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CHAIN HOMOGENEOUS SOUSLIN ALGEBRAS
GIDO SCHARFENBERGER-FABIAN

ABSTRACT. Assuming Jensen’s principle {T we construct Souslin algebras all of
whose maximal chains are pairwise isomorphic as total orders, thereby answering
questions of Koppelberg and Todorgevic.

INTRODUCTION

Souslin’s problem was published in the first issue of Fundamenta Mathematicae
(1920, p.223):

Un ensemble ordonné (linéairement) sans sauts ni lacunes et tel que
tout ensemble de ses intervalles (contenant plus qu'un élément) n’empiétant
les uns sur les autres est au plus dénombrable, est-il nécessairement un
continu linéaire (ordinaire)?
(A (linearly) ordered set without jumps nor gaps and such that each set of its intervals
(containing more than one point) the ones not overlapping onto the others is at most
countable, is it necessarily an (ordinary) linear continuum?)

During the following decades, though still far from being solved, Souslin’s problem
was reconsidered by a number of mathematicians who established several equivalent
formulations in terms of trees ([Kur35, [Mil43]), metric spaces ([Kur36]) or Boolean al-
gebras ([Mah48]). When in the 1960’s the independence of ZFC and Souslin’s hypoth-
esis SH, which states that the answer to Souslin’s question is “yes”, was established,
general interest was focussed on the techniques developed for such independence re-
sults, yet there were also some publications exploring the structural properties of
Souslin lines ([Jen69]) and of Souslin trees and algebras (|Jec72al, [JecT2Db]).

Souslin lines can be analyzed through their paritition trees, which are normal
Souslin trees, i.e. normal trees of height w; without uncountable antichains. There
is also an inverse procedure, which generates a Souslin line from a given Souslin tree.
Yet these operations are highly non-canonical, meaning that one Souslin tree can
give rise to up to 2™ non-isomorphic Souslin lines and (in a restricted sense) vice
versa. In the present article we give an example of a Souslin tree to which only one
complete and dense linear order type is associated. Moreover, this Souslin tree and
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its associated Souslin algebra have interesting homogeneity properties. And this is
were we meet a second, algebraic motivation for the research presented here.

Homogeneity of a mathematical object generally means that the object locally
looks similar, i.e., that sufficiently small parts of the object are all structurally equal
to each other. E.g., for a Boolean algebra B homogeneity is defined as the property
that the non-trivial relative algebras B [a for all @ € BT are isomorphic to each
other. Of course, many popular structures satisfy stronger homogeneity conditions
than ordinary homogeneity, as e.g., (R, <), the linear order of the real numbers has
for each pair of countable, dense subsets an auto-homeomorphism that maps one
countable, dense subset onto the other.

The variant of homogeneity studied in the present text is chain homogeneity for
Boolean algebras, the property of a Boolean algebra B that for any two maximal
chains Ky and K; of B (i.e. subsets of B which are maximal being linearly ordered
by the partial order of B) there is an isomorphism (of linear orders) between Kj and
K. Note, that such an isomorphism of linear orders does not necessarily extend to
an automorphism of B.

In the case of o-complete, atomless Boolean algebras it is easy to see that chain
homogeneity implies the c.c.c., so the only possible order types for maximal chains
of such algebras are the real unit interval [0, 1] or a Souslin line with endpoints. The
only known, complete, atomless and chain homogeneous Boolean algebras are the
Cohen-algebras and measure algebras, both having only separable maximal chains.

The present article gives the affirmative answer to the question of Sabine Koppel-
berg whether there are, under appropriate assumptions, complete and atomless chain
homogeneous Boolean algebras with inseparable maximal chains. It is a completely
revised version of Chapter 2 of the authors PhD thesis [SF0S].

The organisation of the text is quite conventional. In Section [l we review the
basic definitions concerning Souslin lines, trees and algebras and fix the notation.
The following three sections introduce the technology we utilize in our Souslin tree
constructions, which consists of relations and mappings on the tree under construc-
tion and results on the extendibility thereof when adding a new level to the tree.
In Section [ the main results are stated, the proof of which, a somewhat involved
Souslin tree construction, is prepared in Section [0l and carried out in Section [7l The
paper closes with a section containing some further remarks and open problems.

1. PRELIMINARIES

We collect the basic definitions and results and fix the notation and for later
reference. Most proofs are fairly straght forward and therefore omitted, yet references
are given. The ambient theory is ZFC, Zermelo-Fraenkel set theory with choice;
further hypotheses are explicitely stated.
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1.1. Boolean algebras. Boolean algebras and the most elementary related notions,
such as subalgebras, completeness, atoms will not be defined here, though we will
mention some more or less subtle relationships between them. The main reference for
looking up undefined notions is the first volume of the Handbook of Boolean Algebras,
[Kop89).

Let B be a Boolean algebra. We call the binary relation on B

r<py <= xy=ax <= r—y=>0

the natural or the canonical order of B. A subset X C B, which is totally ordered
by <p is a chain of B. A chain X is a maximal chain of B if X is furthermore C-
maximal amongst the chains of B. We call a Boolean algebra all of whose maximal
chains are pairwise order isomorphic chain homogeneous. We let

mc B = {K C B | K is a maximal chain of B}.

An antichain of B is a family X C B of pairwise disjoint (i.e. xy = 0) elements of
B. We say that B satisfies (or has) the countable chain condition (or short c.c.c.) if
every antichain of B is at most countable.

Lemma 1.1. If B is o-complete and chain homogeneous, then B satisfies the count-
able chain condition.

Proof. Given an uncountable antichain X of B it is easy to construct well-ordered
chains with supremum 1, Ky = {z¢g <p 21 <p ...} of order type w and K; = {yo <p
y1 <p ...} of order type w;. Now for any pair K, K’ € mc B with Ky C K and K; C
K’ there should be an isomorphism ¢ : K — K’ but then n — min{«a | o(z,) <p Yo}
would give a cofinal countable sequence in ws. O

For any subset X of a complete Boolean algebra B we call

(X)ym = ﬂ {A| X C A and A is a complete subalgebra of B}

the subalgebra of B that is completely generated by X and maybe write (X)3* if B
is not clear from the context. If the superscript “cm” is omitted, i.e., by (X)pg, we
denote the intersection of all subalgebras containing X as a subset (and not only the
complete subalgebras) and call (X) the subalgebra of B, that is finitarily generated
by X.

Note that given an arbitrary Boolean algebra A which is a subalgebra of a complete
Boolean algebra B, the (Dedekind) completion A(cf. [Kop89, Section 4.3]), which
is the unique complete Boolean algebra containing A as a dense subalgebra, is not
necessarily isomorphic to (A)E". A regular subalgebra A of B is a subalgebra, such
that for all M C A we have S"PM = S"*M if the latter sum exists. (This definition
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also extends to regular sublattices.) A well-known fact is, that A is a regular subal-
gebra of B if and only if A is a dense subset of (A)%". In this case (A)%" is indeed
isomorphic to A, the Dedekind completion of A (cf. [Kop93, Prop.4]).

A Boolean algebra B is Ny-distributive if for every family (a;;)icw jes With an index
set J of arbitrary size, the following equation holds:

Hza,.jzz{nw | few}.
icw jEJ icw
We do not need more specific concepts of distributivity.

We frequently consider the regular open algebra RO X of some topological space
X. A subset U of X is regular open if the interior of the closure of U is equal to U
and RO X is the set of all regular open subsets of X. The regular open algebra of any
space X is a complete Boolean algebra but it is in general not a subalgebra of P(X)
from which the operations are modified by taking the regularisations (cf. [Kop89,
Theorem 1.37]). If the topology of X is not specified, then one of following applies:

e X is a linear order; then X carries the order topology (as in the following
proposition),

e X =T is a tree; then T carries the partial order topology which is generated
by all subsets of the form T'(t) := {s € T | t <r s} for some t € T (a
declaration of our tree notation follows below).

1.2. Normal trees. A tree is a well-founded partial order (T, <r) where the set of
predecessors {s | s <r t} is totally (and thus well-) ordered by <7 for all t € T". The
elements of a tree are called nodes. The height of the node t in T is the order type
of the set of its predecessors under the ordering of T', hty(t) := ot({s | s <r t}, <r).
For an ordinal @ we let T}, denote the set of nodes of 7" with height «. If hty(s) > «
we let s[a be the unique predecessor of s in level T,.

