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Abstract. In this paper we study a notion of a κ-covering in connection with
Bernstein sets and other types of nonmeasurability. Our results correspond to
those obtained by Muthuvel in [7] and Nowik in [8]. We consider also other
types of coverings.

1. Definitions and notation

In 1993 Carlson in his paper [3] introduced a notion of κ-coverings and used
it for investigating whether some ideals are or are not κ-translatable. Later on
κ-coverings were studied by other authors, e.g. Muthuvel (cf. [7]) and Nowik
(cf. [8], [9]). In this paper we present new results on κ-coverings in connection
with Bernstein sets. We also introduce two natural generalizations of the notion of
κ-coverings, namely κ-S-coverings and κ-I-coverings.

We use standard set-theoretical notation and terminology from [1]. Recall that
the cardinality of the set of all real numbers R is denoted by c. The cardinality of
a set A is denoted by |A|. If κ is a cardinal number then

[A]κ = {B ⊆ A : |B| = κ};
[A]<κ = {B ⊆ A : |B| < κ}.

The cofinality of κ is denoted by cf(κ). The power set of a set A is denoted by
P(A).

For a given uncountable Abelian Polish group (X, +), the family of all uncount-
able perfect subsets of X is denoted by Perf(X) and the family of all Borel subsets
of X is denoted by Borel(X). We say that a set B ⊆ X is a Bernstein set if for
every uncountable set Z ∈ Borel(X) both sets Z ∩B and Z \B are nonempty.

In this paper I stands for a σ-ideal of subsets of a given uncountable Abelian
Polish group (X, +). We will always assume that I is proper and group invariant,
contains singletons and has a Borel base (i.e. for every set A ∈ I we can find a
Borel set B ∈ I such that A ⊆ B). We will use three cardinal characteristics of
an ideal I: the additivity number add(I), the covering number cov(I) and the
uniformity number non(I), defined as follows:

add(I) = min{|A| : A ⊆ I ∧
⋃

A /∈ I};
cov(I) = min{|A| : A ⊆ I ∧

⋃
A = X};

non(I) = min{|A| : A ⊆ X ∧ A /∈ I}.
Let us recall the notion investigated for instance in [4].
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Definition 1. Let N ⊆ X. We say that the set N is completely I-nonmeasurable
if

(∀A ∈ Borel(X) \ I)(A ∩N /∈ I ∧ A ∩ (X \N) /∈ I).

In particular, for the σ-ideal of Lebesgue null sets N ⊆ P(R) we have that a
set N ⊆ R is completely N -nonmeasurable if and only if the inner measure of N
and the inner measure of the complement of N are zero. One can observe that if
I is a σ-ideal of our interest (i.e. having properties mentioned above) then every
Bernstein set is completely I-nonmeasurable. Hence the notion of a completely
I-nonmeasurable set generalizes the notion of a Bernstein set.

While constructing completely I-nonmeasurable sets having interesting covering
properties we will concentrate on σ-ideals including all unit spheres. Let us observe
that classical σ-ideals such as the σ-ideal of null sets N and the σ-ideal of meager
sets M have this property.

The following notion of a tiny set is very useful in recursive constructions of
completely I-nonmeasurable sets.

Definition 2. Let us fix a family A ⊆ I. We say that a perfect set P ∈ Perf(X)
is a tiny set with respect to A if

(1) (∀t ∈ X)(∀A ∈ A) |(P + t) ∩A| ≤ ω,
(2) (∀B ∈ Borel(X) \ I)(∃t ∈ X) |(P + t) ∩B| = c.

In [10] RaÃlowski proved the following useful lemma.

Lemma 1.1. Let A ⊆ I. If there exists a perfect set P ∈ Perf(X), which is tiny
with respect to A then

min{|B| : B ⊆ A ∧ (∃B ∈ Borel(X) \ I)(B ⊆
⋃
B)} = c.

Definition 3. We say that the σ-ideal I has the Steinhaus property if for every
set A ∈ P(X) \ I and B ∈ Borel(X) \ I the set A− B = {a− b : a ∈ A ∧ b ∈ B}
contains a nonempty open set.

