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1 Introduction
The reader should see [K2] for the notation used in this paper

Definition 1.1 We say that a mapg : 2<% — [0, 1] is a martingale if f(s) = w for each
s€2<%, The set of martingales is denoted by and is a compact subset [, 1]2<“ (equipped with
the usual product topology).

This terminology is not the standard one, but the/sttan be interpreted as the set of all discrete
martingales (in the classical sense) taking values in [@djollows. Ifs 2<%, then

Ng:={pe2” | sCp}

is the usual basic clopen set. LEE M. If n € w, then letS, be thes-algebra or2“ generated by
{Ns | s€2"}, and f,,: 2* — [0, 1] be defined byf,,(5) := f(8|n). Then the sequendg,,),c., IS @
discrete martingale taking values in [0,1] with respect®$equence of-algebrag S, ),c., and the
usual Lebesgue product measuren 2¢. Conversely, if(f,).e. iS any such martingale, it can be
viewed as an element 0¥ by settingf(s) := f|;/(a) if a € Ns. This definition is correct because
f|8‘, as a function measurable with respeolS‘FQ, has a constant value avi,.

Definition 1.2 Let f be a martingale angl € 2¥. Theoscillation of f at 3 is the number

0sqf, ) :=infye,, SUR, o> [f(Blp) = f(Blg)l-
Theset of divergenceof f is D(f):={s€2¥ | osd f, 3) >0}.

By definition, if f is a martingale, then
BED(f) < Irew YNew Ip,q=N |f(Blp)—f(Bla)|>27".

This shows thaf(f) € 9. Moreover,D(f) hasA-measure zero, by Doob’s convergence theorem
(see Chapter XI, Section 14 in [D]). So it is natural to ask thbe anyX} subset of2* with \-
measure zero is the set of divergence of some martingatedtidstion was asked by Louveau). We
answer positively:

Theorem 1.3 Let B be a subset df*. Then the following are equivalent:
(a) B is £ and has\-measure zero,
(b) there is a martingalg’ with B = D(f).

Definition 1.4 LetI" be a class of subsets of Polish spacEsy be Polish spaces, andCY x X.
(a) We say that/ is Y-universal for the IT" subsets ofX if i/ e T'(Y x X) andT'(X)={U{, | yeY}.

(b) We say that/ is uniformly Y-universal for the T" subsets ofX if I/ is Y-universal for thel"
subsets o\ and, for eachS € T'(w® x X), there is a Borel map : w* — Y such thatS,, =y, for
eachacw?.

Corollary 1.5 LetG be aGs subset oR“ with A\(G) =0. Then the sef(f,5) e MxG | e D(f)}
is M-universal for thex) subsets of.



In fact, we prove an effective and uniform version of the iivgtion (a)=- (b) in Theoren_1.3.
In particular, we can associate, via a Borel nigpa martingale to a code of an arbitraryGGs subset
G of G (as in the previous corollary), in such a way tﬁat:D(F(a)). A consequence of this is the
following:

Theorem 1.6 The setP of everywhere converging martingalesTi& -complete.

These statements are in the spirit of some results congetimindifferentiability of functions due
to Zahorski and Mazurkiewicz (see Section 4 for details)fakt, P is IT{-complete in a uniform
way, which allows to derive some universal and complete feetthe whole projective hierarchy, in
spaces of continous functions, starting frém More precisely, let?; := [0, 1]2<“ andCy:=P. We
define, for each natural numbeg> 1,

e the spaceP,, 1 :=C(2¥, P,,) of continuous functions frora“ into P,,, equipped with the topology
of uniform convergence (inductively),

o Cop1:={hE Py | YBE2Y h(B)¢C,} (inductively),
o U,:= {(h> 5) € Py x2% | h(ﬁ) € Cn}
We prove the following:

Theorem 1.7 Letn >1 be a natural number. Then
(a) the setU, is uniformly P, ;-universal for thell! subsets of,
(b) the seC,, is II-complete.

In fact, our method is more general and works if we start willllaset which is complete in a
uniform way.

Let f be a martingale. A®(f) hasA-measure zero, we can associatef tthe partial function
(f) definedA-almost everywhere by (f)(5) :=1im;— f(B|l). The partial function)(f) will be
called theassociated partial function The martingalef is in P if and only if ¢( f) is total, in which
casey(f) is called theassociated function Using the work in [B-Ka-L] and [K2] about spaces of
continuous functions, we prove the following:

Theorem 1.8 (a) The set of sequences of everywhere converging mamisgdiose associated func-
tions converge pointwise H1i-complete.