The height of a tree T', ht T', is the minimal ordinal « such that T, is empty. An
antichain is a set of pairwise incomparable nodes of T, so for a < ht T', the level T,
is an antichain of 7.

If ¢ is a subset of the height of a tree T', let T'[c denote the tree that consists of all
the nodes of T" whose height lies in ¢ together with the inherited tree order <r:

TrC: UTO" S<T[Ct <~ s<pt.
acc
For a node t € T' we let succ(t) be the set of t’s immediate successors. By T'(t) we
denote the set of all successors of ¢ in T' (including ¢) which forms a tree with root
t under the ordering inherited from 7. Nodes, that do not have <rp-successors, are
called leaves, and T is called k-branching, s a cardinal, if all nodes of 7" have exactly
k immediate successors, except for the leaves.
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A branch is a subset b of T' that is linearly ordered by < and closed downwards,
i.e. if s <pt € bthen s € b. For a < ot(b, <r) we let bl be the unique element of
T, Nb and so extend the similar notation for nodes and their predecessors to branches
and their elements. (For a normal tree this is just natural, since the nodes can be
identified with the branches leading to them.) A branch is mazimal in T if it is not
properly contained in any other branch of T

Under the notion of a normal tree we subsume the following four conditions:

(i) there is a single minimal node called the root;

(ii) each node (except for the top level nodes) has at least two immediate successors;

(iii) each node has successors in every higher non-empty level;

(iv) branches of limit length have unique limits (if they are extended in the tree),
i.e., if s,t are nodes of T' of limit height whose sets of predecessors coincide,

then s =t.

Whenever we consider a mapping ¢ : T" — S between trees and call this mapping
a tree homomorphism we mean that ¢ carries <r to <g and respects the height
function: htg(p(s)) = hty(s) for all s € T.

A tree T is said to be homogeneous, if for all pairs s,t € T of the same height
there is a tree isomorphism between T'(s) and T'(t), the trees of nodes in T" above s
and t respectively.

1.3. Souslin lines, trees and algebras. It is well-known that the existence state-
ments of Souslin algebras, lines and trees are mutually equivalent, yet independent
of ZFC: they all exist if and only if Souslin’s hypothesis SH fails.

A Souslin line is a total order directly witnessing the failure of SH, ie., it is a
complete, dense linear order that satisfies the countable chain condition but is not
separable, i.e., it has no countable dense subset, but all families of pairwise disjoint
open intervals are countable.

In this definition the possibility of a Souslin line having a separable non-trivial
interval is included. We will, however, never consider a Souslin line with a non-
trivial separable interval.

It is a standard result, that every Souslin line L has a dense subset of cardinality
N; and therefore the cardinality |L| = 2%.

In general, a Souslin tree is a tree T of height w; such that every family of pairwise
incomparable nodes and every branch of T" are at most countable. We will only con-
sider normal Souslin trees, where absence of uncountable antichains already implies
that the tree has no cofinal branch.

Souslin lines and Souslin trees are tightly related by the following operations (also
cf. [Tod84] or [Jec03], 9.14]). If we are given a Souslin tree T and a total order of its
supporting set (or just total orderings of the sets of the form succ(t) for all ¢t € T') we
can equip the set of all maximal branches of T" with the lexicographical ordering. The
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resulting linear order is dense, c.c.c. and inseparable, i.e., its Dedekind completion is
a Souslin line.

Now let L be a given Souslin line (without separable intervals). Then every normal
partition tree of L is a Souslin tree. A partition tree of a linear order L is a tree
whose nodes are open intervals of L such that the union of each level is dense in L
and whose tree ordering is given by the inverted inclusion.

Anyway, in general these operations are highly non-canonical; one Souslin tree
may be associated to many non-isomorphic Souslin lines and vice versa. To unify
considerations one uses the notion of Souslin algebras.

A Souslin algebra is a complete, atomless, c.c.c. and Ny-distributive Boolean alge-
brall. We will use the following non-standard denotations: A Souslin algebra that has
a set of complete generators of size Ny will be called small; otherwise it is big. Small
Souslin algebras always have 2%° elements, while a famous result of Solovay states
that the cardinality of (big) Souslin algebras is at most 2% (cf.”[Jec03, Thm.30.20]).

We use letters A, B, C to denote Souslin algebras. In a Souslin algebra B, a com-
plete subalgebra A is atomic if and only if A is completely generated by some count-
able subset X of B (cf. [Kop89, Prop.14.8]). In the other extreme, since distributivity
and the c.c.c. are handed down to complete subalgebras, the atomless, complete sub-
algebras of a Souslin algebra B are Souslin algebras as well.

We now review the connections between Souslin algebras and Souslin lines and
trees respectively, beginning with the lines.

Lemma 1.2 ([Kop89, §14, Exrc.5], for a proof cf. [SE08, 2.1.2-5]). a) The mazimal
chains of a Souslin algebra B are Souslin lines with endpoints and without non-
trivial separable intervals.

b) Let L be a Souslin line without separable intervals. The regular open algebra of L
1s a Souslin algebra. Furthermore, if L has endpoints then RO L has a mazimal
chain K which is isomorphic to L such that (K)*™ = RO L.

c) Let B be a Souslin algebra and K € mcB. Then (K), the subalgebra of B that is
finitarily generated by K, is a reqular subalgebra of B. In particular we have

(K)™ = (K) 2ROK.

It is well known that for a normal Souslin tree T, its regular open algebra ROT
is a Souslin algebra and 7" can be densely embedded in ROT. On the other hand,
in every Souslin algebra B that has a family of complete generators of cardinality
Ny, i.e., B is a small Souslin algebra, there is a dense subset T' of B\ {0} such that

Hn other contexts than ours, k-Souslin algebras are defined as complete, atomless, k-c.c. and
(< k)-distributive Boolean algebras and & can be any uncountable cardinal. In this notation the
objects of our consideration are called R;-Souslin algebras. But by Lemma (IT]) above, these higher
Souslin algebras fo k > N; always have maximal chains of distinct order types and are therefore
never chain homogeneous.
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(T, >p) is a normal Souslin tree (note that <p is >p) that is regularly embedded
in B and whose regular open algebra is therefore isomorphic to B (see e.g. [Kop89,
Thm.14.20]). We will use the following convention established in [DJ74]. Let T" be a
subset of a Souslin algebra B. Then T is said to souslinise B or to be a Souslinisation
of B if T" is dense in B and becomes a Souslin tree under the reverse Boolean order
of B. Every level T}, of a Souslinisation 7" of B is a partition of unity in B and taking
limits in 7" is simply the evaluation of the corresponding infinite product in B: If
t € T, is a limit node, let ¢, for v < o be the unique >g-predecessor of ¢ of height
7. Then t = [[{t, | ¥ < a}. The Souslinisation is unique up to the elimination of a
non-stationary set of levels: Given an isomorphism ¢ between two Souslin algebras
with Souslinisations 77 and T, respectively, there is a club C' C wq, such that ¢
becomes an isomorphism of trees when restrictied to T[C' and T5[C. For a proof of
this well-known result, cf. [DJ74] Lemma VIIL.9] or [Jec97, Lemma 25.6].

A Souslinisation T" of B provides a natural stratification of B by countably gen-
erated, complete and therefore atomic subalgebras. Fix a Souslinisation T of B and
let for o < wy

B .= (T,)™".
Note that for all & < w; we have B* = P(w) and T'[(a + 1) C B*. Clearly the
sequence of the B® is increasing. To show B = (J,_,, B, pick a € B\ {0}. There
is a maximal pairwise disjoint subset A of T" of elements <p a, so > A = a. By
the countable chain condition A must be countable and therefore a subset of B for
some « < wi. We finally note, that the sequence of the B* is not continuous. For a
countable limit ordinal a we have

B < <UIB%7>Cm = B°.

<o <o

1.4. Jensen’s principle {*. As for many Souslin tree constructions in the litera-
ture, we will assume diamond-principles.

Definition 1.3. a) The sequence (R, )a<y, Of sets R, C « for o < wy is a {-sequence
if for all X C w; there is some stationary set s C w; such that, for all o € s we
have X Na = R,. The statement “There is a {-sequence.” will be denoted by
O

b) The sequence (Su)a<w, Of countable sets S, C P(a) is a {F-sequence if for all
X C wy there is some club set ¢ C wy s.t., for all @ € ¢ we have X Na, cNa € S,.
The statement “There is a {*-sequence.” will be denoted by .