It is known that the σ-ideal of null sets and the σ-ideal of meager sets have the
Steinhaus property (even in more general context – cf. [2], [6]).

Let observe that the following fact holds.

Fact 1.2. Let Q ⊆ X be any dense countable subgroup of X. If the σ-ideal I has
the Steinhaus property then for any set B ∈ Borel(X) \ I we have (B + Q)c ∈ I.
Proof. Let us fix B ∈ Borel(X) \ I and let B∗ = B + Q. Suppose that (B∗)c /∈ I.
Then by the Steinhaus property there exists a nonempty open set U ⊆ X such that
U ⊆ (B∗)c−B∗. Hence there exist some q ∈ Q and b ∈ B∗ such that q + b ∈ (B∗)c.
Since Q + B∗ = B∗, we get q + b ∈ B∗ ∩ (B∗)c which is a contradiction. ¤

Now we will focus our attention on σ-ideals N and M. The next lemma is
probably folklore, but for the reader’s convenience we present its proof.

Lemma 1.3. Let I = N or I = M. Then

(∀B ∈ Borel(X) \ I)(∀P ∈ Perf(X))(∃t ∈ X) |(t + P ) ∩B| = c.

Proof. (Cichoń) Firstly, let us assume that cov(I) > ω1 and choose any subset
T ∈ [P ]ω1 of a perfect set P . Let B∗ = B + Q, where Q is a dense countable
subgroup of X. From Fact 1.2 we deduce that

⋃
t∈T (t + B∗)c 6= X. Let us fix
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y ∈ ⋂
t∈T (t + B∗). Then T ⊆ −y + B∗. Thus there exist x ∈ X and S ∈ [T ]ω1 such

that S ⊆ x + B. But S ⊆ P and P is perfect, so |(x + B) ∩ P | = c.
Now let V be a model of ZFC. There exists a generic extension V [G] fulfilling

condition MA + c 6= ω1. Consequently, V [G] |= cov(I) > ω1. But the following
formula

(∀P ∈ Perf(X))(∀B ∈ Borel(X) \ I)(∃x ∈ X) |(x + P ) ∩B| = c

is Π1
3. So it holds also in the ground model V because by Shoenfield’s absoluteness

theorem (cf. [12]) Π1
3 formulas are downward absolute. ¤

Remark 1. Another proof for the measure case was given by Ryll-Nardzewski. His
proof was based on convolution measures. Yet another proof is due to Morayne,
where density points of measure are used.

Remark 2. Let us observe that Lemma 1.3 remains true for any σ-ideal I having
the Steinhaus property such that it is consistent that cov(I) > ω1 and Borel codes
for sets from the ideal I are absolute between transitive models of ZFC.

Question 1. Is there any nontrivial example of a σ-ideal, other than M and N ,
fulfilling conditions mentioned in Remark 2?

Lemma 1.3 gives us a simpler characterization of a tiny set in case I = N or
I = M.

Corollary 1.4. If I = N or I = M then a perfect set P is a tiny set with respect
to a family A ⊆ I if

(∀t ∈ X)(∀A ∈ A) |(P + t) ∩A| ≤ ω.

Let us notice this characterization is not true in general (as pointed by the
referee):

Example 1.5 (given by the referee). Assume that the cofinality of the σ-ideal of
meager subsets of R is ω1 and c > ω1. Let (Aα : α < ω1) be a cofinal tower,
consisting of meager sets in R. Let X = R × R and let I be the σ-ideal of subsets
of X with meager projections on the first coordinate. Let A = {Aα×{0} : α < ω1},
P = {0}×R and B = R×{0}. Then P is tiny with respect to A as |P∩(Aα×{0})| ≤
1 for each α < ω1. However, B ∈ Borel(X) \ I, |B ∩ P | = 1 and B ⊆ ⋃A, so the
conclusion of Lemma 1.1 fails.

In our applications we will concentrate on families of unit spheres in Rn.

Lemma 1.6. Let I = N or I = M. Let D be a family of unit spheres of size less
than continuum and let B ∈ Borel(Rn) \ I. Then

∣∣B \
⋃
D

∣∣ = c.

