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Abstrat

We show that the set of points of an overt losed subspae of a

metri ompletion of a Bishop-loally ompat metri spae is loated.

Consequently, if the subspae is, moreover, ompat, then its olletion

of points is Bishop ompat.
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1 Introdution

We ontinue our investigations into the relations between Bishop's

onstrutive mathematis and formal topology [CS05, Pal05, Pal07,

Spi07, CS09, Pal09℄. Previously, we gave a formal de�nition of loat-

edness [Spi07℄ and showed that an overt losed subspae of a ompat

formal spae is (formally) loated. Here we onsider a generalization of

the pointwise side of this result. We use the real numbers as a running

example. We work in informal Bishop-style mathematis, inluding

the axiom of dependent hoie.

2 Preliminaries

Bishop

We assume familarity with Bishop's onstrutive mathematis [BB85℄,

but we reall some relevant notions.
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De�nition 2.1. A set is �nite if it is in bijetive orrespondene with

a set {0, . . . , n}, n > 0. A set is Kuratowski �nite (K-�nite, �nitely

enumerable) if it is the image of a �nite set.

A subset of a set X if K-�nite i� it an written as {x1, . . . , xn} with
x1, . . . , xn in X. Suh a set does not need to have a ardinality if the

equality on X is not deidable. For example, the set {a, b} is K-�nite.

However, it is �nite i� we an deide whether a = b.

De�nition 2.2. A metri spae is said to be totally bounded if for

eah ε > 0 the spae an be overed by a K-�nite set of balls with

radius at most ε. A subset of a metri spae is Bishop-ompat if it

is omplete and totally bounded.

A metri spae is said to be loally totally bounded if for eah ball and

eah ε > 0 the ball an be overed by a K-�nite set of balls with radius

at most ε. A metri spae is Bishop-loally ompat if it is omplete

and loally totally bounded.

The losed unit interval is ompat. The real numbers are loally

ompat.

De�nition 2.3. A subset A of a metri spae (X, ρ) is loated if for

eah x in X the distane inf{ρ(x, a) | a ∈ A} exists as a (Dedekind)

real number.

In lassial mathematis all sets are loated. Construtively this is

not the ase, as the following Brouwerian ounterexample shows.

Example 2.4. Consider the set

{x ∈ R | x > 1 or (x > 0 and P )}.

This set will only be loated if we an deide whether the proposition

P holds.

De�nition 2.5. A subset of a metri spae is Bishop-losed if it on-

tains all its limit points, i.e. if it oinides with its losure.

The losed unit interval [0,1℄ is Bishop-losed.

A Bishop losed loated subset of a metri spae oinides with the

omplement of its omplement: a Bishop losed loated set oinides

with the set of all points whih have zero distane to it.

Formal topology

De�nition 2.6. A formal topology [Sam03℄ onsists of a pre-order

(S,6) of basi opens and a relation ⊳⊂ S×P(S), the overing relation,
whih satis�es:
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Ref a ∈ U implies a ⊳ U ;

Tra a ⊳ U, U ⊳ V implies a ⊳ V , where U ⊳ V means u ⊳ V for all

u ∈ U ;

Lo a ⊳ U , a ⊳ V implies a ⊳ U ∧ V = {x | ∃u ∈ U∃v ∈ V.x 6
u, x 6 v};

Ext a 6 b implies a ⊳ {b}.

These axioms are known as Re�exivity, Transitivity, Loalization and

Extensionality. Ref and Ext say that if a basi open belongs to a

family, then the family overs it. Tra is the transitivity of the over.

Lo is the distributive rule for frames.

The formal intersetion U ∧ V is de�ned as U6 ∩ V6, where Z6 is

the set {x | ∃z ∈ Z.x 6 z}. Another ommon notation for Z6 is Z↓.

We write a ⊳ b for a ⊳ {b}. We write U ≡ V i� U ✁V and V ✁U .

De�nition 2.7. Let (S, ✁ ) be a formal topology. A point is an in-

habited subset α ⊂ S whih is �ltering with respet to 6, and suh that

U ∩ α is inhabited, whenever a✁U for some a ∈ α. The olletion of

points is denoted by Pt(S). Let U be an open in S. Then U∗ denotes

the lass of points α suh that α ∈ U .

Example 2.8. The formal reals are indutively de�ned by the following

relation on the open rational intervals ordered by inlusion.

1. (p, s)✁ {(p, r), (q, s)} if p 6 q < r 6 s;

2. (p, q)✁ {(p′, q′) | p < p′ < q′ < q}.

The points of this spae are preisely the (Dedekind) real numbers.

De�nition 2.9. Let (S,⊳) be a formal topology. A subloale is a

formal topology (S, ✁ ′) suh that ⊳⊂⊳′
and a ∧′ b ⊳′ a ∧ b.

Let U ⊂ S. The losed subloale S \ U is u ⊳−U V i� u ⊳ V ∪ U .

Example 2.10. The set {(p, q) | q 6 0 ∨ p > 1} represents the losed

unit interval as a subspae of the real line.