Since T — < we only need to assume >™ in our statements even though for the
sake of convenience we will use both, a {>*-sequence and a {>-sequence, at the same
time.
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2. GENERATING CHAINS AND WIPERS

For the representation of a given maximal chain K of a Souslin algebra B we will
use the approximations K, = K N B* with respect to some fixed Souslinisation T’
which are chains in B®, yet not necessarily maximal ones. In the simple case of
power set algebras or their isomorphic copies, such as the B*, we can give a nice
characterisation of maximal chains.

Proposition 2.1 (folklore, [SFO08, 2.1.10]). Let X be a set. Given a C-chain K of
P(X), define the quasi-ordering <y on X by
r<gys> VMueK)(ycu=zecu)

and let K == {>_ M, [[M | M C K} be the completion of the linear order (K, C) in
P(X). Then the following statements are equivalent:

(i) K is a mazimal chain of P(X);

(i1) <k is a linear ordering of X;

(i) ()5 = P(X).
In particular, there is a bijective association between the total orders on X and the
mazimal chains of P(X).

Definition 2.2. A maximal chain K of a Souslin algebra B that completely generates
B will be called a generating chain.

We stress that a chain K that satisfies (K)“™ = B will not be called generating
unless it is maximal.

Lemma 2.3 (cf. [SFO08| 2.2.2]). Given a generating chain K C B the set
C:={a<w :KNB*€me(B)} ={a€w : (KNBYHY™ =B}
18 closed and unbounded in wy.

The proof of the last lemma works by a straight forward catch-up argument using
the c.c.c. and the distributive law of B.

Combining Proposition 2.1l and Lemma 2.3 we find a means for the representation
of generating chains of a Souslin algebra as a relation on one of its Souslinizations
that we now fix in the notion of “wiper”. Requirement (ii) below is of technical
importance when it comes to the construction of isomorphisms between wipers.

Definition 2.4. a) Let T' be a normal tree with countable levels of arbitrary height
a < wp and let C be a subset of a. A wiper of total orders (or more convenient a
wiper) on TC' is a family W = (<,| v € C) of total orders <, on 7, such that

(i) W respects the tree order of T for all g,y € C, f < v and s,t € Tp,
s',t" € T, we have

s<rsANt<pt'ANs<gt=5 <, 1,
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(i) if B,y € C, B < v, and s € T, then the set [,, = {t € T, | s <p t} of
successors of s in level v is ordered densely without endpoints by <,.
b) If T of height w; is a Souslinisation of B and W is a wiper on T', we say that

Ky = {Z M | (3a € w)M C T,, M is an initial segment of <, }
is the subset of B which is induced by W.

To illustrate the definition and justify its definiendum imagine the Souslin tree
TC printed on the windscreen of your car, the levels on concentric lines around
some point at the bottom —where the root of T is situated and the windscreen wiper
is fixed— and if s,¢t € T'[C are of height o then s stands to the left of ¢ if and only
if s <, t according to <,€ W. In this picture each position of a windscreen wiper,
which has its axis fixed in the root of T', corresponds to a member a of the generating
chain Ky induced by the wiper W. And this member a € Ky can be calculated as
the sum over the “wiped area”, i.e. the sum of all nodes which lie to the left of the
windscreen wiper.

Establishing the relationship between wipers and generating chains of a Souslin
algebra is quite straight forward. Part b) of the next lemma, which is a refinement
of Lemma 2.3 requires a second catch-up argument in order to achieve the denseness
property (ii) of the definition of wipers.

Lemma 2.5 (cf. [SE08] 2.2.4]). Let B be a Souslin Algebra with Souslinisation T .

a) If W is a wiper on T, then Ky is a generating chain of B.

b) Let K be a generating chain of B. Then there is a club C' C wy, s.t. there is a
wiper W on T|C, inducing K, i.e. with K = Ky as above.

By this correspondence we also see that a small Souslin algebra always has exactly
2% maximal chains.

3. COMPLETE SUBALGEBRAS AND TREE EQUIVALENCE RELATIONS

In order to represent complete, atomless subalgebras of s Souslin algebra we will
use certain equivalence relations defined on a Souslinisation. The basic ideas for
this method of representation can already be found in work of Jech and Jensen
from around 1970. Here we will use the notions developed in [SFOS} and [SF09]
which are more appropriate for our purpose, that of rendering all Souslin subalgebras
isomorphic to the superalgebra. In particular, we will take a topological point of view
towards countable trees which simplifies matters significantly. (Cf. [SF09, §§2,5] for
a more detailed account on this.)

2Note that t.e.r.s as defined here and in [SF09] are called decent t.e.r.s in [SFO8]. The properpty
of decency of [SFO8, Def.1.1.3] refers to what is called honesty in the present text and in [SF09].



10 GIDO SCHARFENBERGER-FABIAN

Definition 3.1. Let 7" be a normal, Ny-branching tree.

a) We say that an equivalence relation = on T is a tree equivalence relation if =
respects levels (i.e., = refines T'® T'), is compatible with the tree order of T (i.e.,
hts = htr and s < ¢ = w > r imply s = r) and honest (i.e. for each triple
s,s’,t € T such that s < s and s =t we either find a node ¢ > t such that s’ = ¢
or there is no immediate successor of ¢ equivalent to s'[(ht(s)+ 1), the immediate
successor of s below s') and the quotient 7'/= is a normal and Ry-branching tree
with the induced order.

b) A t.er. = on T is said to be

e nice if for all triples s,s',t € T with s = ¢ and s < &' there is some ' > t
equivalent to s;

e oco-nice if it is nice and for node s and every =-class t/= the intersection
T(s) N (t/=) is either empty or infinite.(Equivavently we could require only
succ(s) N (/=) to be infinite.)

A t.er. = on a Souslinisation T" of B represents the atomless and complete sub-
algebra A = O t/=|t € T)™ of B = ROT. (We denote the =-class of t € T' by
t/=.) A subalgebra of B is called (oo-)nice, if it is represented by a(n oo-)nice t.e.r.
on some Souslinisation of B. Since niceness descends to the restriction to a club set of
levels, this is independent from the choice of the Souslinisation. Nice subalgebras are
much easier to handle than general subalgebras. But as chain homogeneous Souslin
algebras are necessarily homogeneous (cf. Proposition 8] and every homogeneous,
small Souslin algebra also has non-nice, atomless and complete subalgebras ([SF09,
Thms.3 & 4]) we also have to consider this general case in our constructions.

Lemma 3 of [SF09] states that for every Souslin algebra B with a Souslinisation 7'
and every complete and atomless subalgebra A or B there is a t.e.r. = that represents
A on T[C for some club C' of wy. If A is nice or co-nice then = can be chosen in a
correponding fashion.

A maximal branch b of a tree T is called cofinal if its order type with respect to
<7 coincides with the height of T'. We let

[T] = {b| bis a cofinal branch of T} .

For s € T'set § := {b € [T] | s € b}. We consider [T] as a topological space with
the base {s | s € T'}. Then for a normal tree T of countable limit height o with
only countable levels the space [T is a perfect Polish space, i.e., a separable and
completely metrizable space without isolated points.

It is clear that every tree homomorphism ¢ : T" — S induces a continuous mapping
@ : [T] — [S] and that for every club ¢ C htT we have a natural homeomorphism
between [T'] and [T'[¢] since every cofinal branch of 7" is uniquely determined by its
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intersection with T'[c. If T' carries a t.e.r. =, then an equivalence relation on [T is
induced which we also will denote by =.

We now come to state the key property and the associated lemma we use for
constructions of Souslin algebras with tightly controlled subalgebras.

Definition 3.2. Let X be a topological space and = an equivalence relation on
X. We say that a subset N C X is suitable for = if for every element x € X the
intersection of its =-class /= with N is either empty or dense in z/= (with the
subspace topology).

In order to add a new limit level to a countable tree T" we will choose a countable,
dense subset @ of [T'] and assign to every member z € @) a bounding limit node. A
given a t.e.r. = will be extended to the new level if and only if the set () is suitable
for =. Other wise it would fail to be honest. We will always succeed in extending =
if we are allowed to choose the members of @) from a comeagre subset M of [T] that
is suitable for =. The Reduction Lemma states that we will find such a set M.

