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COMPLEXITY OF COUNTABLE CATEGORICITY IN FINITE

LANGUAGES

ALEKSANDER IVANOV

Abstract. We study complexity of the index set of countably

categorical theories and Ehrenfeucht theories in finite languages.

S.Lempp and T.Slaman proved in [7] that indexes of decidable ω-categorical the-

ories form a Π0
3-subset of the set of indexes of all computably enumerable theories.

Moreover there is an infinite language so that the property of ω-categoricity dis-

tinguishes a Π0
3-complete subset of the set of indexes of computably enumerable

theories of this language. Steffen Lempp asked the author if this could be done in a

finite language. In this paper we give a positive answer (see Section 4). The crucial

element of our proof is a theorem of Hrushovski on coding of ω-categorical theories

in finite languages (see [3], Section 7.4, pp. 353 - 355). Since we apply the method

which was used in the the proof of this theorem, we present all the details in Section

1. Sections 2 - 3 contain several other applications of this theorem. In particular

in the very short Section 2 we give an example of a non-G-compact ω-categorical

theory in a finite language. In Section 3 we show that there is a finite language

such that the indexes of Ehrenfeucht theories with exactly three countable models

form a Π1
1-hard set. Here we also use the idea of Section 4 of [7] where a similar

statement is proved in the case of infinite languages.

The main results of the paper are available both for computability theorists

and model theorists. The only place where a slightly advanced model-theoretical

material appears is Section 2. On the other hand the argument applied in this

section is very easy and all necessary preliminaries are presented.

1. Hrushovski on ω-categorical structures and finite languages

The material of this section is based on Section 7.4 of [3], pp. 353 - 355 (and

preliminary notes of W.Hodges). We also give some additional modifications and

remarks.
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Let N be a structure in the language L with a unary predicate P . For any

family of relations R on P definable in N over ∅ one may consider the structure

M = (P,R). We say that M is a dense relativised reduct if the image of the

homomorphism Aut(N) → Aut(M) (defined by restriction) is dense in Aut(M).

Let L be the language consisting of four unary symbols P,Q, λ, ρ, a two-ary

symbol H and a four-ary one S. We will consider only L-structures where P and

Q define a partition of the basic sort and λ, ρ and H are defined on Q. Moreover

when S(a, b, c, d) holds we have that a, c ∈ P and b, d ∈ Q.

Theorem 1. If M0 is any countable ω-categorical structure then there is a countable

ω-categorical L-structure N such that M0 is a dense relativised reduct of N . In

particular M0 is interpretable in N over ∅.

For every set of sentences Φ axiomatising Th(M0) the theory Th(N) is ax-

iomatised by a set of axioms which is computable with respect to Φ and the Ryll-

Nardzewski function of Th(M0).

Proof (E.Hrushovski). Let M0 be any countable ω-categorical structure in a

language L0. We remind the reader that the Ryll-Nardzewski function of an ω-

categorical theory T assigns to any natural n the number of n-types of T . So by

the set Φ as in the formulation and by the Ryll-Nardzewski function of Th(M0)

one can find an effective list of all pairwise non-equivalent formulas. Thus w.l.o.g.

we may assume that L0 is 1-sorted, relational and M0 has quantifier elimination.

In fact we can suppose that L0 = {R1, R2, ..., Rn, ...} where each Rn describes a

complete type in M0 of arity not greater than n. We may also assume that for

m < n the arity of Rm is not greater than the arity of Rn. We admit that tuples

realising Rn may have repeated coordinates.

We now use standard material about Fräıssé limits, see [2]. Note that the class

of all finite substructures of M0 (say K0) has the joint embedding and the amalga-

mation properties. Moreover for every n the number of finite substructures of size

n is finite (this is the place where we use the assumption that each Rn describes a

complete type).

Let us consider structures of the language L ∪ L0 which satisfy the property

that all the relations Rn are defined on P . For such a structure M we call a tuple

(a0, ..., am−1, c0, ..., cn−1) of elements of M , an n-pair of arity m if :
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(1) m ≤ n and M |=
∧
{P (ai) : i < m} ∧

∧
{Q(cj) : j < n};

(2) the elements ci are paiwise distinct and M |= H(ci, cj) iff (j = i+ 1)mod(n);

(3) M |= λ(ci) iff i = 0 and M |= ρ(ci) iff i = m− 1;

(4) M |= S(ai, cj , ak, cl) iff ai = aj .