Proof. Observe that every line is a tiny set with respect to the family of all unit
spheres. So according to Lemma 1.1 and Corollary 1.4 the set B cannot be covered
by

⋃D. Hence |B \⋃D| = c. ¤

Lemma 1.6 remains true for every σ-ideal mentioned in Remark 2.
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2. Coverings on the real line

In [3] Carlson introduced the following definition.

Definition 4. We say that the set A ⊆ R is a κ-covering if for every set B ⊆ R of
cardinality κ there exists a real number x ∈ R such that B + x ⊆ A.

Analogously, a set A ⊆ R is a <κ-covering if every set B ⊆ R of cardinality less
then κ can be translated into it (cf. [7]). Of course, these definitions are reasonable
also for other uncountable Abelian Polish groups.

Nowik in his papers studied partitions of the Cantor space 2ω into regular (Borel)
ω-coverings. He constructed such a partition of size continuum ([8]) and a partition
into two sets, one Fσ, one Gδ, having some special property. We present analogous
and even stronger results concerning irregular (Bernstein) sets.

First we prove that we can find a partition of the real line into two Bernstein
sets having no covering properties.

Theorem 2.1. There exists a partition of the real line R into two sets A, B such
that each of them is a Bernstein set and none of them is a 2-covering.

Proof. Let Perf(R) = {Pα : α < c} and R = {rα : α < c} be fixed enumerations
of all perfect subsets of the real line and of the reals, respectively. By transfinite
induction we build two increasing sequences (Aα)α<c, (Bα)α<c of subsets of R such
that for every α < c the following conditions are satisfied:

(1) |Aα| = |Bα| = |α| · ω;
(2) rα ∈ Aα ∪Bα;
(3) Aα ∩ Pα 6= ∅, Bα ∩ Pα 6= ∅;
(4) Aα ∩Bα = ∅.

Moreover, to ensure that Aα and Bα are not 2-coverings we want them to satisfy
two more conditions:

(5) (∀x ∈ Aα)({x− 1, x + 1} ⊆ Bα);
(6) (∀x ∈ Bα)({x− 1, x + 1} ⊆ Aα).

Now, the set {0, 1} cannot be translated neither into Aα nor into Bα.
We are able to fulfill all these conditions because being at the αth step of our

construction we know that |⋃β<α(Aβ ∪ Bβ)| < c and for every β < α we have
(Aβ ∪Bβ) + Z = Aβ ∪Bβ .

Finally, we put A =
⋃

α<c Aα and B =
⋃

α<c Bα. These sets are Bernstein sets
because of (3), form a partition of R because of (2) and (4) and are not 2-coverings
as neither are sets Aα and Bα. ¤

The next theorem is in contrast with the previous one.

Theorem 2.2. There is a partition {Bξ : ξ < c} of the real line into Bernstein sets
such that for every ξ < c the set Bξ is a <cf(c)-covering.

Proof. Let κ = cf(c) and let (cα)α<κ be a cofinal increasing sequence of elements
of c. Let us fix an increasing sequence (Rα)α<κ of subsets of R and a sequence
(Pα)α<κ of families of perfect subsets of R such that

R =
⋃

α<κ

Rα, Perf(R) =
⋃

α<κ

Pα

and |Rα| = |Pα| = |cα|.
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By transfinite induction we build a sequence of families ({Bα
ξ : ξ < cα})α<κ

satisfying the following conditions:
(1) for every α < κ and for every ξ < cα we have |Bα

ξ | = |cα|;
(2) for every α < κ sets from the family {Bα

ξ : ξ < cα} are pairwise disjoint;
(3) for every ξ < c and every α1 < α2 < κ such that ξ < cα1 we have Bα1

ξ ⊆
Bα2

ξ ;
(4) for every α < κ the intersection Bα

ξ ∩ P is nonempty for every ξ < cα and
every perfect set P from the family Pα;

(5) for every α < κ and every ξ < cα there exists x ∈ R such that x+Rα ⊆ Bα
ξ .

