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Metric complements of overt closed sets

Thierry Coquand* Erik Palmgren' Bas Spitters?

Abstract

We show that the set of points of an overt closed subspace of a
metric completion of a Bishop-locally compact metric space is located.
Consequently, if the subspace is, moreover, compact, then its collection
of points is Bishop compact.
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1 Introduction

We continue our investigations into the relations between Bishop’s
constructive mathematics and formal topology [CS05] [Pal05, [Pal07,
Spi07, [CS09, [Pal09]. Previously, we gave a formal definition of locat-
edness [Spi07] and showed that an overt closed subspace of a compact
formal space is (formally) located. Here we consider a generalization of
the pointwise side of this result. We use the real numbers as a running
example. We work in informal Bishop-style mathematics, including
the axiom of dependent choice.

2 Preliminaries

Bishop

We assume familarity with Bishop’s constructive mathematics [BB8H],
but we recall some relevant notions.
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Definition 2.1. A set is finite if it is in bijective correspondence with
a set {0,...,n}, n > 0. A set is Kuratowski finite (K-finite, finitely
enumerable) if it is the image of a finite set.

A subset of a set X if K-finite iff it can written as {z1,...,x,} with
Z1,...,Tn in X. Such a set does not need to have a cardinality if the
equality on X is not decidable. For example, the set {a,b} is K-finite.
However, it is finite iff we can decide whether a = b.

Definition 2.2. A metric space is said to be totally bounded if for
each € > 0 the space can be covered by a K-finite set of balls with
radius at most €. A subset of a metric space is Bishop-compact if it
18 complete and totally bounded.

A metric space is said to be locally totally bounded if for each ball and
each € > 0 the ball can be covered by a K-finite set of balls with radius
at most €. A metric space is Bishop-locally compact if it is complete
and locally totally bounded.

The closed unit interval is compact. The real numbers are locally
compact.

Definition 2.3. A subset A of a metric space (X, p) is located if for
each x in X the distance inf{p(z,a) | a € A} exists as a (Dedekind)
real number.

In classical mathematics all sets are located. Constructively this is
not the case, as the following Brouwerian counterexample shows.

Example 2.4. Consider the set
{xeR|xz>1or (x>0 and P)}.

This set will only be located if we can decide whether the proposition

P holds.

Definition 2.5. A subset of a metric space is Bishop-closed if it con-
tains all its limit points, i.e. if it coincides with its closure.

The closed unit interval [0,1] is Bishop-closed.

A Bishop closed located subset of a metric space coincides with the
complement of its complement: a Bishop closed located set coincides
with the set of all points which have zero distance to it.

Formal topology

Definition 2.6. A formal topology [Sam03] consists of a pre-order
(S, <) of basic opens and a relation <C SxP(S), the covering relation,
which satisfies:



Ref a € U implies a < U;
Tra a < U, U <V implies a <V, where U <V means uw 'V for all

u e U;
Loc a <9 U, a <V impliesa <UANV ={z | Ju € UFv € Vo <
u,z < v};

Ext a < b implies a < {b}.

These axioms are known as Reflexivity, Transitivity, Localization and
Extensionality. Ref and Ext say that if a basic open belongs to a
family, then the family covers it. Tra is the transitivity of the cover.
Loc is the distributive rule for frames.

The formal intersection U AV is defined as U¢ N Vg, where Z¢ is
the set {x | 3z € Z.x < z}. Another common notation for Z< is Z|.
We write a < b for a < {b}. Wewrite U=V iff U<V and V QU.

Definition 2.7. Let (S, <) be a formal topology. A point is an in-
habited subset o C S which is filtering with respect to <, and such that
U N« is inhabited, whenever a <U for some a € a. The collection of
points is denoted by Pt(S). Let U be an open in S. Then U, denotes
the class of points o such that o € U.

Example 2.8. The formal reals are inductively defined by the following
relation on the open rational intervals ordered by inclusion.

1. (p,s)<{(p,r),(g,8)} if p<qg<r<s;

2. (p,0)<{(,d) [p<p' <q <q}
The points of this space are precisely the (Dedekind) real numbers.
Definition 2.9. Let (S,<) be a formal topology. A sublocale is a

formal topology (S, <) such that <C<’ and a N'b <" a N\ b.
Let U C S. The closed sublocale S\ U isu <_y V iffu <V UU.