In this case we say that the n-pair āc̄ labels the tuple ā.

We now define a class K of finite (L ∪ L0)-structures as follows.

(i) In each structure of K all the relations Rn are defined on P ;

(ii) The P -part of any structure from K is isomorphic to a finite substructure of

M0;

(iii) For any D ∈ K, any n and any n-pair from D labelling a tuple ā we have

Rn(ā).

It is obvious that K is closed under substructures and there is a function f :

ω → ω so that for every n the number of non-isomorphic sructures of K of size

n is bounded by f(n). The function f is computable with respect to Φ and the

Ryll-Nardzewski function.

Lemma 2. The class K has the amalgamation (and the joint embedding) property.

Proof. Let D1 and D2 be structures in K with intersection C. By induction it

is enough to deal with the case where |D1 \ C| = |D2 \ C| =1. Let Di \ C = {di}

and d1 6= d2. There are three cases.

Case 1. d1 and d2 both satisfy P . Using that M0 has quantifier elimination we

amalgamate the P -parts of D1 and D2 remaining the Q-part and S the same as

before. By (4) there are no new n-pairs in the amalgam, for any n.

Case 2. d1 and d2 both satisfy Q. In this case we just take the free amalgamation

(without any new tuples in relations). By (4) there are no new n-pairs in the

amalgam, for any n.

Case 3. d1 satisfies P and d2 satisfies Q. In this case we again take the free

amalgamation and by (4) we again have that there are no new n-pairs in the

amalgam, for any n. �

We now see that by Fräıssé’s theorem, the class K has a universal homogeneous

(and ω-categorical ) structure U . In particular K/ ∼= coincides with Age(U) (=

collection of all types of finite substructures of U).
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Since M0 is the Fräıssé limit of the class of all P -parts of structures from K, we

see that the P -part of U is isomorphic to M0. Let N be the reduct of U to the

language L. Note that U (thus M0) is definable in N . Indeed each Rn is definable

by the rule: U |= Rn(ā) if and only if there is an n-pair in N which labels ā (this

follows from the fact that K contains an n-pair for such ā).

If two tuples ā and b̄ in M0 realise the same type in M0 they realise the same

quantifier free type in U . So by quantifier elimination there is an automorphism of

U (and of N) which takes ā to b̄. This shows that M0 is a dense relativised reduct

of N .

To see the last statement of the theorem consider a set Φ axiomatising Th(M0).

Thus the P -part of U must satisfy Φ with respect to the relations Rn defined in

N as above. The remaining axioms of Th(N) (and of Th(U)) are just the axioms

of the universal homogeneous structures of the corresponding class satisfying (i) -

(iii) as above. �

Remark 3. The structure U produced in the proof is axiomatised as follows.

Axiomatisation of Th(U).

(a) all universal axioms forbidding finite substructures which cannot occur in M0;

(b) all universal axioms stating property (iii) from the proof ;

(c) all ∃-axioms for finite substructures of M0;

(d) all ∀∃-axioms which realise the property of universal homogeneous structures

that for any K-structures A < B with A < U there is an A-embedding of B into U .

Note that for every pair of natural numbers n and l the axioms of (a), (b) and

(c) with at most n quantifiers in the sublanguage of L∪L0 of arity ≤ l determine all

n-element structures from K in this sublanguage. On the other hand by the Ryll-

Nardzewski function of Th(M0) we can find the arity ln so that all K-embeddings

between structures of size ≤ n are determined by their relations of arity ≤ ln.