We obtain such a sequence as follows. Assume that we are at the αth step of the
construction, so we have already built families {Bβ

ξ : ξ < cβ} for β < α. One can
observe that the cardinality of the union of all sets Bβ

ξ constructed so far (let us
denote this sum by S) is small:

|S| =
∣∣∣∣∣∣
⋃

β<α

⋃

ξ<cβ

Bβ
ξ

∣∣∣∣∣∣
≤ |cα| · |cα| · |α| = |cα| < c.

For every ξ < cα let us put

B<α
ξ =

⋃

β<α

Bβ
ξ

(the set B<α
ξ is empty for

⋃
β<α cβ ≤ ξ < cα). Let us notice that there are at most

cα many real numbers x such that (x + Rα) ∩ S 6= ∅. Hence we can recursively
enlarge every set B<α

ξ adding to it a set xξ + Rα for some xξ ∈ R and keeping all
enlarged sets pairwise disjoint – it is enough to fulfill (5). To fulfill (4) we have
to enlarge our sets once more adding recursively to each of them one point from
every set P ∈ Pα. Again, we can do this without losing disjointness. As a result we
obtain a family {Bα

ξ : ξ < cα} which fulfills conditions (2)–(5). But the condition
(1) is also fulfilled because constructing every set Bα

ξ we have added |cα| many new
points.

Finally, we put

Bξ =
⋃

α<κ

Bα
ξ

(assuming that Bα
ξ = ∅ for α < min{η : ξ < cη}).

Thanks to (2) the family {Bξ : ξ < c} consists of pairwise disjoint sets and
without problems we can extend them to get a partition of R. By (4) every set
Bξ is a Bernstein set. Moreover, the condition (5) is enough to ensure that every
set Bξ is a < κ-covering. It is because every subset of the real line of cardinality
smaller than κ is a subset of one of the Rα’s. ¤

On the other hand, as the only c-covering subset of the real line is the set R
itself, we have the following fact.

Fact 2.3. Assume CH. Then there is no Bernstein set which is an ω1-covering.

Now, one can pose the following question.

Question 2. Assume c > ω1 = cf(c). Is it true that there exists an ω1-covering
which is a Bernstein set?
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It is worth mentioning that in the proof of Theorem 2.2 we have succeeded in
constructing relevant ω1-coverings because we have been able to cover every set
of size ω1 by a set of size smaller then continuum, taken from the fixed family
of size at most continuum. Let us notice that it is not possible to answer Ques-
tion 2 using the similar method as in the proof of Theorem 2.2 since we have the
following observation which is a special case of the fact that if λ is singular then
cov(λ, λ, cf(λ)+, 2) > λ.

Fact 2.4 (see [11]). Assume that c = ωω1 . Then there is no family B ⊆ [R]<c of
size continuum such that every subset of R of size ω1 is covered by some set from
the family B.

If we deal with completely I-nonmeasurable sets instead of Bernstein sets then
we can construct even a <c-covering on condition the σ-ideal I has the Steinhaus
property and its uniformity is not too big.

Proposition 2.5. Assume that I ⊆ P(R) is a σ-ideal having the Steinhaus property
and such that non(I) < c. Then there exists a <c-covering which is completely I-
nonmeasurable.

Proof. Let us fix a set N /∈ I such that |N | = non(I) and put C = (N + Q)c.
Suppose now that B ∈ Borel(R) \ I. Then from the Steinhaus property of I we
obtain that there exists a rational q ∈ Q such that q ∈ Cc −B. Hence B ∩Cc 6= ∅.
As |Cc| < c we have also B ∩ C 6= ∅, so the set C is completely I-nonmeasurable.

Moreover, the set C is a <c-covering. Indeed, suppose that there exists a set
A ∈ [R]<c such that for every x ∈ R we obtain (A + x) ∩ Cc 6= ∅. For every x ∈ R
let us fix ax ∈ A such that ax + x ∈ Cc. Then there exists c ∈ Cc such that
|{x ∈ R : ax +x = c}| > |A|. But all reals c−x = ax ∈ A are different and we have
got a contradiction. ¤

3. S-coverings

We can interpret κ-coverings in terms of coloring sets. Namely, we can treat a
κ-covering as set which can color every set of size κ monochromatically. From this
point of view we may ask about a family of sets which can color every set of size κ
in such a way that different points in the given set have different colors. This leads
us to the following definition.