(b) The set of sequences of everywhere converging martingatose associated functions converge
pointwise to zero i€I}-complete.

(c) The set of sequences of everywhere converging marisidpaving a subsequence whose associ-
ated functions converge pointwise to zer@i%-complete.



2 39 sets of measure zero

Notation. In the sequel B will be a Borel subset o2, and M will be a \-measurable subset 2f.
If B2, then thedensity of M at 4 is the number(M, 8) :=lim;_,« A%in when it is defined.

Note thatd(B, 5)=1if € B andB is open. We first recall the Lebesgue density theorem (sé€e 17.
in [K2]).

Theorem 2.1 (Lebesgue) The equality(M) = A({8 € M | d(M,5) = 1}) holds for anyA-
measurable subsaét/ of 2«.

The reader should see [C] for the next lemma. We include af podoe self-contained and also
because we will prove an effective and uniform version cdtief.

Lemma 2.2 (Lusin-Menchoff) Lef’ be a closed subset 8f, and M O F' be aA-measurable subset
of 2¥ such thatd(M, 5) =1 for each € F. Then there is a closed subgetof 2« such that

HFCCCM,
(2)d(M, p)=1 for eachpeC,
(3)d(C, B)=1 for eachs e F.

Proof. If F'is2¥, then we can také€':= F. So we may assume thatis not2~. We sets™ :=s|(|s|-1)
if ) #s€2<“. Note that—F is the disjoint union of the elements of a sequef®g, ),.c.,, where
NN F #() for eachn ew. Fix new. By Theoreni 211,

AM NN, )=A{BE€M NN, | d(M NN, B)=1}).

The regularity of\ gives a closed subsét, of 2¢ contained in{f3c M N N, | d(M N N,,,3)=1}
such that\(F},) > (1-27")A(M NN, ). We setC:=FU(J F,,, which is closed sincgs,,| — oc.

new

As Conditions (1) and (2) are clearly satisfied, pit& £'. Note that

AN \C) =25, 581 A(Ns, \C)
<X, 081 AMNs, \ Fr)
<V, 080 27" MM N N, ) +25, 510 MNs, \ M)
< Eanﬁ” 2_n>‘(Nsn)+/\(Nﬁ|l\M)'

This implies that the limit ofxgjzfjf,i‘;‘\l? is zero sincel(M, §) =1. O
The next topology is considered in [Lu-Ma-Z], see Chapter 6.
Definition 2.3 Ther-topology on2“ is generated by

F:={M C2¥| M is \-measurable\ Ve M d(M,5)=1}.

The next result is proved in [Lu-Ma-Z], but in a much more abstway. This is the reason why
we include a much more direct proof here, since it is not toglo
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Lemma 2.4 The family.F is a topology. In particular, any-open set is\-measurable.

Proof. Note first thatF is closed under finite intersections, so that it is a basigHerr-topology.
Indeed, letM, M’ be inF, and3 e M N M’. Then we use the facts that

MM N M0 Ngyp) =AM N Ngjp) = A((M 0 Ngi)\ M)

Let H be a subfamily ofF, and H := UH. We claim that there is a countable subfantiypf
such thatm := sup{A\(UD) | D C H countablé = A(UC). Indeed, for each € w there isD,, CH
countable such that(uD,,) >m—27", andC:=J D,, is suitable. LeC:=UC.

new

Let 5 H, andM in H with 5€ M. Note that\(M U C)=A(C) (consider the family’ U { M }).
ThusA\(M\C)=0. Asd(M, ) =1, the equalityd(M N C, 5) =1 holds, andi(—C, 3) =0. This
implies thatH \ C' is contained in{5 ¢ C' | d(—C, ) < 1}, which has\-measure zero by Theorem
[2.1. Thereforelf \ C has\-measure zero andd =C U (H \ C) is A-measurable.

Pick € H, andM € H with g€ M. Thend(M, 8)=1, and thusi(H, 5) =1. ThereforeH € F.
This finishes the proof. O

The next lemmais in the style of Urysohn’s theorem (see [bu]té version on the real line). We
include a proof to be self-contained and also because wemlle an effective and uniform version
of it later.