Thus the axioms of (d) with at most n quantifiers can be effectively found by the

corresponding axioms (a - c) and the Ryll-Nardzewski function. Moreover there is

an effective procedure which for every natural numbers n produces all ∀∃-sentences

of Th(U) with at most n quantifiers, when one takes as the input the axioms of (a)

and (c) of U with at most n quantifiers.
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2. Finite language and non-G-compact theories

The following definitions and facts are partially taken from [1]. Let C be a

monster model of the teory Th(C). For δ ∈ {1, 2, ..., ω} let Eδ
L be the finest bounded

Aut(C)-invariant equivalence relation on δ-tuples (i.e. the cardinality of the set of

equivalence classes is bounded). The classes of Eδ
L are called Lascar strong types.

The relation Eδ
L can be characterized as follows: (ā, b̄) ∈ Eδ

L if there are δ-tuples

ā0(= ā), ā1, ..., ān(= b̄) such that each pair āi, āi+1, 0 ≤ i < n, extends to an infinite

indiscernible sequence. In this case denote by d(ā, b̄) the minimal n such that some

ā0(= ā), ā1, ..., ān(= b̄) are as above.

Let Eδ
KP be the finest bounded type-definable equivalence relation on δ-tuples.

Classes of this equivalence relation are called KP-strong types. The theory Th(C)

is called G-compact if Eδ
L = Eδ

KP for all δ. The first example of a non-G-compact

theory was found in [1]. The first example of an ω-categorical non-G-compact

theory was found by the author in [4]. The following proposition is a straightforward

application of Theorem 1.

Proposition 4. There is a countably categorical structure N in a finite language

such that Th(N) is not G-compact.

Proof. Let L be defined as in the proof of Theorem 1. Corollary 1.9(2) of [8] states

that G-compactness is equivalent to existence of finite bound on the diameters of

Lascar strong types. Let M0 be an ω-categorical structure which is not G-compact,

see [4]. In [4] for every n a pair ān, b̄n of finite tuples of the same Lascar strong

type is explicitely found so that d(ān, b̄n) > n.

Let N be an L-structure, so that M0 is a dense relativised reduct in N defined

by P . Then Th(N) is not G-compact. Indeed for every n, the pair ān, b̄n is of

the same Lascar strong type and d(ān, b̄n) > n with respect to the theory of N .

To see this notice that if in c̄0(= ān), c̄1, ..., c̄m(= b̄n) each c̄i, c̄i+1 extends to an

indiscernible sequence in Th(M0), then this still holds in Th(N) by density of the

image of Aut(N) in Aut(M0). On the other hand since Aut(N) ≤ Aut(M0) on

P (M), we cannot find in N such a sequence with m ≤ n. �
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3. Finite language and Ehrenfeucht theories

In this section we consider the situation where M0 is obtained by an ω-sequence

of ω-categorical expansions. We will see that under some natural assumptions the

construction of Section 1 still works in this situation. Using this we will prove that

there is a finite language such that the indexes of Ehrenfeucht theories with exactly

three countable models form a Π1
1-hard set.

Let M0 be a countable structure of a 1-sorted, relational language L0 = {R1, R2, ..., Rn, ...}.

Suppose L0 =
⋃

i>0 Li, where for each i > 0, Li = {R1, ..., Rli} and the Li-reduct

of M0 admits quantifier elimination (and thus ω-categorical). We may assume that

the arity of Rn is not greater than n. Admitting Rn with repeated coordinats, we

may also assume that for all m < n the arity of Rm is not greater than the arity of

Rn and the arity of Rli is less than the arity of Rli+1.

We now admit that M0 is not ω-categorical. On the other hand the theory of

M0 can be axiomatised as follows. For each i consider the Li-reduct of M0 and

its age Age(M0|Li). Then this reduct is axiomatised by the standard axioms of

a universal homogeneous structure (i.e. the versions of (a),(c),(d) from Remark 3

with respect to Age(M0|Li)). The collection of all systems of axioms of this kind

gives an axiomatisation of Th(M0).

Applying the proof of Theorem 1 we associate to each Li-reduct of M0, a class

Ki of (L ∪Li)-structures obtained by conditions (i)-(iii) from this proof. Since the

Li-reduct of M0 has quantifier elimination, repeating the argument of Theorem 1

we obtain an ω-categorical (L∪Li)-structure Ui and the corresponding L-reduct Ni

(since the language is finite, we do not need the assumption that each Ri describes

a type). Notice that the construction forbids n-pairs for Rn of arity greater than

the arity of Li.

