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Abstra
t

We show that the set of points of an overt 
losed subspa
e of a

metri
 
ompletion of a Bishop-lo
ally 
ompa
t metri
 spa
e is lo
ated.

Consequently, if the subspa
e is, moreover, 
ompa
t, then its 
olle
tion

of points is Bishop 
ompa
t.
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1 Introdu
tion

We 
ontinue our investigations into the relations between Bishop's


onstru
tive mathemati
s and formal topology [CS05, Pal05, Pal07,

Spi07, CS09, Pal09℄. Previously, we gave a formal de�nition of lo
at-

edness [Spi07℄ and showed that an overt 
losed subspa
e of a 
ompa
t

formal spa
e is (formally) lo
ated. Here we 
onsider a generalization of

the pointwise side of this result. We use the real numbers as a running

example. We work in informal Bishop-style mathemati
s, in
luding

the axiom of dependent 
hoi
e.

2 Preliminaries

Bishop

We assume familarity with Bishop's 
onstru
tive mathemati
s [BB85℄,

but we re
all some relevant notions.
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De�nition 2.1. A set is �nite if it is in bije
tive 
orresponden
e with

a set {0, . . . , n}, n > 0. A set is Kuratowski �nite (K-�nite, �nitely

enumerable) if it is the image of a �nite set.

A subset of a set X if K-�nite i� it 
an written as {x1, . . . , xn} with
x1, . . . , xn in X. Su
h a set does not need to have a 
ardinality if the

equality on X is not de
idable. For example, the set {a, b} is K-�nite.

However, it is �nite i� we 
an de
ide whether a = b.

De�nition 2.2. A metri
 spa
e is said to be totally bounded if for

ea
h ε > 0 the spa
e 
an be 
overed by a K-�nite set of balls with

radius at most ε. A subset of a metri
 spa
e is Bishop-
ompa
t if it

is 
omplete and totally bounded.

A metri
 spa
e is said to be lo
ally totally bounded if for ea
h ball and

ea
h ε > 0 the ball 
an be 
overed by a K-�nite set of balls with radius

at most ε. A metri
 spa
e is Bishop-lo
ally 
ompa
t if it is 
omplete

and lo
ally totally bounded.

The 
losed unit interval is 
ompa
t. The real numbers are lo
ally


ompa
t.

De�nition 2.3. A subset A of a metri
 spa
e (X, ρ) is lo
ated if for

ea
h x in X the distan
e inf{ρ(x, a) | a ∈ A} exists as a (Dedekind)

real number.

In 
lassi
al mathemati
s all sets are lo
ated. Constru
tively this is

not the 
ase, as the following Brouwerian 
ounterexample shows.

Example 2.4. Consider the set

{x ∈ R | x > 1 or (x > 0 and P )}.

This set will only be lo
ated if we 
an de
ide whether the proposition

P holds.

De�nition 2.5. A subset of a metri
 spa
e is Bishop-
losed if it 
on-

tains all its limit points, i.e. if it 
oin
ides with its 
losure.

The 
losed unit interval [0,1℄ is Bishop-
losed.

A Bishop 
losed lo
ated subset of a metri
 spa
e 
oin
ides with the


omplement of its 
omplement: a Bishop 
losed lo
ated set 
oin
ides

with the set of all points whi
h have zero distan
e to it.

Formal topology

De�nition 2.6. A formal topology [Sam03℄ 
onsists of a pre-order

(S,6) of basi
 opens and a relation ⊳⊂ S×P(S), the 
overing relation,
whi
h satis�es:
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Ref a ∈ U implies a ⊳ U ;

Tra a ⊳ U, U ⊳ V implies a ⊳ V , where U ⊳ V means u ⊳ V for all

u ∈ U ;

Lo
 a ⊳ U , a ⊳ V implies a ⊳ U ∧ V = {x | ∃u ∈ U∃v ∈ V.x 6
u, x 6 v};

Ext a 6 b implies a ⊳ {b}.

These axioms are known as Re�exivity, Transitivity, Lo
alization and

Extensionality. Ref and Ext say that if a basi
 open belongs to a

family, then the family 
overs it. Tra is the transitivity of the 
over.

Lo
 is the distributive rule for frames.