Definition 5. A family A of pairwise disjoint subsets of the real line is called a
κ-S-covering if |A| = κ and

(∀F ∈ [R]κ)(∃t ∈ R)
(
F + t ⊆

⋃
A ∧ (∀A ∈ A)|(F + t) ∩A| = 1

)
.

This definition is reasonable also for other uncountable Abelian Polish groups.
First we prove a relation between 2-S-coverings and 2-coverings.

Theorem 3.1. Assume that {A0, A1} is a partition of the real line and a 2-S-
covering. Then at least one of the sets A0, A1 is a 2-covering.

Proof. Assume that none of the sets A0, A1 is a 2-covering. It means that there
are positive reals a, b such that for every x, y ∈ A0 we have x − y 6= a and for
every x, y ∈ A1 we have x− y 6= b. We will show that the set {0, a + b} cannot be
S-covered by {A0, A1}.

Indeed, let us fix any x ∈ A0. Then x+a ∈ A1 and, consequently, x+a+b ∈ A0.
Analogously, if x ∈ A1 then x + b + a ∈ A1, which ends the proof. ¤
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Now we focus our attention on constructing κ-S-coverings which consist of Bern-
stein sets or completely I-nonmeasurable sets and such that none of their elements
is a κ-covering (which is opposite to the situation from Theorem 3.1).

Theorem 3.2. Let κ be a cardinal number such that 2 < κ < c. If 2κ ≤ c then
there exists a partition {Bξ : ξ < κ} of the real line such that

(1) (∀ξ < κ)Bξ is a Bernstein set,
(2) (∀ξ < κ)Bξ is not a 2-covering,
(3) {Bξ : ξ < κ} is a κ-S-covering.

Proof. Let Perf(R) = {Pα : α < c} and R = {rα : α < c} be fixed enumerations
of all perfect subsets of the real line and of the reals, respectively. Let us also
enumerate the set [R]κ = {Fα : α < c}. By transfinite induction we build a
sequence ({Aα

ξ : ξ < κ})α<c of families of subsets of R of size less than continuum
such that for every α < c the following conditions are fulfilled:

(1) for every different ξ1, ξ2 < κ the sets Aα
ξ1

and Aα
ξ2

are disjoint;
(2) for every ξ < κ the intersection Aα

ξ ∩ Pα is nonempty;
(3) there exists tα ∈ R such that tα + Fα ⊆

⋃
ξ<κ Aα

ξ and for every ξ < κ we
have |(tα + Fα) ∩Aα

ξ | = 1;
(4) there exists ξ < κ such that rα ∈ Aα

ξ ;
(5) for every ξ < κ and every β < α we have Aβ

ξ ⊆ Aα
ξ ;

(6) for every ξ < κ and every x, y ∈ Aα
ξ we have |x− y| 6= 1;

(7) for every ξ < κ we have |Aα
ξ | ≤ |α| · ω.

Suppose that we have already constructed the sequence ({Aβ
ξ : ξ < κ})β<α for some

α < c. Let Aξ =
⋃

β<α Aβ
ξ and A =

⋃
ξ<κ Aξ. We can observe that there are not

many ”bad translations” of the set Fα, namely the set

T = {t ∈ R : (∃x ∈ Fα)(∃a ∈ A) |t + x− a| = 1 ∨ t + x = a}
has the cardinality less then c. Thus we can choose a real tα /∈ T . Next we choose
a subset Y ⊆ Pα of size κ such that

(Y + {0, 1,−1}) ∩ ((tα + Fα) ∪A) = ∅.
Let {aξ : ξ < κ} and {bξ : ξ < κ} be enumerations of sets tα + Fα and Y ,
respectively, and let Âα

ξ = Aξ ∪{aξ, bξ} for ξ < κ. Finally, if rα /∈ Y ∪ (tα +Fα)∪A

then we fix ξ0 < κ such that Âα
ξ0
∩ {rα − 1, rα + 1} = ∅ and put Aα

ξ0
= Âα

ξ0
∪ {rα}.