Lemma 5. (1) For any i < j the structures Ui and Uj satisfy the same axioms of

the form (a) - (d) of Remark 3 where the language of the P -part is restricted to Li

and the number of variables of the Q-part is bounded by the arity of Li.

(2) The corresponding structures Ni and Nj satisfy the same sentences which

are obtained by rewriting of the axioms of statement (1) as L-sentences (using the

interpretation of Ui in Ni).
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Proof. Let m be the arity of Li. To see statement (1) let us prove that the classes

Ki and Kj consist of the same (L ∪ Li)-structures among those with the Q-part of

size ≤ m. The direction j → i is clear: the (L∪Li)-reduct of an (L∪Lj)-structure

of this form obviously satisfies the requirements (i) - (iii) corresponding to Kj (and

to Ki too). To see the direction i → j note that the assumption that the size of the

Q-part is not geater than m implies that such a structure from Ki has an expansion

to an (L ∪ Lj)-structure from Kj .

Now the case of axioms of the form (a),(b),(c) is easy. Consider case (d). Since

the Li-reduct of M0 admits elimination of quantifiers, for any finite Lj-substructure

A < M0 and any embedding of the Li-reduct of A into any B ∈ Age(M0|Li) there

is an Lj-substructure of M0 containing A with the Li-reduct isomorphic to B.

This obviously implies that for any substructure A′ < Uj without n-pairs for arities

greater than arity(Li), any embedding of the (L∪Li)-reduct of A′ into any B′ ∈ Ki

can be realised as a substructure of Uj containing A′ with the (L ∪ Li)-reduct

isomorphic to B′. This proves (1).

Statement (2) follows from statement (1). �

We now additionally assume that M0 is a generic structure with respect to the

class K0 of all finite L0-substructures of M0. This means that K0 has the joint

embedding and amalgamation properties (JEP and AP), (K0/ ∼=) = Age(M0) and

M0 is a countable union of an increasing chain of structures from K0 so that any

isomorphism between finite substructures extends to an automorphism of M0.

Let K be the class of all finite (L0 ∪ L)-structures satisfying the conditions

(i)-(iii) with respect to K0. In particular it obviously contains only countably

many isomorphism types and the class K0 appears as the class of all P -parts of

K. Applying the proof of Theorem 1 we see that K is closed under substructures

and has the joint embedding and amalgamation properties. By Theorem 1.5 of [6]

the class K has a unique (up to isomorphism) generic structure (i.e. a structure

which is a countable union of an increasing chain of structures from K and satisfies

axioms (a) - (d) of Remark 3). Note that this structure can be non-ω-categorical.

Lemma 6. Under the circumstances of this section let U be a generic (L ∪ L0)-

structure for K as above.
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Then the P -part of U is isomorphic to M0. The structure M0 is a dense rela-

tivised reduct of U .

Proof. The firts statement is obvious. The second statement is an application of

back-and-forth. �

It is worth noting here that for every m the amalgamation of Theorem 1 preserves

the subclass of K consisting of structures without n-pairs for arities greater than

m (for example structures with the size of the Q-part less than m+ 1). If m is the

arity of the language Li then (Li ∪ L)-reducts of these structures form the Fräıssé

class corresponding to the universal homogeneous structure Ui.

Proposition 7. (1) All axioms of Ui of the form (a),(c),(d) of Remark 3 also hold

in U .

(2) The theory Th(U) is model complete and is axiomatised by axioms of the form

(b) of Remark 3 together with the union of all axioms of the form (a),(c),(d) for

all Th(Ui).

(3) For any axiom φ of Th(U) of the form (a)-(d) as in (2) there is a number i so

that φ holds in all Uj for j > i.

Proof. (1) The case of axioms of the form (a),(c) is easy. Consider case (d).