Lemma 3.3 (Reduction Lemma, [SF09, Lemma 7)). Let T' be a countable, nor-
mal and Vo-branching tree of limit height carrying a t.e.r. =, and let M C [T] be
comeagre. Then there is a comeagre subset M' C M which is suitable for =.

For a monotone map ¢ : S — T between trees we denote the mapping between the
branch spaces [S] — [T], z — ¢"z by . We will say that ¢ induces ¥. Extending a
tree mapping ¢ to a new limit level requires, in the notation used above the Reduction
Lemma, that the set @ is closed under the application of . The two following results
establish that the Reduction Lemma can also be applied to achieve this situation.

Lemma 3.4. For a normal, countable tree T of limit height equipped with a t.e.r. =
consider the canonical tree epimorphism
T T—=T/= =) =t/=.
Let the set Y = {y € [T/=] | 3z € [T])y = 7"z} be equipped with the subspace
topology inherited from [T /=]. Then the induced map
7T =Y, 2 n'x
is an open and surjective mapping and Y is a comeagre subset of [T)).

Proof. Surjectivity of 7 as in the statement of the lemma is trivial. In order to prove
that 7 is an open mapping, we show that the images of the basic open sets/f\, teT
are open in Y. So let ¢ be a node of T. We prove the equation 7't = |J{r(r) | r €
succ(t)} NY. Letting 7(z) = 7"z with t € x € [T] be a member of the left hand side
we choose r to be the unique immediate successor of ¢ in x and see that this branch
is also a member of the right hand side.
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For the converse inclusion let y € Y be in 7(r) for some immediate successor r of
t. We have to find a branch z € [T through ¢ with T(z) = y. As y is in Y it has
a T-preimage x* € [T]. Letting v := ht(¢), take s to be the node of z* on level
and s’ its immediate successor in z*. Then clearly s =t and s’ = r. Because of =’s
honesty, there are on every level § > ~ successors of ¢ which stand in relation = to a
member of z*. The set of all these nodes forms (together with ¢ and its predecessors)
a subtree T™ of T" which has a cofinal branch x by Konig’s Lemma, because in any
case we can reduce 7™ to a club set of levels of order type w in which we find a
finitely branching subtree of the same height. Clearly we have 7(x) = 7(z*) = vy, as
desired.

Finally, Y is separable, metrizable and the image of the Polish space [T] under
the open mapping 7, so Y is Polish by a theorem of Sierpiniski (cf. [Kec95 8.19])
and thus comeagre in [S] by Choquet’s Theorem (cf. [Kec95, 8.17.ii]) being a dense
subset of [S] that contains a Polish space as a subset. O

Proposition 3.5. Let X and Y be Polish spaces and h : X — Y a continuous
mapping, such that h" X is comeagre in'Y and the right-hand side restriction of h to
its image, i.e. h: X — h"X is an open mapping.

a) If D C'Y is meagre, then h™""D is meagre as well.

b) If M C X is comeagre, then kM is comeagre as well.

Proof. The proof of part a) is straight forward. For part b) we can assume without
loss of generality, that M is a dense Gs-subset of X. Then clearly h” M is an analytic
subset of Y. So, by a theorem of Lusin and Sierpinski (cf. [JecO3, Thm.11.18.b] or
[Kec95, Thm.21.6]), h”M has the Baire property, i.e. there is an open subset U of
Y, such that the symmetric difference of h”X and U is meagre. In particular the
sets A" X \ U and U \ k"X are meagre. If we can show, that U is dense in Y, then
the proof is finished.

So assume to the contrary that there is an open subset V' of Y which is disjoint
from U. Then V UA"X is meagre and so is M NA~"V = A= (VN R"M) by part a).
But since M is comeagre and h~1"V is open, their intersection cannot be meagre —
contradiction! O

We combine the Reduction Lemma and the last two propositions in order to get
the result which is appropriate for our use in the constructions.

Corollary 3.6. Let T be a countable, normal and Ng-branching tree of limit height .
Let H be a countable set of triples h = (cn, =, on) where ¢, is a club subset of o, =,
is a t.e.r. on T|ey, (with associated canonical mapping wy,) and op, = (Tlen) /=n— Tlep
is an isomorphism. Let furthermore I be a countable set of pairs i = (¢;,=;) such
that ¢; is club in o and =; is an co-nice t.e.r. on T|c;. If M is a comeagre subset of
[T] then there is a comeagre subset N of M, such that
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(1) for all h € H, N is suitable for =, and (@, o7,)"N = N;
(2) N is suitable for all =; where i € I.

Proof idea. As images and pre-images of comeagre sets under the mappings from H
are all comeagre, repeated intersections deliver N. O

Our last technical lemma on t.e.r.s concerns nested oo-nice t.e.r.s and has a straight
forward proof. If =; refines =y as an equivalence relation on some set M, we define
the equivalence relation =y,; on M/=; by

(z/=1) =on (y/=1) 1= v=0y
for z,y € M.

Lemma 3.7. Assume we are given two oo-nice t.e.r.’s =y and =, on T which is
normal, Rg-branching and of countable limit height, such that = is refined by =, and
the t.e.r. =g;1 on the quotient tree T /=, induced by =, is co-nice. Let furthermore
M be a comeagre subset of [T] that is suitable for both =y and =;. Then M/=; is
surtable for =g ;.

4. VARIATIONS OF KUREPA’S LEMMA

A striking property of normal trees is formulated in Kurepa’s Isomorphism Lemma,
cf. [Kur3s, p.102]. The result and its proof are well-known, but since we will use
some variations of the argument later on, we also sketch the proof.

Lemma 4.1. Let S, T be two normal k-branching trees, Kk < w, of the same limit
height o < wy with countable levels only. Then S = T.

Proof. So let the height of S and T' be a countable limit ordinal . Choose countable
and dense sets X C [S] and Y C [T] and enumerate them by (z; | i € w) and
(y; | © € w) respectively.

We give a back-and-forth-construction of a bijective mapping f : X — Y which
lifts to a tree isomorphism ¢ : S — T'. Define f(zq) = yo and p(x¢[y) = yoly for all
v < a.

As the forth-argument is completely analogous, we only explain hw the back-step
works. Let ¢ be minimal such that f~!(y;) has not yet been fixed, and pick the
minimal 7 such that o ~'(y;]y) has not yet been defined.

This v is a successor ordinal, say v = d + 1, because S and T are assumed to be
normal trees.

Now choose an immediate successor s of ~!(y; ) such that ¢(s) has not yet
been defined. Such a node s exists by the choice of . Finally let j be minimal
such that s € x;. Then f(z;) has not yet been defined, but we set f(z;) = y; and
@©(x;]7) = y;[y. This is consistent with the choices met for f and ¢ so far.
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After every step of the construction ¢ is a partial isomorphism between S and T
By the choice of X and Y, the union of these partial isomorphisms is bijective, so in
the end ¢ : S — T is an isomorphism. U

The argument also shows that for any v < o and every isomorphism ¢y between
ST(y+ 1) and T[(y 4 1) there is an extension ¢y C ¢ : S =T.

The denseness requirement in Defintion 2.4] of wipers enables us to combine the
argument from the proof of Kurepa’s Isomorphism Lemma with that of Cantor’s
for the Ng-categoricity of the dense linear orders in order to construct isomorphisms
between wipers.

Lemma 4.2. Let T and S be two countable, Ny-branching, and normal trees of the
same height o < wy and let Wy = (<,| v < ) be a wiper on T and Wi = (<, v < «)
a wiper on S. Furthermore let f < « and ' be an isomorphism from T(5+ 1) onto
SI(B+ 1), such that for ally < 3 and s,t € T, we have

s <, t & ¢(s) <, (1)

Then there is an isomorphism @ between T and S extending ¢', such that for all
v < aand s, t €T, we have

s <yt ¢(s) <, (1)

Proof. We refer to the proof of Kurepa’s Isomorphism Lemma [£1] and describe the
only manipulation: When it comes to choosing of ¢ !(s), this choice has to respect
the wipers, which is always possible by the denseness requirement (ii) of Definition

24a). O

Our last Kurepa-style lemma states that isomorphisms between quotient trees by
oo-nice t.e.r.s can be lifted to isomorphisms of the underlying trees. In order to prove
it, we first formulate a regularity property of subtrees induced by an oco-nice t.e.r.