In all other cases we put Aα
ξ = Âα

ξ and our construction is completed.
Let Bξ =

⋃
α<c Aα

ξ for ξ < κ. Then Bξ is a Bernstein set thanks to the condition
(2) and is not a 2-covering thanks to the conditions (5) and (6). The conditions (1)
and (4) ensure us that the family {Bξ : ξ < κ} is a partition of R and the condition
(3) makes this family a κ-S-covering. ¤
Remark 3. Let us observe that if κ is countable then the condition 2κ ≤ c is fulfilled.
In general we need extra set theoretic assumptions. For example it is enough to
assume Martin’s Axiom, which implies that 2κ = c for ω ≤ κ < c (see [5]).

In more general situation, constructing S-coverings consisting of completely I-
nonmeasurable subsets of a given Polish group, none of which is a 2-covering is a
bit more complicated. That is why we need some additional assumptions about a
σ-ideal I.
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Theorem 3.3. Let (X, +) be an uncountable Abelian Polish group with a complete
metric d. Let I ⊆ P(X) be a σ-ideal such that

(∀B ∈ Borel(X) \ I)(∀D ∈ [I]<c) |B \
⋃
D| = c

and there exists a ∈ range(d), a 6= 0 such that

(∀x ∈ X) {y ∈ X : d(x, y) = a} ∈ I.

If κ is a cardinal number such that 2κ = c, then there exists a family {Bξ : ξ < κ}
of pairwise disjoint subsets of X such that

(1) (∀ξ < κ)Bξ is a completely I-nonmeasurable set,
(2) (∀ξ < κ)Bξ is not a 2-covering,
(3) {Bξ : ξ < κ} is a κ-S-covering.

Proof. Without loss of generality we can assume that a = 1. Let Borel(X) \ I =
{Pα : α < c} be an enumeration of all I-positive Borel subsets of X. Let us also
enumerate the set [X]κ = {Fα : α < c}. We proceed similarly as in the proof of
Theorem 3.2, constructing a sequence ({Aα

ξ : ξ < κ})α<c of families of subsets of
X of size less than continuum such that for every α < c the following conditions
are fulfilled:

(1) for every different ξ1, ξ2 < κ the sets Aα
ξ1

and Aα
ξ2

are disjoint;
(2) for every ξ < κ the intersection Aα

ξ ∩ Pα is nonempty and we have |Aα
ξ | ≤

|α| · ω;
(3) there exists tα ∈ X such that tα + Fα ⊆

⋃
ξ<κ Aα

ξ and for every ξ < κ we
have |(tα + Fα) ∩Aα

ξ | = 1;
(4) for every ξ < κ and every β < α we have Aβ

ξ ⊆ Aα
ξ ;

(5) for every ξ < κ and every x, y ∈ Aα
ξ we have d(x, y) 6= 1.

Assume that we are at the αth step of the construction. Let Aξ =
⋃

β<α Aβ
ξ and

A =
⋃

ξ<κ Aξ. Moreover, let C =
⋃

x∈Fα

⋃
a∈A{t ∈ X : d(t + x, a) = 1}. Then the

set T = C ∪ (A − Fα) is the set of ”bad translations” of the set Fα. But C is a
collection of less then continuum many unit spheres and |A− Fα| < c so according
to our assumptions the complement of T is of size continuum. Thus we can choose
tα /∈ T .

Analogously, we can choose a subset Y ⊆ Pα of size κ such that

Y ∩ ((tα + Fα) ∪A ∪ {x ∈ X : (∃a ∈ (tα + Fα) ∪A) d(x, a) = 1}) = ∅.
Finally, we enumerate sets tα + Fα = {aξ : ξ < κ} and Y = {bξ : ξ < κ}, put
Aα

ξ = Aξ ∪ {aξ, bξ} for ξ < κ and we are done.
Let Bξ =

⋃
α<c Aα

ξ for ξ < κ. Then {Bξ : ξ < κ} is the needed family. ¤
Remark 4. Let us observe that in Theorem 3.3 we can replace the assumption

(∀B ∈ Borel(X) \ I)(∀D ∈ [I]<c) |B \
⋃
D| = c

by a stronger, but shorter assumption, namely add(I) = c.

