To this end suppose that a
sequence p̄ = 〈pn : n < ω〉 ⊆ BA(Q)+ converges to p ∈ BA(Q)+ (in the topology



HOW MUCH SWEETNESS IS THERE IN THE UNIVERSE? 13

generated by B′) and let p ≤ q ∈ U ∩BA(Q)+, U ∈ B. Then also p̄ converges to p
in the topology generated by B on BA(P)+, so we may find r ∈ BA(P)+ such that
q ≤ r ∈ U and (∃∞n < ω)(pn ≤ r). Let r∗ = π(r) ∈ BA(Q). Then we have

• q ≤ r∗ (as π is the projection and q ∈ BA(Q)+, q ≤ r),
• (∃∞n < ω)(pn ≤ r∗) (as π is the projection and pn ∈ BA(Q)+),
• r∗ ∈ U (as U is downward closed, r∗ ≤ r ∈ U).

�

The sweetness and topological sweetness are important properties because they
are preserved in amalgamations of forcing notions. Since the amalgamation can be
represented as the composition with the product of two quotients (see, e.g., [3] on
that), one may ask if sweetness is also preserved in quotients.

Definition 3.6. Let P,Q be forcing notions and suppose that Q <◦ BA(P). The
quotient (P : Q) is the Q–name for the subforcing of P consisting of all p ∈ P such
that p is compatible (in BA(P)) with all members of ΓQ. Thus for p ∈ P and q ∈ Q,

q Q “ p ∈ (P : Q) ” if and only if
(∀r ∈ Q)(q ≤ r ⇒ r, p are compatible in BA(P)).

Theorem 3.7. Let C be the standard Cohen forcing notion (so it is a countable
atomless partial order). Suppose that (P,B) is a model of topological sweetness and
C <◦ BA(P). Let B

˜
C be the C-name for the family {U ∩ (P : C) : U ∈ B}. Then

C “
(

(P : C),B
˜
C
)

is a model of topological sweetness ”.

Proof. First note that, in VC, B
˜
C is a countable basis of a topology on (P : C),

and ∅(P:C) = ∅P is an isolated point in this topology. Thus the only thing that we
should verify is the demand in 0.2(1)(ii).

Suppose that η ∈ C and C–names 〈p
˜
i : i < ω〉, p

˜
, q
˜
and W

˜
are such that

η C “ p
˜
i, p
˜
, q
˜
∈ (P : C), W

˜
∈ B
˜
C, p

˜
≤ q
˜
∈ W

˜
and

the sequence 〈p
˜
i : i < ω〉 converges to p

˜
in the topology generated by B

˜
C ”

Passing to a stronger than η condition in C (if necessary), we may assume that for
some p, q ∈ P and W ∈ B we have

η C “ p
˜
= p & q

˜
= q & W

˜
= W ∩ (P : C) ”.

Then also η C“ p, q ∈ (P : C) ” and p ≤ q ∈ W . Let us choose a condition q+ ∈ P
which is (in BA(P)) stronger than both q and η, and let U ∈ B be a neighborhood
of q+ such that any two members of U are compatible in P (remember 0.3(2)).
Next, choose W+ ∈ B such that q ∈ W+ ⊆ W and every member of W+ has an
upper bound in U (possible by 0.3(1)).

Pick Vi ∈ B (for i < ω) such that {Vi : i < ω} forms a neighbourhood basis at p
(for the topology generated by B) such that for each i < ω:

(α) p ∈ Vi+1 ⊆ Vi,
(β) any i+ 1 elements of Vi+1 have a common upper bound in Vi.

[The choice is clearly possible; remember 0.3.]
Clearly η C “ {Vi ∩ (P : C) : i < ω} forms a neighbourhood basis at p (for the

topology generated by B
˜
C) ”. Hence, without loss of generality, we may assume

that η C“ p
˜
i ∈ Vi ” (as we may change the names p

˜
i reflecting a passage to a

subsequence). Let us fix a list {νℓ : ℓ < ω} of all conditions in C stronger than η,
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and for every i, ℓ < ω let us pick pi,ℓ ∈ P such that νℓ 6C “ p
˜
i 6= pi,ℓ ”. Note that

then pi,ℓ ∈ Vi, so by clause (β) above we may choose p∗i ∈ Vi such that for each
i > 0 we have

(∀ℓ ≤ i)(pi+1,ℓ ≤ p∗i ).

The sequence 〈p∗i : i < ω〉 converges to p so (by 0.2(1)(ii) for (P,B)) there are a
condition r ∈ P and an infinite set A ⊆ ω such that

r ∈ W+ and q ≤ r and (∀i ∈ A)(p∗i ≤ r).

By the choice of W+, the condition r has an upper bound in U and hence (by
the choice of U) r, q+ are compatible in P. Therefore, as q+ is stronger than η (in
BA(P)), there is ν ∈ C stronger than η such that ν C“ r ∈ (P : C) ”. Now the
proof follows from the following Claim.