Since the Li-reduct of M0 admits elimination of quantifiers, for any substructure

A < M0 and any embedding of the Li-reduct of A into any B ∈ Age(M0|Li) there

is a substructure of M0 containing A with the Li-reduct isomorphic to B. This

obviously implies that for any substructure A′ < U without n-pairs of arity greater

than arity(Li), any embedding of the (L∪Li)-reduct of A′ into any B′ ∈ Ki can be

realised as a substructure of U containing A′ with the (L ∪ Li)-reduct isomorphic

to B′. This proves (1).

(2) Let U ′ and U ′′ satisfy axioms as in the formulation of (2). Then obviously

the (Li∪L)-reducts of U ′ and U ′′ satisfy the axioms of Th(Ui) as in statement (1).

In particular P (U ′) ∼= P (U ′′) in each Li. Moreover if U ′ < U ′′, then by axioms (d)

one can easily verify that this embedding is ∀-elementary. Thus U ′ is an elementary

substructure of U ′′ by a theorem od Robinson. It is also clear that U is embeddable

into any structure satisfying axioms as in (2).
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(3) By Lemma 5 we see that for every sentence θ ∈ Th(U) of the form (a) - (d)

of (2) there is a number i such that for all j > i, θ holds in Uj . �

Some typical examples of Ehrenfeucht theories (i.e. with finitely many countable

models) are build by the method of this section: the theory of all expansions of

(Q, <) by infinite discrete sequences c1 < c2 < ... < cn < ..., is Ehrenfeucht and

can be easily presented in an appropriate L0 as above.

Proposition 8. Under the circumstances of this section assume that M0 is a

generic structure with respect to the class K0 of all finite substructures of M0. As-

sume that Th(M0) is an Ehrenfeucht theory. Let U be a generic (L∪L0)-structure

for K as above.

Then Th(U) is also Ehrenfeucht.

Proof. Let U ′, U ′′ be countable models of Th(U). Assume that the P -parts

of U ′ and U ′′ (say M ′ and M ′′) are isomorphic. Identifying them let us show

that U ′ is isomorphic to U ′′. For this we fix a sequence of finite substructures

A1 < A2 < ... < Ai < ... so that M ′ =
⋃
Ai. Having enumerations of the Q-parts

of U ′ and U ′′ we build by back-and-forth, sequences B′

1 < B′

2 < ... < B′

i < ...

and B′′

1 < B′′

2 < ... < B′′

i < ... with B′

i > Ai < B′′

i , U ′ =
⋃
B′

i and U ′′ =
⋃
B′′

i

so that B′

i is isomorphic to B′′

i over Ai. By Proposition 7(2) using the fact that

U ′, U ′′ |= Th(U) we see that such sequences exist. �

We now prove that there is a finite language L such that the set of Ehrenfeucht

L-theories with exactly three models is Π1
1-hard.

Theorem 9. There is a finite language L such that for every B ∈ Π1
1 there is a

Turing reduction of B to the set 3ModL of all indexes of decidable Ehrenfeucht

L-theories with exactly three countable models.

Proof. Let L be the language defined in Section 1. We use the idea of Section 4

of [7]. In particular we can reduce the theorem to the case when B coincides with

the index set NoPath of the property of being a computable tree ⊆ ωω having no

infinite path. The Turing reduction of this set to 3ModL which will be built below,

is a composition of the procedure described in [10] and [7], and the construction of
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this section. The former one is as follows. Having an index e of a computable tree

Tre ⊂ ωω, R.Reed defines a complete decidable theory Te of the language

〈∧, <L,≤H , Eη
ξ , L

η
ξ , Hη, Aη, Bη, cη ( η, ξ ∈ Tre ) 〉,

where ∧ is the function of the greatest lower bound of a tree, <L is a Kleene-

Brouwer ordering of this tree and ≤H is a binary relation measuring ’heights’ of

nodes. Constants cη, η ∈ Tre, define embeddings of Tre into models of Te. The

remaining relations are binary.