When our Polish space is simply a Euclidean vector space and we deal with
meagre or null sets, we can omit one assumption in Theorem 3.3.

Corollary 3.4. Let I = N or I = M. Then for every cardinal number κ such
that 2κ = c there exists a family {Bξ : ξ < κ} of pairwise disjoint subsets of X such
that
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(1) (∀ξ < κ)Bξ is a completely I-nonmeasurable set,
(2) (∀ξ < κ)Bξ is not a 2-covering,
(3) {Bξ : ξ < κ} is a κ-S-covering.

Proof. It is enough to observe that we can repeat the proof of Theorem 3.3. Indeed,
our choice of Y (and tα) is possible because thanks to Lemma 1.6 after removing
less than continuum many unit spheres from an I-positive Borel set we have still
continuum many points left. ¤

Corollary 3.4 remains true for every σ-ideal fulfilling conditions mentioned in
Remark 2.

Just as in case of Theorem 3.2, assuming Martin’s Axiom we obtain from The-
orem 3.3 a suitable κ-S-covering for every κ < c. For example, we get a result
concerning an S-covering made of Lebesgue completely nonmeasurable sets in Rn.

Corollary 3.5. Assume Martin’s Axiom and c = ℵ2. Then there exists a family
{Bξ : ξ < c} of pairwise disjoint subsets of Rn such that

(1) (∀ξ < c)λ∗(Bξ) = 0 and λ∗(Rn \Bξ) = 0,
(2) (∀ξ < c)Bξ is not a 2-covering,
(3) {Bξ : ξ < c} is a ω1-S-covering,

where λ∗ denotes the inner Lebesgue measure in Rn.

Proof. Immediate from Theorem 3.3, Corollary 3.4 and Remark 4 together with
the fact that under Martin’s Axiom the additivity of the σ-ideal of Lebesgue null
sets is equal to continuum. ¤

Theorem 3.3 gives us a κ-S-covering separately for every κ < c. It occurs that
we can do this uniformly.

Definition 6. A family A of pairwise disjoint subsets of an uncountable Abelian
Polish group (X, +) is called a <κ-S-covering

(∀F ∈ [X]<κ)(∃t ∈ X)
(
F + t ⊆

⋃
A ∧ (∀A ∈ A)|(F + t) ∩A| ≤ 1

)
.

Theorem 3.6. Let (X, +) be an uncountable Abelian Polish group with a complete
metric d. Let I ⊆ P(X) be a σ-ideal such that

(∀B ∈ Borel(X) \ I)(∀D ∈ [I]<c) |B \
⋃
D| = c

and there exists a ∈ range(d), a 6= 0 such that

(∀x ∈ X) {y ∈ X : d(x, y) = a} ∈ I.

If for every κ < c we have 2κ ≤ c then there exists a family {Bξ : ξ < c} of pairwise
disjoint subsets of X such that

(1) (∀ξ < c)Bξ is a completely I-nonmeasurable set,
(2) (∀ξ < c)Bξ is not a 2-covering,
(3) {Bξ : ξ < c} is a <c-S-covering.

Proof. The construction is analogous to this from the proof of Theorem 3.3. ¤
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4. I-coverings on the plane

In this chapter we focus our attention on the plane R2 treated as a Polish group.
According to Definition 4 we can investigate a κ-covering as a subset of the plane
such that every planary set of size κ can be translated into it. However, we may
also generalize this definition letting sets of size κ to be not only translated but
moved by any isometry.

Definition 7. We say that a set A ⊆ R2 is a κ-I-covering if

(∀B ∈ [R2]κ)(∃ϕ : R2 → R2)(ϕ is an isometry and ϕ[B] ⊆ A).

It occurs that we cannot partition the plane into two sets none of which is a
2-I-covering.

Theorem 4.1. If {A0, A1} is a partition of R2 then one of the sets A0, A1 is a
2-I-covering.