Claim 3.7.1. ν C“ (∃∞i < ω)(p
˜
i ≤ r) ”.

Proof of the Claim. If not, then we may find ν′ ∈ C stronger than ν and i′ < ω
such that ν′ C“ (∀i ≥ i′)(p

˜
i � r) ”. Let ℓ < ω be such that ν′ = νℓ and let i ∈ A

be larger than ℓ+ i′ + 1. Look at our choices before - we know that:

(i) p∗i ≤ r,
(ii) pi+1,ℓ ≤ p∗i ,
(iii) νℓ 6C “ p

˜
i+1 6= pi+1,ℓ ”.

Therefore some condition ν∗ ∈ C stronger than νℓ forces that p
˜
i+1 ≤ r, contradict-

ing the choice of ν′ = νℓ (as i+ 1 > i′). �

�

In the rest of this section we are going to show that the result of 3.7 cannot
be very much improved: when taking a quotient over a random real forcing we
may loose topological sweetness. Let us start with recalling some notation and
definitions, which we will need later.

Definition 3.8. (1) The Lebesgue (product) measure on 2ω is denoted by
µLeb, Borel(2ω) is the σ–field of Borel subsets of 2ω and L is the σ–ideal
of Lebesgue null subsets of 2ω. The quotient complete Boolean algebra
B = Borel(2ω)/L is called the random algebra.

(2) The random forcing notion R is defined as follows:
a condition in R is a closed subset of 2ω of positive Lebesgue measure,
the order of R is the reverse inclusion.

(3) The amoeba for measure forcing notion A is defined as follows:
a condition in A is a closed subset F of 2ω such that µLeb(F ) > 1

2 ,
the order of A is the reverse inclusion.

Of course, B = BA(R). Let us also recall that both R and A are topologically
sweet (see [10, 1.3.3]).

Proposition 3.9. (1) B“ AV is not topologically sweet ”.
(2) B“ RV is not topologically sweet ”.

Proof. (1) Suppose toward contradiction that

[[ there is a model of topological sweetness based on AV]]B 6= 0B.

Since the random algebra is homogeneous, we may assume that we have B–names
U
˜

n for subsets of AV such that
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(∗)0 B“ (AV, {U
˜

n : n < ω}) is a model of topological sweetness ”.

For i < ω let mi = ⌊− i·2i

log2(1−2−2i+1 )
⌋+ 2, so mi

2i > −i

log2(1−2−2i+1 )
and thus

(∗)1 (1 − 2−2i+1

)mi/2i

< 2−i.

Let µ be the product Lebesgue measure on the space
∏

i<ω

mi, and let µ∗ be the

corresponding outer measure.
Define 〈ni : i < ω〉 by n0 = 0, ni+1 = ni +mi · 2i+1, and for i < ω, j < mi put

tij
def
=

{

σ ∈ 2[ni, ni+1) :
(

∃ℓ < 2i+1
)(

σ(ni + j · 2i+1 + ℓ) = 1
)}

.

Note that

(∗)i2 if j0 < j1 < . . . < jk < mi, then
∣

∣tij0 ∩ tij1 ∩ . . . ∩ tijk
∣

∣ =
(

1− 2−2i+1)k+1
· 2mi·2

i+1

.

For x ∈
∏

i<ω

mi let

Zx
def
=

{

η ∈ 2ω :
(

∀i < ω
)(

η↾[ni, ni+1) ∈ tix(i)

)}

and note that Zx is a closed set and µLeb(Zx) >
1
2 , so Zx ∈ A. For each x ∈

∏

i<ω

mi

and n < ω we may pick a Borel setB(x, n) ⊆ 2ω such that [[Zx ∈ U
˜

n]]B = [B(x, n)]L.
Next, for each k < ω (and x ∈

∏

i<ω

mi and n < ω) choose a clopen set C(x, n, k) ⊆

2ω such that µLeb
(

B(x, n) △ C(x, n, k)
)

< 2−k. Now, for n < ω, consider a binary
relation ∼n on

∏

i<ω

mi given by

x ∼n y if and only if
(

∀k, ℓ ≤ n
)(

C(x, ℓ, k) = C(y, ℓ, k)
)

.

It should be clear that (for each n < ω) ∼n is an equivalence relation on
∏

i<ω

mi

such that

(∗)n3 x ∼n+1 y ⇒ x ∼n y (for each x, y ∈
∏

i<ω

mi), and

(∗)n4
∏

i<ω

mi/ ∼n is countable.

Consequently we may pick x∗ ∈
∏

i<ω

mi such that for each n < ω we have

lim
ℓ→∞

µ∗
({

x ∈
∏

i<ω

mi : x↾ℓ = x∗↾ℓ & x ∼n x∗
})

µ
({

x ∈
∏

i<ω

mi : x↾ℓ = x∗↾ℓ
}) = 1.