Proposition 4.3. Let T be a normal, No-branching tree of countable limit height
carrying an oo-nice t.e.r. =. Then for every cofinal branch b of T the set {s € T' |
(Ir € b)s =r} is an Ro-branching, normal tree.

Proof. Unique limits are inherited from 7', infinte branching follows from the oo-
condition, successors in every higher level follow from niceness. U

Proposition 4.4. Let T be a normal, No-branching tree of limit height o < wy and
let = and ~ be co-nice t.e.r.’s onT'. Let vy be equal to o or else be a successor ordinal
below a. Let ¢ be an ismorphism between (T'[7y)/= and (T[v)/~. Then there is
an automorphism ¢ of T that carries = to ~, s.t. the induced map on T /= is an
isomorphism onto T/~ that extends ¢'.
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Proof. First use Lemma [A.I] to extend ¢’ to an isomorphism between 7'/ = and T'/ ~
in the case that v < a. So we can assume a = 7.

We now give a back-and-forth-argument which lifts the isomorphism ¢’ to an
automorphism ¢ of T'. Enumerate 7" in order type w by sg, s1, ... For the induction
step in the forth-direction let ¢ be the minimal index i for which ¢(s;) has not yet
been defined. Our choice for ¢(s;) has to respect the tree order and the equivalence
relations. So let s be the predecessor of maximal height whose image under ¢ is
already determined by the choices met earlier in the construction, where s = s; is
allowed. In the case that s <p s;, we want to pick a node t € ¢/(s;/=) above ¢(s)
which exists by the niceness of ~. We furthermore require that ¢ has not yet been
assigned as some ¢(s;). This choice is possible due to the co-part in the co-niceness
of ~.

For the back-step we replace in the above argument all ¢ and ¢’ by ¢! and
30/_1' 0

1

5. STATEMENT OF THE MAIN RESULTS

Definition 5.1. Let B be a Souslin algebra. By continuous, oo-nice chain of sub-
algebras of B we denote a sequence (A, | v < () of oo-nice subalgebras of B such
that

(i) A, is an co-nice-subalgebra of A, for p < v < 3,
(ii) for limit @ < [ the algebra A, is completely generated by the preceeding
members A, v < « of the chain, i.e.

A, = <U A,,> .
v<o

Theorem 5.2. Assume . Then there is a small, chain homogeneous Souslin
algebra B. Furthermore, the construction can be refined to achieve the following
additional homogeneity properties.

a) For every isomorphism ¢' : A = A" of co-nice subalgebras of B there is an auto-
morphism ¢ of B extending ¢'.
b) There is a continuous, oo-nice chain (A; | i < wy) of subalgebras of B such that:
(i) Uj<w1 A; =B;
(ii) for every continuous, oo-nice chain (C, | v < A+ 1) of B (A a countable
limit) there is an isomorphism ¢ : Ay — C, such for allv < X\ the restriction
of p to A, is an isomorphism onto C,.

The additional homogeneity properties properties stated in a) and b) of Theorem
have as primary goal their use in the construction which proves the following
theorem. It answers a question of Stevo Todorgevi¢, who asked on the occasion of a
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talk the author gave on chain homogeneous Souslin algebras at Toposym X in 2006
in Prague, whether there are also big, chain homogeneous Souslin algebras.

Theorem 5.3. Assume O and let B be a chain homogeneous Souslin algebra as
in Theorem [5.3. Then there is a big, chain homogeneous Souslin algebra B* all of
whose subalgebras which are small Souslin algebras are isomorphic to B.

As the proof of this latter theorem is rather short, we give it right away:.

Proof of Theorem from Theorem[5.3. We realise the big and chain homogeneous
Souslin algebra B* as the union of an increasing chain of small, chain homogeneous
Souslin algebras (B, | & < ws). All the small algebras B,, on this chain are isomorphic
to the initial algebra By := B, which we take from Theorem The properties of
B* as stated in the theorem then follow from general principles. As all the B, satisfy
the c.c.c. and B* is defined as their direct limit, B* also satisfies the c.c.c. and is
therefore complete. Distributivity and chain homogeneity are also inherited.

As above, denote by (A; | i < w;) the continuously increasing chain of oco-nice
subalgebras of B. For the successor step, if B, is given, choose any isomorphism
Vo : By = Ay. Next choose a Souslin algebra B,,; extending B,,, such that there is
an extension .41 of ¢, and witnessing B,.; = B. This extension exists by part (a)
of Theorem

If A < wy is of countable cofinality, we choose a normal sequence (i, | v < p) with
sup,,,, i = A for some countable limit ordinal . Inductively construct an increasing
chain (¢, | ¥ < p) of isomorphisms 1, : A, = B; . Then choose B) as a super-algebra

of

UB. = UB.

v<p a<A
isomorphic to A, by some extension v, of | J,_ R

If X has uncountable cofinality we simply let By = (J,_, Bs, which in this case is

the direct limit. Then we see that B, = B, for A\ < wy by choosing a cofinal sequence
(i, | ¥ < wq) and recursively choosing a chain of isomorphisms ¥, : A, = B, . This
goes through limit stages v < w; by property (b.7i) of Theorem Iterating up to
« = wy finishes the construction of B*. O

6. FINAL PREPARATIONS

In our Souslin tree construction we want to build additional objects (mappings,
tree isomorphisms) on club sets of levels of the tree T' to be constructed, that relate
given objects (e.g. pairs of wipers or t.e.r.s on T'[C') to each other. During a relevant
construction step, initial segments of some of the given objects are proposed by a
{T-sequence and in order to extend an additional object we need some pointer to
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indicate the ordinal stage up to which the recursive construction of the additional
object has reached so far. This is the function of € of the following definition.

Definition 6.1 (the {-machinery). Fix a {T-sequence (Sy)a<w, -

a) Let Cy := {a < wy | wa = a} be the set of countable fixed points of the left-
multiplication with w.
b) Let o € Cy. For z € P(«) set

clxy={yeCona|lznw(y+1)\wy# 2}

(This will the set of levels ofthe tree, to which z refers.)

c) The set of relevant guesses for stage a, G, is the set of pairs (z,d) € S, X S,
such that ¢(x), d and c¢(x) Nd are club in « and for v € d the sets x N~ and d N~y
are in .S,,.

d) For (z,d) € G, let

eaa:={y€clx)nd || J(yNe(x)Nd) =~}

be the Cantor-Bendixson derivative of ¢(x) Nd, i.e., the set of its limit points.
e) Let e,4 :=Jesq. (Note that e, 4 =0 if ot(c(z) Nd) = w.)

Now if for example (z,d) € G, and x codes a pair of wipers on T'[¢(z), we know
that up to stage €, 4 our recursive construction of the additional object — here: an
isomorphism between the wipers given by x — has been invoked and therefore up to
this stage this isomorphism has yet been constructed.

Recall Lemma [4.4], which states that an isomorphism between two quotient trees
T/=¢ and T'/=; can be lifted to an automorphism of 7" if the t.e.r.s are co-nice. In
order to get hold of isomorphisms between quotient trees we introduce the notion of
an engaging relation. Consider two oo-nice t.e.r.’s =y and =; on T'[¢, with ¢ C «
club, and an isomorphism ¢ : (T'[¢)/=¢— (T'[c)/=1 between the quotient trees.
Then ¢ naturally induces a relation ® on T'[c¢, that consists of the pairs s,t € T'[c
with ¢(s/ =¢) = t/ =1. The properties of such a relation ® are captured in the
following definition.

Definition 6.2. We say that a relation ® on a tree T satisfying points 1-4) below
is engaging.
(1) There is a set cg such that for all s,¢ € T we have s®t only if ht(s) = ht(t) €
Cop,
(2) the left-induced relation ®° := {(s,s’) € (T']c)? | (3t)sPt and s'Pt} is an
oo-nice t.e.r. on T'cg,
(3) the right-induced relation ®! := {(¢,#') € (T'|c)? | (3s)sPt and sPt'} also is
an oo-nice t.e.r. on cg
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(4) ® induces an isomorphism (g between (T'[c)/®° and (T|c) /P! via pg(s/P0) =
t/®* for any t with s®t.

It is clear that the relation ® considered above the last definition is indeed engaging
with ¢y = ¢, and ®° is =, while ' is =;.