The formal interse
tion U ∧ V is de�ned as U6 ∩ V6, where Z6 is

the set {x | ∃z ∈ Z.x 6 z}. Another 
ommon notation for Z6 is Z↓.

We write a ⊳ b for a ⊳ {b}. We write U ≡ V i� U ✁V and V ✁U .

De�nition 2.7. Let (S, ✁ ) be a formal topology. A point is an in-

habited subset α ⊂ S whi
h is �ltering with respe
t to 6, and su
h that

U ∩ α is inhabited, whenever a✁U for some a ∈ α. The 
olle
tion of

points is denoted by Pt(S). Let U be an open in S. Then U∗ denotes

the 
lass of points α su
h that α ∈ U .

Example 2.8. The formal reals are indu
tively de�ned by the following

relation on the open rational intervals ordered by in
lusion.

1. (p, s)✁ {(p, r), (q, s)} if p 6 q < r 6 s;

2. (p, q)✁ {(p′, q′) | p < p′ < q′ < q}.

The points of this spa
e are pre
isely the (Dedekind) real numbers.

De�nition 2.9. Let (S,⊳) be a formal topology. A sublo
ale is a

formal topology (S, ✁ ′) su
h that ⊳⊂⊳′
and a ∧′ b ⊳′ a ∧ b.

Let U ⊂ S. The 
losed sublo
ale S \ U is u ⊳−U V i� u ⊳ V ∪ U .

Example 2.10. The set {(p, q) | q 6 0 ∨ p > 1} represents the 
losed

unit interval as a subspa
e of the real line.

De�nition 2.11. Pos is 
alled a positivity predi
ate on a formal topol-

ogy S if it satis�es:

Pos U ⊳ U+
, where U+ := {u ∈ U | Pos(u)}.

Mon If Pos(u) and u ⊳ V , then Pos(V ) � that is, Pos(v) for some

v ∈ V .

A formal spa
e is overt if it 
arries a positivity predi
ate.

Impredi
atively, a formal topology is overt i� the lo
ale it generates

is overt, or open.

Classi
ally, all formal topologies are overt. Constru
tively this is

not the 
ase, as the following formal analogue of Example 2.4 shows.
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Example 2.12. The 
losed sublo
ale de�ned by the open

{(p, 0) | p < 0} ∪ {(2, q) | q > 2} ∪ {(1, q) | q > 1 and P}

is overt if we 
an de
ide whether the proposition P holds; see [Spi07℄.

Metri
 
ompletion

De�nition 2.13. To any metri
 spa
e X, we de�ne, following Vi
k-

ers [Vi
05℄ and Palmgren [Pal07℄, a formal topology M(X) 
alled the

lo
ali
 
ompletion of X. A formal open is a pair (x, r) ∈ X×Q>0
, writ-

ten b(x, r). We de�ne the relation b(x, r) < b(y, s) i� d(x, y) < s − r
as illustrated below.

r

x

s

y

The order 6 is de�ned by b(x, r) 6 b(y, s) i� d(x, y) < t for all

t > s − r. The 
overing relation ✁ is indu
tively generated by the

axioms

M1 u ⊳ {v | v < u};

M2 M(X) ⊳ {b(x, r) | x ∈ X} for any r.

M1: Every ball is 
overed by all the balls stri
tly inside it (sin
e

the ball is open). M2: For ea
h r > 0, the spa
e is 
overed by all balls

of size r.
We de�ne U < V := ∀u ∈ U∃v ∈ V.u < v.

Example 2.14. Consider the formal unit interval [0, 1]. Then [0, 1] =
b(0, 3) = b(0, 2), but b(0, 3) > b(0, 2).

Similarly, b(0, 3)✁ b(0, 2), but it is not the 
ase that b(0, 3) 6
b(0, 2). This shows that a✁ b does not imply a 6 b.

Proposition 2.15. The lo
ali
 
ompletion of a metri
 spa
e is always

overt.