So now we may choose an increasing sequence 〈ℓi : i < ω〉 ⊆ ω such that for i < ω
we have

µ∗
({

x ∈
∏

j<ω

mj : x↾ℓi = x∗↾ℓi & x ∼i x
∗
})

>
1

2
µ
({

x ∈
∏

j<ω

mj : x↾ℓi = x∗↾ℓi
})

,

and then for each i < ω we may choose vi ⊆ mℓi and 〈yik : k ∈ vi〉 ⊆
∏

j<ω

mj such

that

(∗)i5 |vi| >
1
2mℓi ,

(∗)i6 yik↾ℓi = x∗↾ℓi, y
i
k(ℓi) = k and yik ∼i x

∗ for k ∈ vi.
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It follows from the definition of the relations ∼n and from (∗)i6 that for each k ∈ vi
and all ℓ ≤ i we have

µLeb
(

B(x∗, ℓ) △ B(yik, ℓ)
)

< 21−i.

Thus, for each i < ω, we may pick a partition 〈Bi
k : k ∈ vi〉 of 2ω into disjoint Borel

sets such that for all k ∈ vi we have

(∗)i,k7 µLeb(Bi
k) =

1
|vi|

, and

(∗)i,k8 µLeb
(

Bi
k ∩ (B(xj, ℓ) △ B(yik, ℓ))

)

< 21−i/|vi| for all ℓ ≤ i.

Let x
˜
i be a B–name for a member of V ∩

∏

j<ω

mj such that

(

∀k ∈ vi
)(

[[x
˜
i = yik]]B = [Bi

k]L
)

.

Claim 3.9.1.

B “
(

∀n < ω
)(

∀∞i < ω
)(

Zx∗ ∈ U
˜

n ⇒ Zx
˜
i
∈ U

˜
n

)

.

Proof of the Claim. Note that for n, i < ω we have

[[Zx
˜
i
/∈ U
˜

n]]B =
[

⋃

k∈vi

Bi
k \B(yik, n)

]

L
,

and thus [[Zx∗ ∈ U
˜

n & Zx
˜
i
/∈ U
˜

n]]B =
[

⋃

k∈vi

(

B(x∗, n) \B(yik, n)
)

∩Bi
k

]

L
. It follows

from (∗)i,k8 that (for n ≤ i < ω) we have

µLeb
(

⋃

k∈vi

(

B(x∗, n) \B(yik, n)
)

∩Bi
k

)

< 21−i.

Hence for, each n < ω,

µLeb
(

⋂

m<ω

⋃

i>m

(

⋃

k∈vi

(

B(x∗, n) \B(yik, n)
)

∩Bi
k

)

)

= 0,

so
[[(∃∞i < ω)(Zx∗ ∈ U

˜
n & Zx

˜
i
/∈ U
˜

n]]B = 0B,

and the Claim follows. �

It follows from (∗)0 and 3.9.1 that

[[
(

∃F ∈ AV
)(

F ⊆ Zx∗ & (∃∞i < ω)(F ⊆ Zx
˜
i
)
)

]]B = 1B,

and therefore we may find F ∈ A∩V such that F ⊆ Zx∗ and a
def
= [[(∃∞i < ω)(F ⊆

Zx
˜
i
)]]B 6= 0B. For i < ω put

wi = {k ∈ vi : F ⊆ Zyi
k
} and Ci =

⋃

k∈wi

Bi
k.

Plainly, a =
[

⋂

m<ω

⋃

i>m

Ci

]

L
so (as a 6= 0B)

∞
∑

i=1

µLeb(Ci) = ∞, and hence the set

I
def
= {i < ω : µLeb(Ci) > 21−i}

is infinite.
Fix i ∈ I for a moment. Then

21−i < µLeb(Ci) =
∑

k∈wi

µLeb(Bi
k) =

|wi|

|vi|
,
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and thus (by (∗)i5)

|wi| > |vi| · 2
1−i >

1

2
·mℓi · 2

1−i ≥ mℓi/2
ℓi .

Hence, by (∗)ℓi1 , we get
(

1−2−2ℓi+1)|wi|
< 2−ℓi ≤ 2−i. Now (for our i ∈ I) consider

the closed set Yi
def
=

⋂

k∈wi

Zyi
k
and note that

Yi ⊆
{

η ∈ 2ω : (∀k ∈ wi)(η↾[nℓi , nℓi+1) ∈ tℓik )
}

.

Thus, by (∗)ℓi2 , we may conclude that (for our i ∈ I)

µLeb(Yi) ≤

∣

∣

⋂

k∈wi

tℓik
∣

∣

2mℓi
·2ℓi+1 =

(

1− 2−2ℓi+1)|wi|
< 2−i.

Since I is infinite and for every i ∈ I we have F ⊆
⋂

k∈wi

Zyi
k
= Yi we may now

conclude that µLeb(F ) = 0, contradicting F ∈ A.

(2) The same proof as for (1) works here too. �

Putting together 3.3 and 3.9 we may easily conclude the following.

Corollary 3.10. Both R× R and A× A are topologically sweet, but

R “ no dense subforcing of (R× R : R) ((R× A : R), respectively)
is topologically sweet ”.
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