Finally we define a certain sequence of club sets of w; which will act as the familiy
of supporting sets of levels for the t.e.r.s that represent the increasing sequence
(A; | i < wy) if co-nice subalgebras. Recall the definition of Cy, the set of infinite
fixed points of the left hand ordinal multiplication with w in ws:

Co={a<w |a#0, wa=a}.

Inductively define C;; for i < w; to be the Cantor-Bendixson-derivative of C;, and
for limit ordinals ¢ let C; be the intersection of the C; defined so far:

Ciy1:={aeC;|sup(C;Na)=a} and C;= ij for limit 7.
j<i
We list some properties of the sequence (C;);,, used in the construction below.

(a) all the C; are club in wy,

(b) the sequence is continuously decreasing and has an empty intersection, hence
there is for every a € Cy a unique i = i(«a) with a € C; \ Ci4 1,

(c) every a € Cp has a direct predecessor in Cj(,), call it o™,

(d) for limit ¢ < wy, the minimum of C; is the supremum of the minima of the C; for
Jj <.

7. PROOF OF THEOREM

Before we step into the details of the construction, we give a brief sketch of the
main steps to be carried out at one stage of the recursion. We use the principle {7
during the construction in order to get hold of all kinds of objects we are interested
in, which are

e pairs of wipers that represent pairs of generating chains;
e t.e.r.s that represent Souslin subalgebras;
e engaging relations that represent isomorphism between co-nice subalgebras.

All of these are relations on T'[C' for some club C' of w;. In a relevant stage of the
construction, say stage a € (), we have the tree T« at hand and carry out five
steps:
(1) We collect all pairs (x,d) € G, that correspond to any of the above items.
If necessary, we extend the mappings associated to these objects which were
chosen in earlier stages of the construction by virtue of Kurepa’s Lemma and
its variations up to below T,.
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(2) We also collect the relvant t.e.r.s which represent the members of our increas-
ing sequence of co-nice subalgebras.

(3) Now we consider the induced relations and mappings on the Polish space
[T a] and find with the aid of the Reduction Lemma a comeagre subset
N C [T'|a] that is suitable for all relevant equivalence relations and is equal
to its image under all relevant mappings: p”N = N.

(4) Finally we choose a countable, dense subset @) of N with the same properties
correponding to the objects of interest: suitable for the equivalence relations
and p"Q = Q). The members of () represent the nodes in our new limit level
T, of the tree T.

(5) If necessary we extend the t.e.r. which represents to relevant member of the
oo-nice chain.

7.1. Setting the stage, casting and styling. We now begin and inductively, i.e.,
level by level, construct a tree-order <7 on the set wy, such that the resulting tree T
will be a normal and Ny-branching Souslin tree. The Souslin algebra to be constructed
will be the regular open algebra of T' = (wy, <7).

Let 0 be the root of T" and in every successor step fix Ny distinct direct successors
for each maximal node in such a way that for every a < w; \ {0} the level T, consists
of the next w many ordinals not yet used in the construction. So we have 77 = w\{0},
T, = wn\w(n—1) for all natural numbers n > 2 and finally T'Ja = wa for all infinite,
countable ordinals a.

We fix a {-sequence (R),), <, a $F-sequence (S,),<., and a bijection g : w; —
(2 X wy X wy) with ¢\ =2 x A x A for all limit ordinals A. Let for ¢ € 2 be g; the
concatenation of g and the projection onto the fibre over . We will use g for coding
t.e.r.s and pairs of wipers as sets of ordinals.

Now let o < wy be a limit ordinal. By the inductive assumption we have so far
constructed a normal tree order (T | o, <7) on the supporting set wa.

If & < war we simply choose a countable dense subset @, of [T'[a] and embed @,
onto w(a + 1) \ wa, i.e., we choose a bijection between @, and w(a + 1) \ wa and
extend <7 on w(a + 1) in the obvious way.

If & = wa, we want to choose a countable dense subset @, of [T'[a], too, but this
time our set also has to seal certain maximal antichains of T'[a and extend enough
tree isomorphisms. Recall the definitions from the last section concerning the use of
the $T-sequence (G, ¢(x), £..4, €tc.).

From now on, if (z,d) € G, is fixed, we write ¢ for ¢(x). Denote by E, the subset
of S, x S, that consists of all pairs (z,d) € G, such that g(z and gz are wipers
Wo = (<417 €c(x)) and Wi = (<41 v € c(x)) on Tlc(x) respectively. So (z,d) € E,
if  codes a pair of wipers on T'|c and is guessed correctly by the {>*-sequence along
with a club d on the members of d itself.
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Now we take care of the homogeneity property stated above as (a). We define
E! :={(z,d) € G, | x codes an engaging relation ®, on Tc(z)} .

Every (z,d) € E! induces a pair of oo-nice t.e.r.s =} and =7 and an isomorphism
¢! between (T'[c)/={ and (T'[c)/=.
The guesses of the {t-sequence for t.e.r.s are collected in the set F,:

F, ={(z,d) € G, | z codes a t.e.r. on c(x)}.

Here we code e.g. with respect to the map go. For (z,d) € F, let =, denote the
t.e.r. which is coded by x. It induces the Ry-branching, normal tree (T'c)/=,.
Keep in mind that ¢ N d is unbounded in « if (z,d) € E, or F, by the definition
of the relevant stages set G,,.
The inductive hypothesis is that T'[« is a countable and Ny-branching tree of height
a and
(1) for every pair (x,d) € E, there is a C-chain (pznydny @ 7 € €s,4) and each
Ouriy.drvy 18 & tree automorphism of T'[(eNdN~y+1) that was fixed in induction
step 7 € ey q and which carries W7 flendnNy+1= (<50 € cNdnNy+1)
to Wialendny+1= (<50 €cndny+1). Inshort: punydny is an
isomorphism of wipers between Wg?,d[c NdN~vy+1 and Wx{d[c NdN~y+1 for
all v € ez q;
(2) for every pair (z,d) € E!, there is an automorphism of T'[c Nd N e,,4 which
extends ¢’ ;
(3) for every pair (z,d) € F, there is a C-chain (Yynydny : 7 € €s4) Of tree
isomorphisms ;4,40 : T1(cNdNy+1)/=,— T(cNdN~y+1) each of them
fixed in induction step 7 € e, 4.
(Recall that ¢ = ¢(z) and e, 4 is the set of limit points of ¢ N d.) For those (z,d) in
E,, E/ or in F, but with ¢, 4 < a we need to choose extensions for the maps granted
by the inductive hypothesis as follows.
Fix (z,d) € E,. If e, 4 = v let

Prd ‘= U Pary,dnry-

YE€€ez.,d
Otherwise extend pune, ;dre, o DY Proposition 4.2 to some isomorphism ¢, 4 between
W) lend and W, jleNd.
For (z,d) € E! use Lemma 4] to lift g, to an automorphism ¢, 4 of T'[c(z) Nd
carrying ®° to ®! which extends ¢/,.
Let (z,d) € F, and set ¢, 4 := Uv Yurry.dowy if €40 = . Otherwise extend the union
of the chain by Kurepa’s Lemma 1] to some isomorphism

Ypa: (Tlend)/=,— TleNd.
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7.2. Arranging the scene for the oco-nice chain. We now describe how to embed
the increasing wi-sequence of oo-nice subalgebras A; in B. Recall the definition of
the decreasing sequence (C; | i € wy) of club subsets of w; as well as the derived
definitions of i(a) and a~. The oco-nice t.e.r. =; representing A; will be defined on
T1C; U{0} in the course of the construction of 7. The main requirements to meet
are:

(1) =; is oo-nice for all i < wy,

(2) for i > j the restriction of =; to T'[C; is refined by =; in a way such that the
induced t.e.r. =;,; on the normal Souslin tree (T'[C;)/=; is oo-nice,

(3) for limit i < w; we want to have A; = (U, A;)", so =; shall be the
conjunction of the =; for j < 7 in this case:

s=it:e (V) <i)s=;t.

For any i, on level Ty = {root} the relation =; is of course trivial. On level Ty,
we define =; to be the identity, ie., s =; ¢ if and only if s = ¢ for s,t € Thnc;.
This is a minor violation of the co-niceness requirement we posed on =;. But this is
easily remedied by deleting min C; from the club set C;. On the other hand, by this
convention we directly see that in the end | A; will be a dense subset of B, because
{minC; | i < w;} is unbounded in wy.