Example 2.10. The set {(p,q) | ¢ <0V p > 1} represents the closed
unit interval as a subspace of the real line.

Definition 2.11. Pos is called a positivity predicate on a formal topol-

ogy S if it satisfies:

Pos U U™, where Ut := {u € U | Pos(u)}.

Mon If Pos(u) and u <V, then Pos(V)) — that is, Pos(v) for some

veV.

A formal space is overt if it carries a positivity predicate.
Impredicatively, a formal topology is overt iff the locale it generates

is overt, or open.

Classically, all formal topologies are overt. Constructively this is
not the case, as the following formal analogue of Example 24] shows.



Example 2.12. The closed sublocale defined by the open

{(»,0) [p<0yU{(2,9) | ¢>2}U{(1,q9) |¢>1 and P}

is overt if we can decide whether the proposition P holds; see [Spi07].

Metric completion

Definition 2.13. To any metric space X, we define, following Vick-
ers [Vic03] and Palmgren [Pal07], a formal topology M(X) called the
localic completion of X. A formal open is a pair (z,7) € X xQ>°, writ-
ten b(x,r). We define the relation b(z,r) < b(y, s) iff d(z,y) < s—r
as illustrated below.

The order < is defined by b(z,r) < b(y,s) iff d(z,y) < t for all
t > s —r. The covering relation <1 1is inductively generated by the
arioms

M1 u<{v|v<u};
M2 M(X) <{b(z,r) |z € X} for any r.

M1: Every ball is covered by all the balls strictly inside it (since
the ball is open). M2: For each r > 0, the space is covered by all balls

of size r.

We define U <V :=Vu e Udv € Viu < v.

Example 2.14. Consider the formal unit interval [0,1]. Then [0,1] =
b(0,3) = b(0,2), but b(0,3) > b(0,2).

Similarly, b(0,3)<1b(0,2), but it is not the case that b(0,3) <
b(0,2). This shows that a b does not imply a < b.

Proposition 2.15. The localic completion of a metric space is always
overt.

The formal reals are the metric completion of the rational numbers.
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Elementary description of the cover of M(X)

The < cover relation below, introduced in [Pal07], generalises the one
introduced by Vermeulen [Ver86] and Coquand [CN96] for R:

pEU = (Vg <p)[radius(q) <e = {q} < U]
pCU := pLC.U forsomee e Q.

A(b,c) = {C€PranMx):bEC <c}
a<U = (Vb<ec<a)(3AUpe A(b,c)) Uy < U.

Theorem 2.16 (|[Pal07]). If X is a Bishop locally compact metric
space, then
a<U <= a<U

(< holds for any metric X space.)

Theorem 2.17 ([Pal07]). Let X be a complete metric space. Then
there exist a metric isomorphism j between X and Pt(M(X)).

In particular, this holds for the real numbers.

3 Main results
We write B(z,r) for the set {y | d(x,y) < r}. Then b(z,r), = B(z,r).

Lemma 3.1. Let X be a metric space. Then an inhabited set S C X
18 located if, and only if, for oll z € X and all positive § < € we have

SNB(x,0) =0 or S B(x,e).
Where A () B means that AN B is inhabited.

Lemma 3.2. Let X be a metric space and let M = M(X) be its
localic completion. If O C M and the sublocale M \ O is overt, then
any positive neighbourhood contains a point of M \ O.

Proof. Suppose that P is the positivity predicate of M \ O. Denote
the cover relation of M \ O by <’

Suppose a = b(x,d) € P. Let a; = a. Suppose we have constructed
in P:

so that radius(ag41) < radius(ay)/2.
By (M1) and localisation we get

an <"{an} N{b(y,p) 1y € X}



where p = radius(ay,)/2. Since a, € P we obtain some b € {a,} A
{b(y,p) : y € X} with b € P. Clearly radius(b) < radius(a,)/2. Let
apy1 =b.
Let
a={peM: (In)a, < p}.

Since the radii of a,, are shrinking, this defines a point in Pt(M). (Note
that we used Dependent Choice.)

We claim that a € Pt(M \ O) = Pt(M)\ O.. Suppose that a € O,,
i.e. for some ¢ € O: ¢ € «. Hence there is n with a,, < c¢. Thus
a, <O, that is a,, <’0). But since a,, is positive, this is impossible! So
a € Pt(M\ 0). O

The following theorem can be conveniently formulated using the
following definition. However, no futher facts about this definition are
needed.