For each natural n define Te|n to be the restriction of Te to the sublanguage

corresponding to the indexes from the finite subtree Tre ∩ n<n. The proof of

Lemma 9 from [10] shows that Te|n admits effective quantifier elimination. Lemma

6 of [10] asserts that every quantifier-free formula of Te|n is equivalent to a Boolean

combination of atomic formulas of the following form:

u ∧ v = w ∧ z , u <L w , u ∧ v ≤H w ∧ z , Eη
ξ (u,w) ,

Lη
ξ (u,w) , Hη(u ∧ v, w) , Aη(u ∧ v, w) ,

where u, v, w, z is either a variable or a constant in Te|n. By Lemma 8 of [10]

the corresponding Boolean combination can be found effectively. This implies that

replacing the function ∧ by the first, third, sixth and seventh relations of the list

above we transform the language of each Te into an equivalent relational language.

In particular we have that each Te|n is ω-categorical.

Note that extending the set of relations we can eliminate constants cη from our

language. Admitting empty relations we may assume that all Te have the same

language (where ω<ω is the set of indexes). Admitting repeated coordinates we

may assume that this language L0 = {R1, ..., Ri, ...} satisfies the assumptions of the

beginning of the section and each sublanguage Ln of the presentation L0 =
⋃

i>0 Li

corresponds to Te|n.

We now apply Lemma 5 to all Te|n. Since each Te|n is computably axiomatisable

uniformly in e and n, we obtain an effective enumeration of computable axiomati-

sations of L-expansions of all Te|n (with Te|n on the P -part). For each e taking the

axioms which hold in almost all L-expansions of Te|n we obtain by Lemma 5(1) a

computable axiomatisation of a theory of L-expansions of Te.
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When Te is an Ehrenfeucht theory with exactly three models (i.e. e ∈ NoPath),

the prime model of Te is generic with respect to its age. Applying Proposition 7

to Te and all Te|n we obtain a generic (L0 ∪ L)-structure such that its theory is

computably axiomatised as above. This theory has exactly three countable models

by Proposition 8.

When we take L-reducts of all Te and the corresponding computable axiomatisa-

tions we obtain a computable enumeration of L-theories which gives the reduction

as in the formulation of the theorem. �

Remark 10. In the proof above we used Proposition 7 in order to obtain a complete

L-expansions of Ehrenfeuch Te’s. We cannot apply it in the case when Te does

not have an appropriate generic model, for example when the corresponding Tre

has continuum many paths. Nevertheless the author hopes that the proof can be

modified so that the reduction as above also shows that the set of all L-theories

with continuum many models is Σ1
1-hard. In the case of infinite languages this is

shown in Section 4 of [7].

4. Coding ω-categorical theories

The main theorem of this section improves the corresponding result of [7] (where

the authors do not demand that the language is finite). It is worth noting that the

author together with Barbara Majcher-Iwanow have found some other improve-

ments in [5].

Theorem 11. There is a finite language L such that the property of ω-categoricity

distinguishes a Π0
3-complete subset of the set of all decidable complete L-theories.

Proof. In the formulation of the theorem L is the language defined in Section

1. It is shown in [7] that the property of ω-categoricity is Π0
3. The proof of Π0

3-

completeness in the case of L is based on Theorem 1, Section 3 and the idea of

Section 2 of [7]. The latter one will be presented in some special form, the result

of a fusion with some ideas from [9].

Let us fix the standard enumeration pn of prime numbers and a Gödel 1-1-

enumeration of the set of pairs 〈i, j〉. Let a(x) be a computable increasing function
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from ω to ω \ {0, 1, 2} so that if natural numbers x1 < x2 enumerate pairs 〈i1, j1〉

and 〈i2, j2〉 then pi1a(x1) < pi2a(x2).

Let LE consist of 2pn-ary relational symbols En, n ∈ ω, and TE be the ∀∃-theory

of the universal homogeneous structure of the universal theory saying that each En

is an equivalence relation on the set of pn-tuples which does not depend on the

order of tuples and such that all pn-tuples with at least one repeated coordinate lie

in one isolated En-class (Remark 4.2.1 in [9]). It is worth mentioning here that the

joint embedding property and the amalgamation property are easily verified by an

appropriate version of free amalgamation (modulo transitivity of En-s). Note also

that TE is ω-categorical and decidable.