In level a € Cy we have that for all j < i :=i(a) the set C;Nais club in o and the
t.er. =; on T1(C;Na) has by normality of the quotient tree a unique t.e.r.-extension
to Ty. So, to satisfy the niceness condition for the t.e.r.s =; with j < i(a), level T,
has to be chosen suitably with the aid of the Reduction Lemma [3.3]

Let now a € Cj be such that i = i(«) is a limit ordinal. For j < i define =; on
[T'la] as above and let for z,y € [T'[o]

r=y: <= (Vj<i)z=;y.

This is the coarsest possibility to extend =; to T,, and the only one by our requirement
that (J i<i Aj completely generate A;.

We now show that the relation =; on [T'[«] is induced by a (single) oo-nice t.e.r.
~. Therefore the Reduction Lemma can be applied to =;. The t.e.r. ~ will be
defined as a diagonal along the =; for j < <.

Fix §p in Cy between o~ and «, so jo = i(dp) < i. Then define

,jzx = Z((Sl,) and 5,,4_1 ‘= min Cju-l-l \ 5,/ = min Cju-l-l \ 50

and 6, := sup{d, | v < p} for limit ordinals p with i(6,) < ¢ for all v < p. Then
the i(v) are the ordinals from j, up to ¢. The final §, is just «, and this ordinal
w=ot(z\ jo) is a limit.
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The set of the 4, joined with {0} is the club set of a on which we now define the
t.er. ~. For s,t € Ty, define

s>t (VB8 <0)(i(B) <i=slB=p tIB) and s= t]

Then ~~ is an oo-nice t.e.r.: fix s >~ t on level d; and consider s’ > s, where s € T,.
In the successor case, letting v = v~ + 1, i.e. j, = j,— + 1, this follows from the
definition of =, havmg only classes that are dense subsets of =; _-classes. To argue
for niceness in the limit case we refer to the choice of Ty, Wthh assures, that the
=, -classes lie densely in the =; -classes while the oo-part of oo-niceness is trivially
satisfied on limit stages when satisfied everywhere below. Since the j, are cofinal in
i, the oo-nice t.e.r. ~ induces =; on [T]a].

However, for successor i(«) the definition of =;,) on T, involves the choice of the
new level T,,. So we continue by giving the rules for the choice of T,,.

7.3. Suitably reducing the area. Now Lemma[3.4]comes into play. Let for (z,d) €
Fy
Tpa:TleNd — (Tlend)) =, s+ s/ =,
be the canonical mapping associated to =, and define
Pad = VgdaoTgq: TlcNd— TlcNd.
Since ), 4 is an isomorphism, the induced continuous map
Pea:[Tla] = [Tla], b {s|(Ftebn(TlcNd))s <r pzalt)}
has a comeagre image in [T'[a] and is an open mapping when the range is restricted
to 7, [T'a.

The {-sequence (R,), <, proposes candidates for maximal antichains in the usual
way. If R, is a maximal antichain of T'Ja then we have to ensure that each member
of T,, is a <p-successor of some element of R,. That means (), has to be a subset of

M, ={xe€[Tla]: Iy <azxly € Ry}

which is itself an open dense subset of [T']a], because R, is a maximal antichain. If
R, is not a maximal antichain in 7'la we simply set M,, = [T']a]. We apply Corollary
of the Reduction Lemma to the sets M = M, and

H=A%,q|(z,d) € E} U{p,q| (z,d) € F.}
and
7 {{Ej| j <i(a)}, if i(a) is a successor ordinal '
{=,|j <ila)}, ifi(a)is a limit ordinal
Since the E, U E! -part of H consists of homeomorphisms and the F,-part is subject

to Lemma [B.4] the hypotheses are satisfied. The result is a comeagre subset N, of
M, such that
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(1) for all (x,d) € E, U E], we have ; ;No = Na;
(2) for each (x,d) € Fy, N, is suitable for =, and 7, ;No = Na;
(3) N, is suitable for all =€ I.

The inductive claim is that there is a choice for @),, i.e., a countable and dense
subset of M, that shares properties (1-3) of N, stated above. For then, T'[«a can
be extended by a level T, of nodes corresponding to the branches in @,, in a way
that guarantees, that the relevant t.e.r.s and tree homomorphisms extend to the new
level.

First choose a left-inverse mapping o, 4 of p, 4 for all pairs (z,d) € F,. In order to
construct @), pick a countable and dense subset Z, of N,. Extend Z, in countably
many steps to close it under the application of the mappings

@,.q and @, for (z,d) € E,

and
Prq and o, 4 for (z,d) € F,

while at the same time rendering this set suitable for all t.e.r.s under consideration.
Finally choose a bijection j : Qo — w(a+1) \ wa and extend < in the obvious way
to define T,,.

7.4. Extend =; for successor i. Next we define =; on T, in the case, that i = j+41.
(Recall that for limit i = i(«) the relation =; on T, is determined by its behaviour
below.) Letting a~ be the maximum of a N C;, t € T, and r := t[a, we easily see
that we have an infinite set # N¢/=; (here we view T, as a dense subset of [T'[a])
which we partition into R, infinite sets P(t/=;,r,n), each of them dense in 7 Nt/=;.
Note, that the definition of P has to be independent from the choice of ¢. Finally we
define =; on T, by letting s =; t if and only if

sla” =; tla” and (In € w)s € P(s/=;,sla”,n) and t € P(t/=;,tla",n).

Then by construction, =; is co-nice as well as = ;.

7.5. Check isomorphisms. To finish the induction step, we verify that the exten-
sion procedure for the tree isomosphisms succeeds. We only check the most compli-
cated case, that of ¢, 4 for (z,d) € F,. We start and show that our choice of T,
admits extensions of the tree isomorphisms v, 4 for all (z,d) € F,. Fix (z,d) € F,
and set ¢ = (c¢(z) Nd) U {a}. First of all extend =, to T, by letting s =, ¢ if and
only if s[vy =, t]v for all v € ¢(x). (This is the only t.e.r. extending =, on T,
because of the normality requirement in the definition of t.e.r.)

We can identify T, with @), via the bijection j. This in mind, we show that the
unique extension ¢ of ¢, 4 to (I'[¢')/=, is an isomorphism onto T'[¢: for s € T,
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define
Y'(s/=.) := the unique t € T,, with ¢, 4(s]y/=) = t]y for all vy € '\ {a}

and let ¢ = ¢, 4 U1'. We check the soundness of this definition. For s € T}, there is
U(s/=2) = j0Prq©J " (s). The normality of T'/= guarantees that the definition of
¥ (s/=;) is independent from the choice of the representative s. So it is clear that v
is indeed a tree homomorphism.

Now, by the definition of =, on Ty, if s # t for s,t € T,, then there is some
v € d \ {a} with sy Z, t]y and so (s/=,) # ¥(t/=.). On the other hand, for
every s € T, we have

Wi 0 0aa 0 M) /=) = 5.

So 1) is bijective also on the top level of (T']¢') /= and therefore a tree isomorphism.

For reference in later induction steps we denote this tree isomorphism v by 1, 4.
This completes the inductive construction.

7.6. Chain homogeneity. It remains to show that the above construction yields
a Souslin tree T" whose regular open algebra B is chain homogeneous. We omit the
standard argument proving that 7" is Souslin.

If we are given two generating chains K, K’ of B let X C w; be a code with
respect to g for a pair of wipers on the club C' C {a : wa = a} representing
K and K'. Let D be a club set in w; associated to X by {*. Then for each
a€e E={yeCnD|~v=(HNCND)} the construction of the tree gives us a tree
automorphism ¢ xn, pre of TT(C'N D N «), and the union of that increasing chain,

Y= U PXNa,DNa;
acl
extends to an automorphism ¢ of B that carries K to K.

Now let A be a complete and atomless subalgebra of B represented by the decent
t.er. =on T]C. Let D be a club, such that the {)"-sequence guesses DN and X Na
for a code X for = for all @« € D. Then the construction yields a tree isomorphism
Y (TICND)/=— TICND and therefore a Boolean isomorphism between B and
A

So let K be a maximal chain of B, A = (K)* and ¢ : B = A. Now K is isomorphic
to the generating chain ¢~ K and is thus of that unique order type.

7.7. Verification of the properties of the co-nice chain. Let ¢ be a countable
limit ordinal. Then, by our definition of =; (in the limit case), for every node
s € T'|C;, its =;-class is just the intersection over the family (s/=;);<;. This shows
that A; = <Uj<iAj>°m, i.e. continuity of the chain.