De�nition 2.11. Pos is alled a positivity prediate on a formal topol-

ogy S if it satis�es:

Pos U ⊳ U+
, where U+ := {u ∈ U | Pos(u)}.

Mon If Pos(u) and u ⊳ V , then Pos(V ) � that is, Pos(v) for some

v ∈ V .

A formal spae is overt if it arries a positivity prediate.

Imprediatively, a formal topology is overt i� the loale it generates

is overt, or open.

Classially, all formal topologies are overt. Construtively this is

not the ase, as the following formal analogue of Example 2.4 shows.
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Example 2.12. The losed subloale de�ned by the open

{(p, 0) | p < 0} ∪ {(2, q) | q > 2} ∪ {(1, q) | q > 1 and P}

is overt if we an deide whether the proposition P holds; see [Spi07℄.

Metri ompletion

De�nition 2.13. To any metri spae X, we de�ne, following Vik-

ers [Vi05℄ and Palmgren [Pal07℄, a formal topology M(X) alled the

loali ompletion of X. A formal open is a pair (x, r) ∈ X×Q>0
, writ-

ten b(x, r). We de�ne the relation b(x, r) < b(y, s) i� d(x, y) < s − r
as illustrated below.

r

x

s

y

The order 6 is de�ned by b(x, r) 6 b(y, s) i� d(x, y) < t for all

t > s − r. The overing relation ✁ is indutively generated by the

axioms

M1 u ⊳ {v | v < u};

M2 M(X) ⊳ {b(x, r) | x ∈ X} for any r.

M1: Every ball is overed by all the balls stritly inside it (sine

the ball is open). M2: For eah r > 0, the spae is overed by all balls

of size r.
We de�ne U < V := ∀u ∈ U∃v ∈ V.u < v.

Example 2.14. Consider the formal unit interval [0, 1]. Then [0, 1] =
b(0, 3) = b(0, 2), but b(0, 3) > b(0, 2).

Similarly, b(0, 3)✁ b(0, 2), but it is not the ase that b(0, 3) 6
b(0, 2). This shows that a✁ b does not imply a 6 b.

Proposition 2.15. The loali ompletion of a metri spae is always

overt.

The formal reals are the metri ompletion of the rational numbers.
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Elementary desription of the over of M(X)

The ⋖ over relation below, introdued in [Pal07℄, generalises the one

introdued by Vermeulen [Ver86℄ and Coquand [CN96℄ for R:

p ⊑ε U := (∀q ≤ p)[radius(q) ≤ ε ⇒ {q} ≤ U ]

p ⊑ U := p ⊑ε U for some ε ∈ Q+

A(b, c) := {C ∈ P
K-�n

(MX) : b ⊑ C < c}

a⋖U := (∀b < c < a) (∃U0 ∈ A(b, c))U0 < U.

Theorem 2.16 ([Pal07℄). If X is a Bishop loally ompat metri

spae, then

a✁U ⇐⇒ a⋖U

(⇐ holds for any metri X spae.)

Theorem 2.17 ([Pal07℄). Let X be a omplete metri spae. Then

there exist a metri isomorphism j between X and Pt(M(X)).

In partiular, this holds for the real numbers.

3 Main results

We write B(x, r) for the set {y | d(x, y) < r}. Then b(x, r)∗ = B(x, r).

Lemma 3.1. Let X be a metri spae. Then an inhabited set S ⊆ X
is loated if, and only if, for all x ∈ X and all positive δ < ε we have

S ∩B(x, δ) = ∅ or S ≬ B(x, ε).

Where A ≬ B means that A ∩B is inhabited.

Lemma 3.2. Let X be a metri spae and let M = M(X) be its

loali ompletion. If O ⊆ M and the subloale M \ O is overt, then

any positive neighbourhood ontains a point of M \O.

Proof. Suppose that P is the positivity prediate of M \ O. Denote

the over relation of M \O by ✁
′
.

Suppose a = b(x, δ) ∈ P . Let a1 = a. Suppose we have onstruted
in P :

a1 ≥ a2 ≥ · · · ≥ an,

so that radius(ak+1) ≤ radius(ak)/2.
By (M1) and loalisation we get

an✁
′{an} ∧ {b(y, ρ) : y ∈ X}
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where ρ = radius(an)/2. Sine an ∈ P we obtain some b ∈ {an} ∧
{b(y, ρ) : y ∈ X} with b ∈ P . Clearly radius(b) ≤ radius(an)/2. Let

an+1 = b.
Let

α = {p ∈ M : (∃n)an ≤ p}.

Sine the radii of an are shrinking, this de�nes a point in Pt(M). (Note
that we used Dependent Choie.)

We laim that α ∈ Pt(M \O) = Pt(M)\O∗. Suppose that α ∈ O∗,

i.e. for some c ∈ O: c ∈ α. Hene there is n with an ≤ c. Thus

an✁O, that is an✁
′∅. But sine an is positive, this is impossible! So

α ∈ Pt(M \O).

The following theorem an be onveniently formulated using the

following de�nition. However, no futher fats about this de�nition are

needed.