Proof. Suppose that A0 is not a 2-I-covering. Then there exists a positive real d
such that none two points in A0 are at a distance of d from each other. Let us
fix any a ∈ A0 and consider a circle C with a center a and a radius equal to d.
Next, let us fix a halfline that starts from a and consider such a sequence (an)n<ω

of elements of this halfline that d(a, an) = (n + 2)d for all n < ω. Then for every
real x ∈ [(n + 1)d, (n + 3)d] there exists a point p ∈ C such that d(p, an) = x.

Observe now that C ⊆ A1. Moreover, at least one of every two consecutive
elements of the sequence (an)n<ω belongs to A1. Hence for every x > 0 we can find
two elements of A1 which are at a distance of x from each other. Consequently, the
set A1 is a 2-I-covering. ¤

Next two theorems show that from the point of view of Bernstein sets there is a
big difference between 2-I-coverings and 3-I-coverings.

Theorem 4.2. Every Bernstein set is a 2-I-covering.

Proof. Let B ⊆ R2 be a Bernstein set. To show that B is also a 2-I-covering let
us fix two different points a, b ∈ R2. It is enough to observe that any circle with a
center in a fixed point c ∈ B and a radius d(a, b) (where d stands for a standard
Euclidean metric) is a perfect set, thus meets B. ¤

Theorem 4.3. There exists a Bernstein set which is not a 3-I-covering.

Proof. Let Perf(R2) = {Pα : α < c} be a fixed enumeration of all perfect subsets of
R2. We build by transfinite induction two sequences (aα)α<c, (bα)α<c of elements
of the plane satisfying the following conditions:

(1) (∀α < c) aα, bα ∈ Pα,
(2) {aα : α < c} ∩ {bα : α < c} = ∅,
(3) (∀α, β, γ < c)(d(aα, aβ) 6= 1 ∨ d(aα, aγ) 6= 1 ∨ d(aβ , aγ) 6= 1).

Suppose that we have already constructed (aξ)ξ<α and (bξ)ξ<α for some α < c.
Since the set A = {(aξ1 , aξ2) : ξ1, ξ2 < α ∧ d(aξ1 , aξ2) = 1} has at most |α× α| < c
elements and for every pair (aξ1 , aξ2) ∈ A there are only two points with distance
1 from both aξ1 and aξ2 we can pick aα ∈ Pα \ ({aξ : ξ < α} ∪ {bξ : ξ < α}) such
that d(aα, aξ1) 6= 1 or d(aα, aξ2) 6= 1 for all ξ1, ξ2 < α. Let bα be any element of
Pα \ ({aξ : ξ ≤ α} ∪ {bξ : ξ < α}).
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Let us put B = {aα : α < c}. The condition (2) ensures B is a Bernstein set. To
show that B is not a 3-I-covering it is enough to observe that there is no equilateral
triangle of sides of length 1 with all vertices in B. ¤

When we replace Bernstein sets by completely I-nonmeasurable sets then it
occurs that the theorem analogous to Theorem 4.2 may not be true.

Theorem 4.4. Let I = N or I = M. Then there exists a completely I-nonmeasurable
planary set which is not a 2-I-covering.

Proof. Let Borel(X) \ I = {Bα : α < c} be an enumeration of all I-positive Borel
subsets of X. We build by transfinite induction two sequences (aα)α<c, (bα)α<c of
elements of the plane satisfying the following conditions:

(1) (∀α < c) aα, bα ∈ Bα,
(2) {aα : α < c} ∩ {bα : α < c} = ∅,
(3) (∀α, β < c) d(aα, aβ) 6= 1.

Assume that we are at an αth step of the construction. Let

D = Bα \
⋃

β<α

{a ∈ R2 : d(a, aβ) = 1}.

From Lemma 1.6 we get |D| = c. Let us pick aα ∈ D \ {aβ : β < α} and let
bα ∈ Bα \ ({aβ : β ≤ α} ∪ {bβ : β < α}).

Finally, the set B = {aα : α < c} is completely I-nonmeasurable and not a
2-I-covering. ¤
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