Definition 3.3. Let X be a metric space. A predicate Pos on
S ={b(x,7) |z € X,r € Q"} is called located if

e Pos(u) and uw <V imply that Pos(v) for some v in V;
o v < u implies that ~Posv or Posu.

Let T be a closed sublocale of M(X). Then T is called located if there
1s a located predicate Pos such that T' coincides with the closed sublocale
defined by the open —Pos C S.

Theorem 3.4. Let X be a Bishop locally compact metric space and
let M = M(X) be its localic completion. Let O C M. If a sublocale
M\ O is overt, then M\ O is (formally) located. Consequently, the set
of points Y = j7HPt(M \ O)] is located as a subset of X and moreover
Oy is the metric complement of Y in X.

Proof. That M \ O is overt means that there is an inhabited subset
P C M (a set of positive formal neighbourhoods) so that

(P1) a<ipy OUU and a € P implies U N P inhabited,

(P2) U<y OU(UNP).

Now since P is inhabited, Lemma ensures that Y is inhabited.
Let z € X be arbitrary. Consider positive rational numbers § < e.
Take ¢’ with 6 < ¢’ < ¢ and let § = ¢ — ¢’. Using the (P2), (M2) and
the localisation we get

b(z,e) <O U(PN{ce M :p(c)=0/2}).

Thus also
b(z,e) <OU(PN{ce M:p(c)=0/2}).

6



and by definition there is a K-finite W € A(b(x,0),b(z,£")) with
W <OU(Pn{ceM:p(c)=106/2}).

Since W is K-finite we have one of the cases

(C1) W <O,

(C2) (3deW)d< Pn{ce M:p(c)=10/2}.

In case (C1) we have b(z,d) <O and hence b(z,0). C O,. Thus
b(z,0). NY = 0.

In case (C2) there is d € W and ¢ € P with d < ¢ and p(c) = 6/2.
Suppose ¢ = b(y,0/2) and d = b(z,7). Now W < b(z,¢’). Hence
d(z,x) < &'. Moreover d < ¢ implies d(z,y) + 7 < /2. Thus

d(z,y) <d(z,z) +d(z,y) <e'+0/2—T7=e—0/2—T7<ec—0)2.

Thereby ¢ < b(x,¢), and so b(x,¢) € P. By Lemma 31l Y (§ B(x,¢).
We have thus showed that M \ O, and hence Y, is located. Using
Lemma [3.2], we have that

d(z,Y)>0<«= (36 > 0)B(z,6) NY = 0.
We claim that O, is the metric complement of Y, i.e.
x € Oy <= d(z,Y) > 0.

If z € O, then for some § > 0, B(x,0) C O,. Thus B(x,0)NY cannot
be inhabited. Conversely, suppose that B(z,d)NY = ) for some § > 0.
We have by (P2), that

b(z,8) <O U ({b(z,8)} N P)

Thus B(z,d6) € O, U ({b(z,d)} N P),, and hence z € O, or =z €
({b(x,d)} N P).. In the latter case b(z,0) € P, which contradicts
B(z,0)NY = 0. Thus x € O,. O

Theorem 3.5. Let X be a metric space and let M = M(X) be its
localic completion. Let O C M be such that M \ O is compact and
overt. Then Pt(M \ O) is Bishop-compact.

Proof. Let P and <’ be as in the proof of Lemma B2l Let € > 0 be
given. Then by axiom M2 and positivity

M <'{b(z,e/2):x € X} <'{b(x,e/2):z € X} N P.
By compactness there is some K-finite

F ={b(z1,¢/2),...,b(zpn,e/2)} C{b(z,e/2) :x € X} NP
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so that
M<'F. (1)

Since each b(z;,&/2) is positive there is by Lemma some «; €
b(zi,/2). which is in Pt(M \ O). By (), each point in Pt(M \ O)
has distance smaller than e to some point ;. Thus {aq,...,a,} is the
required e-net. O

Corollary 3.6. If in the context of Theorem[3.4], X is Bishop-compact,
and then so is Y.

Proof. If X is Bishop-compact, then M(X) is a compact as a formal
space [Vic05]. Hence, M\ O is compact. By Theorem [B4] Y is Bishop-
compact. [l
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