De�nition 3.3. [Spi07℄ Let X be a metri spae. A prediate Pos on
S = {b(x, r) | x ∈ X, r ∈ Q+} is alled loated if

• Pos(u) and u✁V imply that Pos(v) for some v in V ;

• v < u implies that ¬Pos v or Posu.

Let T be a losed subloale of M(X). Then T is alled loated if there

is a loated prediate Pos suh that T oinides with the losed subloale

de�ned by the open ¬Pos ⊂ S.

Theorem 3.4. Let X be a Bishop loally ompat metri spae and

let M = M(X) be its loali ompletion. Let O ⊆ M . If a subloale

M \O is overt, then M \O is (formally) loated. Consequently, the set

of points Y = j−1[Pt(M \O)] is loated as a subset of X and moreover

O∗ is the metri omplement of Y in X.

Proof. That M \ O is overt means that there is an inhabited subset

P ⊆ M (a set of positive formal neighbourhoods) so that

(P1) a✁M O ∪ U and a ∈ P implies U ∩ P inhabited,

(P2) U ✁M O ∪ (U ∩ P ).

Now sine P is inhabited, Lemma 3.2 ensures that Y is inhabited.

Let x ∈ X be arbitrary. Consider positive rational numbers δ < ε.
Take ε′ with δ < ε′ < ε and let θ = ε− ε′. Using the (P2), (M2) and

the loalisation we get

b(x, ε)✁MO ∪ (P ∩ {c ∈ M : ρ(c) = θ/2}).

Thus also

b(x, ε)⋖O ∪ (P ∩ {c ∈ M : ρ(c) = θ/2}).
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and by de�nition there is a K-�nite W ∈ A(b(x, δ), b(x, ε′)) with

W < O ∪ (P ∩ {c ∈ M : ρ(c) = θ/2}).

Sine W is K-�nite we have one of the ases

(C1) W < O,

(C2) (∃d ∈ W )d < P ∩ {c ∈ M : ρ(c) = θ/2}.

In ase (C1) we have b(x, δ)✁O and hene b(x, δ)∗ ⊆ O∗. Thus

b(x, δ)∗ ∩ Y = ∅.
In ase (C2) there is d ∈ W and c ∈ P with d < c and ρ(c) = θ/2.

Suppose c = b(y, θ/2) and d = b(z, τ). Now W < b(x, ε′). Hene

d(z, x) < ε′. Moreover d < c implies d(z, y) + τ < θ/2. Thus

d(x, y) ≤ d(x, z) + d(z, y) < ε′ + θ/2− τ = ε− θ/2− τ < ε− θ/2.

Thereby c < b(x, ε), and so b(x, ε) ∈ P . By Lemma 3.1, Y ≬ B(x, ε).
We have thus showed that M \O, and hene Y , is loated. Using

Lemma 3.2, we have that

d(x, Y ) > 0 ⇐⇒ (∃δ > 0)B(x, δ) ∩ Y = ∅.

We laim that O∗ is the metri omplement of Y , i.e.

x ∈ O∗ ⇐⇒ d(x, Y ) > 0.

If x ∈ O∗ then for some δ > 0, B(x, δ) ⊆ O∗. Thus B(x, δ)∩Y annot

be inhabited. Conversely, suppose that B(x, δ)∩Y = ∅ for some δ > 0.
We have by (P2), that

b(x, δ)✁O ∪ ({b(x, δ)} ∩ P )

Thus B(x, δ) ⊆ O∗ ∪ ({b(x, δ)} ∩ P )∗, and hene x ∈ O∗ or x ∈
({b(x, δ)} ∩ P )∗. In the latter ase b(x, δ) ∈ P , whih ontradits

B(x, δ) ∩ Y = ∅. Thus x ∈ O∗.

Theorem 3.5. Let X be a metri spae and let M = M(X) be its

loali ompletion. Let O ⊆ M be suh that M \ O is ompat and

overt. Then Pt(M \O) is Bishop-ompat.

Proof. Let P and ✁
′
be as in the proof of Lemma 3.2. Let ε > 0 be

given. Then by axiom M2 and positivity

M ✁
′{b(x, ε/2) : x ∈ X}✁ ′{b(x, ε/2) : x ∈ X} ∩ P.

By ompatness there is some K-�nite

F = {b(x1, ε/2), . . . , b(xn, ε/2)} ⊆ {b(x, ε/2) : x ∈ X} ∩ P
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so that

M ✁
′F. (1)

Sine eah b(xi, ε/2) is positive there is by Lemma 3.2 some αi ∈
b(xi, ε/2)∗ whih is in Pt(M \ O). By (1), eah point in Pt(M \ O)
has distane smaller than ε to some point αi. Thus {α1, . . . , αn} is the
required ε-net.

Corollary 3.6. If in the ontext of Theorem 3.4, X is Bishop-ompat,

and then so is Y .

Proof. If X is Bishop-ompat, then M(X) is a ompat as a formal

spae [Vi05℄. Hene, M \O is ompat. By Theorem 3.4, Y is Bishop-

ompat.
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