The formal reals are the metri
 
ompletion of the rational numbers.
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Elementary des
ription of the 
over of M(X)

The ⋖ 
over relation below, introdu
ed in [Pal07℄, generalises the one

introdu
ed by Vermeulen [Ver86℄ and Coquand [CN96℄ for R:

p ⊑ε U := (∀q ≤ p)[radius(q) ≤ ε ⇒ {q} ≤ U ]

p ⊑ U := p ⊑ε U for some ε ∈ Q+

A(b, c) := {C ∈ P
K-�n

(MX) : b ⊑ C < c}

a⋖U := (∀b < c < a) (∃U0 ∈ A(b, c))U0 < U.

Theorem 2.16 ([Pal07℄). If X is a Bishop lo
ally 
ompa
t metri


spa
e, then

a✁U ⇐⇒ a⋖U

(⇐ holds for any metri
 X spa
e.)

Theorem 2.17 ([Pal07℄). Let X be a 
omplete metri
 spa
e. Then

there exist a metri
 isomorphism j between X and Pt(M(X)).

In parti
ular, this holds for the real numbers.

3 Main results

We write B(x, r) for the set {y | d(x, y) < r}. Then b(x, r)∗ = B(x, r).

Lemma 3.1. Let X be a metri
 spa
e. Then an inhabited set S ⊆ X
is lo
ated if, and only if, for all x ∈ X and all positive δ < ε we have

S ∩B(x, δ) = ∅ or S ≬ B(x, ε).

Where A ≬ B means that A ∩B is inhabited.

Lemma 3.2. Let X be a metri
 spa
e and let M = M(X) be its

lo
ali
 
ompletion. If O ⊆ M and the sublo
ale M \ O is overt, then

any positive neighbourhood 
ontains a point of M \O.

Proof. Suppose that P is the positivity predi
ate of M \ O. Denote

the 
over relation of M \O by ✁
′
.

Suppose a = b(x, δ) ∈ P . Let a1 = a. Suppose we have 
onstru
ted
in P :

a1 ≥ a2 ≥ · · · ≥ an,

so that radius(ak+1) ≤ radius(ak)/2.
By (M1) and lo
alisation we get

an✁
′{an} ∧ {b(y, ρ) : y ∈ X}
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where ρ = radius(an)/2. Sin
e an ∈ P we obtain some b ∈ {an} ∧
{b(y, ρ) : y ∈ X} with b ∈ P . Clearly radius(b) ≤ radius(an)/2. Let

an+1 = b.
Let

α = {p ∈ M : (∃n)an ≤ p}.

Sin
e the radii of an are shrinking, this de�nes a point in Pt(M). (Note
that we used Dependent Choi
e.)

We 
laim that α ∈ Pt(M \O) = Pt(M)\O∗. Suppose that α ∈ O∗,

i.e. for some c ∈ O: c ∈ α. Hen
e there is n with an ≤ c. Thus

an✁O, that is an✁
′∅. But sin
e an is positive, this is impossible! So

α ∈ Pt(M \O).

The following theorem 
an be 
onveniently formulated using the

following de�nition. However, no futher fa
ts about this de�nition are

needed.

De�nition 3.3. [Spi07℄ Let X be a metri
 spa
e. A predi
ate Pos on
S = {b(x, r) | x ∈ X, r ∈ Q+} is 
alled lo
ated if

• Pos(u) and u✁V imply that Pos(v) for some v in V ;

• v < u implies that ¬Pos v or Posu.

Let T be a 
losed sublo
ale of M(X). Then T is 
alled lo
ated if there

is a lo
ated predi
ate Pos su
h that T 
oin
ides with the 
losed sublo
ale

de�ned by the open ¬Pos ⊂ S.

Theorem 3.4. Let X be a Bishop lo
ally 
ompa
t metri
 spa
e and

let M = M(X) be its lo
ali
 
ompletion. Let O ⊆ M . If a sublo
ale

M \O is overt, then M \O is (formally) lo
ated. Consequently, the set

of points Y = j−1[Pt(M \O)] is lo
ated as a subset of X and moreover

O∗ is the metri
 
omplement of Y in X.

Proof. That M \ O is overt means that there is an inhabited subset

P ⊆ M (a set of positive formal neighbourhoods) so that

(P1) a✁M O ∪ U and a ∈ P implies U ∩ P inhabited,

(P2) U ✁M O ∪ (U ∩ P ).