For the proof of (b.ii) let (C, | v < \) be given. By chain homogeneity of B we can
choose ¢q : Ay = Cy, and then inductively extend the given ¢, : A, — C, to ¢,41 :
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A,11 — C,4q by virtue of condition (a) as follows. Choose an isomorphims ¢),; :
A1 — Cyyy and extend ¢ = (¢,

¥ of Ayy1. Then set @, 1 := 0, 0.
At limit stage p, the argument given above shows that

(ue) o el
v<p v<p

So there is a unique extension ¢ of J,_, ¢, with domain A, = (U,., Ayu)*™ and

range C, = <Uv<u C,y™.
This finishes the proof of Theorem (.2 U

o ,) by virtue of (a) to an automorphism

8. FEATURES, REMARKS AND OPEN PROBLEMS

8.1. Features of chain homogeneous Souslin algebras. It is not hard to see that
by omission of the additional steps (for properties a) and b) of Theorem [£.2)) in the
construction we arrive at a small Souslin algebra which is plainly chain homogeneous.
The following two propositions state properties shared by all chain homogeneous
Souslin algebras.

Proposition 8.1. A small and chain homogeneous Souslin algebra B is homogeneous
in the following strong sense. For every pair Ag, A1 of Souslin subalgebras and x € Ag
and y € Ay where 0 <g x,y <g 1, there are 2% distinct isomorphisms ¢ : Ay — A,
with p(z) =vy.

Proof. We first argue that B is weakly homogeneous. B is assumed to be small. So
for every pair a,b of non-zero elements of B there are generating chains K, K’ of B
with @ € K and b € K’. Each isomorphism ¢ between K and K’ satisfies p(a)-b # 0
and extends to an automorphism of B.

By a theorem proved independently by Koppelberg and by Solovay (cf. [SRSQ,
Thm.18.4.1]), every complete and weakly homogeneous Boolean algebra is a power
of a homogeneous factor, which in our case is isomorphic to B, because of the c.c.c.
satisfied by B.

As there are 2™ distinct generating chains, chain homogeneity implies that B has
2% automorphisms. The rest is then routine. U

Proposition 8.2. a) If A is an atomless, complete subalgebra of the Souslin algebra
B, and A and B are isomorphic, then no atomless, complete subalgebra of B can
be independent from A.

b) A chain homogeneous Souslin algebra has no independent pair of atomless and
complete subalgebras.
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Proof. The proof of a) is straight forward applying the fact that a Souslin algebra
cannot have anindependent pair of mutually isomorphic Souslin subalgebras. For
the proof of b) note, that here we have not assumed B to be small. In the case of a
small Souslin algebra, an application of part a) suffices to prove b). But also a big
Souslin algebra B has only maximal chains, that completely generate subalgebras
which are small Souslin algebras. So assume that Ag, A; form an independent pair
of complete and atomless subalgebras of B. Then there are maximal chains Ky C Ag
and K7 C Aj, which are isomorphic to each other. The isomorphism between the
chains extends to an isomorphism between the two subalgebras that are completely
generated by the chains:

CO = <K0>Cm C AO and Cl = <K1>Cm.

But then again, we have an isomorphic pair of subalgebras Cy, C; of B that cannot
be independent unless B fails to satisfy the countable chain condition. 0

8.2. The number of non-isomorphic maximal chains. Classical questions about
Souslin trees often circulated around the number isomorphism types or the number
of automorphisms. In this respect, it is worth noting, that a Souslin algebra which
is not chain homogeneous has at least 2% non-isomorphic maximal chains and that
the regular open algebras of most Souslin trees considered in set theoretic literature,
such as strongly homogeneous or free Souslin trees have 2% non-isomorphic maximal
(even generating) chains.

8.3. On the hypothesis. Concerning the hypothesis () met for our construc-
tions, we remark the following. In [AS93] §6] and [AS85, §4] a model of ZFC + —SH
is constructed, in which there is no homogeneous Souslin tree. Yet a (chain) homo-
geneous Souslin algebra always has a homogeneous Souslinization. So we have found
a ZFC-model where Souslin’s hypothesis fails, but which has no chain homogeneous
Souslin algebras.

It is open whether we could make do with strictly less than {7, e.g., if the as-
sumption of ¢} is sufficient to guarantee the existence of a chain homogeneous Souslin
algebra, cf. the open problems section below.

However, we can show that the existence of chain homogeneous Souslin algebras
with properties as strong as stated in Theorem [5.2] cannot be obtained from <) alone.

Proposition 8.3. Let B* be the big and chain homogeneous algebra of Theorem[5.3.
Forcing with B* turns any ground model Souslin tree T', which is reqularly embeddable
mto B*, into a Kurepa tree.

Proof. Let G C B,,, be a V-generic filter, and let A := (T)™. For a@ < wy fix in V'
an isomorphism ¢, : B, = A and in V[G] define G, := B, N G.
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Staying in V[G], for oo < ws, the set

bo :={t € T| (3g € Ga})palg) <at}

is an wi-branch of T, and we have V[G,] = V[b,] for all @ < wy. Finally, if v < f < wy
then bg € V[bs]\V[b,], because the map ¢, isin V. In particular we have bg # b,. O

Since the Iteration Theorem [5.3] only assumes the strong properties of the Souslin
algebra of Theorem we have the following result on the hypotheses used.

Corollary 8.4. Assume that there s a Mahlo cardinal. Then there is a model of
ZFC + < in which there is no Souslin algebra with the properties stated in theorem
22

Proof. In [Jen| Jensen considered the generic Kurepa hypothesis GKH:= “there is a
c.c.c. forcing that forces KH in the generic extension”. He shows that if x is a Mahlo
cardinal then GKH is false in the Levy-style generic extension collapsing x to become
No. This partial order always forces ¢ (cf. [Kun80, Exercises VIII.J.5/6]). Finally,
B,, is c.c.c. and forces, by the last Proposition, KH. 0

As far as we know, the proofs of Theorems and give the first construction
of a big Souslin algebra assuming the principle {$* only. Jensen’s constructions use
¢ and O, cf. [DJ74] or [Jen]. In [JecT3l §5] gives a forcing that adjoins a so-called
Souslin mess. This is a partial order of partial functions generalising the notion of a
Souslin tree. The regular open algebra of a large enough Souslin mess is a big Souslin
algebra. Laver has constructed a Souslin mess, only using {» and Silver’s principle
W. (W is a strengthening of Kurepa’s Hypothesis KH; cf. [Jec97, (24.16)].)

Nevertheless, the following remains open.

Question 8.5. Assuming <), is there a chain homogeneous Souslin algebra?

This is only a sample question, as <) could be replaced by any of its variants known
to be strictly weaker than ™.

In [DJ74, §V.3], a Souslin tree with at least Ny automorphisms (a property in
common with chain homogeneous Souslin algebras) is constructed under {*, and on
p. 51 the authors remark: It is doubtful whether this is provable from <. Though
it is not hard to see that the regular open algebra of this tree is homogeneous for
generating chains, we do not know whether it is fully chain homogeneous.

As argued above, it is impossible to carry out our construction of Section [l under
¢ alone.

8.4. Souslin’s hypothesis minus one.

Question 8.6. Is there a model of ZFC with exactly one Souslin line (up to isomor-
phism)?
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Such a property could be paraphrased as “Souslin’s hypothesis minus one” as
there would be only one counter-example, essentially, i.e. only one without separable
intervals. In such a model the associated Boolean algebra would have to be chain
homogeneous. Anyway, also if we refocus the question on Souslin trees or Souslin
algebras, then the respective algebra must admit isomorphisms to all of its Souslin
subalgebras, a feature in common with the chain homogeneous Souslin algebras.

In an attempt to construct such a model by variations of the well-known iterated
forcing techniques of Solovay-Tennenbaum (variation for a strongly homogeneous
Souslin tree by Larson, cf. [Lar99, §4]) or that of Jensen (variation for a free Souslin
tree by Abraham, cf. [AS85 §4]), which leave one a priori specified Souslin tree
intact, the main obstacle is to ensure that enough of the homogeneity properties of
the preserved Souslin algebra remain valid in the final model.
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question, to Stevo Todorgevi¢ for asking a question which led to a significant im-
provement of my results and to Peter Krautzberger and Stefan Geschke for support,
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