We now define an auxiliary language LESP . We firstly extend LE by countably

many sorts Sn, n ∈ ω. Start with a countable model ME |= TE and take the

expansion of ME to the language LE∪{S1, ..., Sn, ...}∪{π1, ..., πn, ...}, where each Sn

is interpreted by the non-diagonal elements of Mpn/En and πn by the corresponding

projection. To define LESP we extend LE ∪ {S1, ..., Sn, ...} ∪ {π1, ..., πn, ...} by an

ω-sequence of relations Pm, m ∈ ω, with the following properties. If m is the Gödel

number of the pair 〈n, i〉 then we interpret Pm as a subset of the diagonal of S
a(m)
n .

Let TESP be the LESP -theory axiomatized by TE together with the natural axioms

for all πn and Pm as above.

Having a structure M |= TESP (which is an expansion of ME) we now build

another expansion M∗ of ME (in the 1-sorted language). For each relational symbol

Pm of the sort S
a(m)
n we add a new relational symbol P ∗

m on M
a(m)pn

E interpreted

in the following way:

M∗ |= P ∗

m(ā1, ..., āa(m)) ⇔ M |= Pm(πn(ā1), ..., πn(āa(m))).

It is clear that M∗ and M are bi-interpretable.

By T ∗

ESP we denote the theory of all M∗ with M |= TESP . Let L0 be the

corresponding language. Then ME is the LE-reduct of any countable M∗ |= T ∗

ESP .

It is clear that T ∗

ESP is axiomatized by the ∀∃-axioms of TE, ∀-axioms of En-

invariantness of all P ∗

m and ∀-axioms that every Pm is a subset of an appropriate

diagonal. Moreover for every natural l we have ≤ 1 relations of arity l in L0

and the function of arities of P ∗

m is increasing. Admitting empty relations (say

Rj) we may think that for every natural number l > 0 the language L0 contains
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exactly one relation of arity l. In particular L0 satisfies basic requirments on L0

from Section 3. We present L0 as the union of a sequence of finite languages

L1 ⊂ L2 ⊂ ... ⊂ Lm ⊂ ... of arities l1 < l2 < ... < lm < ... where Lm consists of

all relations of arity ≤ pna(m) (= lm) with n to be the first coordinate of the pair

enumerated by m. Note that when m codes a pair 〈n, j〉 the relation En is also in

Lm.

For every m ∈ {1, ..., i, ..., ω} and a finite set D of indexes of relations P ∗

i of

arity ≤ lm we consider the class KD of all finite substructures of models of T ∗

ESP

satisfying the property that all P ∗

i with i 6∈ D, are empty. It is clear that for any

natural number k the number of structures of KD of size k is finite. We will also

denote Kω,D := KD. When m < ω we define Km,D as the class of all reducts of KD

to the sublanguage Lm.

By an appropriate version of free amalgamation we see that Km,D has the joint

embedding property and the amalgamation property. Let Mm,D be the correspond-

ing universal homogeneous structure and let T ∗

m,D be the theory of Mm,D. It follows

from T ∗

ω,D that T ∗

ESP ⊂ T ∗

ω,D and for every n the family of all Pi
1 , with i ∈ D

coding some 〈n, j〉, freely generates a Boolean algebra of infinite subsets of the sort

Sn (we may interpret such Pi as a unary predicate on Sn).

By the definition of the class KD we see that for any t < m and any two finite

sets D′ and D′′ satisfying

D′ ∩ {0, ..., lt} = D′′ ∩ {0, ..., lt}

the reducts of Mm,D′ and Mm,D′′ to Lt are isomorphic.

Let us apply the construction of Theorem 1 to Mm,D. Then we obtain the

(Lm ∪ L)-structure Um,D and the corresponding L-reduct Nm,D, where L is the

language as in Theorem 1. It follows from the proof of that theorem that in the

situation of the previous paragraph the structures Um,D′ and Um,D′′ satisfy the

same axioms of the form (a) - (d) of Remark 3, where the language of the P -part is

restricted to Lt and the number of variables of the Q-part is bounded by lt. When

we rewrite these axioms as L-sentences (using the corresponding definition of the

relations of Lm) we obtain that Nm,D′ and Nm,D′′ satisfy the same axioms of this

kind.