Now sin
e P is inhabited, Lemma 3.2 ensures that Y is inhabited.

Let x ∈ X be arbitrary. Consider positive rational numbers δ < ε.
Take ε′ with δ < ε′ < ε and let θ = ε− ε′. Using the (P2), (M2) and

the lo
alisation we get

b(x, ε)✁MO ∪ (P ∩ {c ∈ M : ρ(c) = θ/2}).

Thus also

b(x, ε)⋖O ∪ (P ∩ {c ∈ M : ρ(c) = θ/2}).
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and by de�nition there is a K-�nite W ∈ A(b(x, δ), b(x, ε′)) with

W < O ∪ (P ∩ {c ∈ M : ρ(c) = θ/2}).

Sin
e W is K-�nite we have one of the 
ases

(C1) W < O,

(C2) (∃d ∈ W )d < P ∩ {c ∈ M : ρ(c) = θ/2}.

In 
ase (C1) we have b(x, δ)✁O and hen
e b(x, δ)∗ ⊆ O∗. Thus

b(x, δ)∗ ∩ Y = ∅.
In 
ase (C2) there is d ∈ W and c ∈ P with d < c and ρ(c) = θ/2.

Suppose c = b(y, θ/2) and d = b(z, τ). Now W < b(x, ε′). Hen
e

d(z, x) < ε′. Moreover d < c implies d(z, y) + τ < θ/2. Thus

d(x, y) ≤ d(x, z) + d(z, y) < ε′ + θ/2− τ = ε− θ/2− τ < ε− θ/2.

Thereby c < b(x, ε), and so b(x, ε) ∈ P . By Lemma 3.1, Y ≬ B(x, ε).
We have thus showed that M \O, and hen
e Y , is lo
ated. Using

Lemma 3.2, we have that

d(x, Y ) > 0 ⇐⇒ (∃δ > 0)B(x, δ) ∩ Y = ∅.

We 
laim that O∗ is the metri
 
omplement of Y , i.e.

x ∈ O∗ ⇐⇒ d(x, Y ) > 0.

If x ∈ O∗ then for some δ > 0, B(x, δ) ⊆ O∗. Thus B(x, δ)∩Y 
annot

be inhabited. Conversely, suppose that B(x, δ)∩Y = ∅ for some δ > 0.
We have by (P2), that

b(x, δ)✁O ∪ ({b(x, δ)} ∩ P )

Thus B(x, δ) ⊆ O∗ ∪ ({b(x, δ)} ∩ P )∗, and hen
e x ∈ O∗ or x ∈
({b(x, δ)} ∩ P )∗. In the latter 
ase b(x, δ) ∈ P , whi
h 
ontradi
ts

B(x, δ) ∩ Y = ∅. Thus x ∈ O∗.

Theorem 3.5. Let X be a metri
 spa
e and let M = M(X) be its

lo
ali
 
ompletion. Let O ⊆ M be su
h that M \ O is 
ompa
t and

overt. Then Pt(M \O) is Bishop-
ompa
t.

Proof. Let P and ✁
′
be as in the proof of Lemma 3.2. Let ε > 0 be

given. Then by axiom M2 and positivity

M ✁
′{b(x, ε/2) : x ∈ X}✁ ′{b(x, ε/2) : x ∈ X} ∩ P.

By 
ompa
tness there is some K-�nite

F = {b(x1, ε/2), . . . , b(xn, ε/2)} ⊆ {b(x, ε/2) : x ∈ X} ∩ P
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so that

M ✁
′F. (1)

Sin
e ea
h b(xi, ε/2) is positive there is by Lemma 3.2 some αi ∈
b(xi, ε/2)∗ whi
h is in Pt(M \ O). By (1), ea
h point in Pt(M \ O)
has distan
e smaller than ε to some point αi. Thus {α1, . . . , αn} is the
required ε-net.

Corollary 3.6. If in the 
ontext of Theorem 3.4, X is Bishop-
ompa
t,

and then so is Y .

Proof. If X is Bishop-
ompa
t, then M(X) is a 
ompa
t as a formal

spa
e [Vi
05℄. Hen
e, M \O is 
ompa
t. By Theorem 3.4, Y is Bishop-


ompa
t.
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