1
LESP -predicates corresponding to P

∗

i
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Let ϕ(x, y) be a universal computable function, i.e. ϕ(e, x) = ϕe(x). Find a

computable function ρ (with Dom(ρ) = ω) enumerating Dom(ϕ(ϕ(y, z), x)), i.e.

the set of all triples 〈e, n, x〉 with x ∈ Wϕe(n).

For any natural e, s we define a finite set Ds
e of codes m ≤ ls of all pairs 〈n, k〉

such that

(∃x)(ρ(k) = 〈e, n, x〉 ∧ (∀k′ < k)(ρ(k′) 6= 〈e, n, x〉)).

Let Te and T ∗

e be the LESP -theory and the corresponding 1-sorted version (con-

taining T ∗

ESP ) such that for all natural s the reduct of T ∗

e to Ls coincides with the

corresponding reduct of T ∗

s,Ds
e
. Since for any s < t we have Dt

e ∩ {0, ..., ls} = Ds
e,

the definition of Te and T ∗

e is correct. It is clear that both Te and T ∗

e are axioma-

tisable by computable sets of axioms uniformly in e. Since for each s the reduct

of T ∗

e as above is ω-categorical, the theories Te and T ∗

e are complete. Thus Te and

the corresponding theory T ∗

e are decidable uniformly in e. It is worth noting that

for each m the Lm-reduct of T ∗

e admits elimination of quantifiers (it is of the form

T ∗

m,D as above). Moreover, the class
⋃

l Kω,Dl
e

considered as a class of L0-structures

where almost all P ∗

m are empty, is a countable class with JEP and AP. It is clear

that T ∗

e is the theory of the corresponding universal homogeneous structure M∗

e .

Applying Proposition 7 to M∗

e and all Ml,Dl
e

we obtain the (L0∪L)-structures Ue

and their approximations Ul,Dl
e

(and Nl,Dl
e
), which for l → ∞ give a computable

axiomatisation of the complete L-theory TL
e of the corresponding L-reducts Ne.

By Remark 3 applied to all Ul,Dl
e

(with decidable theories), this axiomatisation

(the corresponding decidability of TL
e ) can be found by an effective uniform in e

procedure.

We now fix a Gödel coding of the language L, and identify decidable complete

L-theories with computable functions from {sgn(ϕe(x)) : e ∈ ω} realising the

corresponding characteristic functions (by sgn(x) we denote the function which is

equal to 1 for all non-zero numbers and sgn(0) = 0). We want to prove that the

set of all natural numbers e satisfying the relation

”sgn(ϕe(x)) codes a decidable ω-categorical theory”

is Π0
3-complete.

Fix a Turing machine κ(x, y) which decides when for a pair d, e the number d

codes a sentence which belongs to TL
e (in this case κ(d, e) = 1). The following
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procedure defines a computable function ξ(z) and a computably enumerable set Z.

At step e we take the Turing machine for sgn(ϕe(x)) and check if any replacement

of some parameter e′ in that program by a variable y makes it the Turing machine

κ(x, y). If this happens we put e into Z and define e′ := ξ(e). As a result we obtain

a computably enumerable set Z and a computable function ξ with Dom(ξ) ⊃ Z

and Rng(ξ) = ω such that for every e ∈ Z the function sgn(ϕe(x)) is computed by

the machine κ(x, ξ(e)) (for TL
ξ(e)).

By Ryll-Nardzewski’s theorem the LESP -theory Tξ(e) is ω-categorical if and only

if all Wϕξ(e)(n) are finite (i.e. the set of 1-types (pairwise non-equivalent Boolean

combinations of Pm) of each Sn is finite). If we consider the corresponding TL
f(e),

then this property remains true.

Since for any Turing machine computing ϕe′ (x) we can effectively find a Turing

machine deciding TL
e′ (i.e. in fact we can find sgn(ϕe(x)) with ξ(e) = e′), we see

that the Π0
3-set {e′ : ∀n(Wϕe′ (n)

is finite)} is reducible to {e : sgn(ϕe(x)) codes an

ω-categorical L-theory}. Since the former one is Π0
3-complete (see [7]) we have the

theorem. �
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