Lemma 2.5 Let C be a closed subset a@f’, and G be aG;s subset oR“ disjoint fromC' such that
A(G)=0. Then there is a-continuous mag:2* — [0, 1] such thathc =0 andh o =1.

Proof. Let (F,),cw be an increasing sequence of closed subse?s @fith union -G and Fy = C.
We first construct a sequen¢€' 1 ),c,, of closed subsets @& with F,, CC .1+ C-G,C.1 CC_1
27L 27L

on 2n+1

andd(C - ,B) =1 for eachs € C%- We first apply Lemma&_2]2 té" := Fy and M := -G, which
2n ™
gives Fy C C; € ~@G. Then, inductively, we apply Lemnia 2.2 f6:=C 2 u F,1 and M := -G,
which givesC% UF,+1CC 1 C C G such thatd(C i ,B)=1for eachBeC L.
mn on

Then we construat'z.1, for 0 < k< 2"~! andn > 2. This will give us a family(C Jnew,0<k<2n
21 2n -

of closed subsets . We want to ensure that: C C¢» andd(C¢r, ) =1 for eachg e C; if (' <(.
We proceed by induction on. We apply Lemma 212 té¢":=C ket and M := C _k_ , Which gives

on—1

C2k+1 such that” bl CCa% C C ko d(C_x_, ﬁ) =1 for eachﬁ € C2k+1 , andd(C’ng ,8)=1
on—1 on
for eachBe C Etl . This allows us to defln& by
on—1
~ 0if sed,
h(B):= .
(8) {sup{CWeC’C}lfﬁgéG.

It remains to see thdt is 7-continuous (and then we will sét(3) := 1—Ah(j)). So letb € (0,1],
and 3 € 2 with h(8) < b. Note that there ig < b with h(8) < ¢, so that3 ¢ C¢. If v ¢ C¢, then
h(v) <({<b, sothat-C is an open (and thus-open since the-topology is finer than the usual one)
neighborhood off on which’ < b. In particular,h is Borel.



Now leta € [0,1). Itis enough to see thdk := {y € 2* | h(y) > a} is T-open. So assume that
h(7)> a. Note that there aré > ¢'>a with h(v) > ¢, so thaty € C; C Cr € B. Thusd(Cer,v) =1,
by construction of the family. A& is Borel, B is Borel,d(B, ) is defined and equal th O

Remark. We in fact proved that is lower semi-continuous.

[y, hdX

Notation. If h:2% — [0, 1] is aA\-measurable map and: 2<%, then we senys hd\:=: NN

Lemma 2.6 Leth:2¥ — |0, 1] be ar-continuous map, and€2“. Then

lim h dA=h(B).
l—o0 NBU

Proof. Lete >0, andB€ M :=h~! (B(h(ﬁ), £) ) . Note thatd(M,~) =1 for eachy € M sinceh is
T-continuous. As is A-measurable, we can write

/ hd)\:/ hd)\—i—/ h dA.
Naju MNONg); Ngji\M

A(Ng; \M)
A(Ng1)

MM N Ngy) A(M 1 Ngy)
][MmNﬁl hdre [(h(ﬂ) E) A(Nap) ’ (h(ﬁ)+€) A(Ngp) ]

and we are done sincﬁéiv{;TW tends tol as!/ tends toxo. O

Note that0 < [

S\M h dX<A(Ng;\M), sothat0 < f;

o hdrs

— 0. Similarly,

Now we come to our main lemma, inspired by Zahorski (see [Za])

Lemma 2.7 Let G be aG; subset oR2“ with A-measure zero. Then there is a martingdlevith
G=D(f)and{osd f,8) | B€2*} {0} U [3.1].

Proof. Let (G, )ncw be a decreasing sequence of open subseXs with intersectionG andGy =2

e We constructy, : 2* — [0, 1], open subset&”, G** of 2¥, and a sequenc@?)jgn of pairwise
incompatible finite binary sequences, by inductionafw, such that, ifS,, :=% <, (—1)7g;,
( )GCGn—i-l G**_UJEI NS;LQngGn A G8:2w1
(2) gn|G LA In|-Gz, =0,
(3) gn is T-continuous,
(4) gn+1 <gn.
(5) MGy N Nan) <27 3A(Nan),
(6) |an Sy dN— S (B)|<273if 5GGONS}L.

We setgg:=1, G, Gi* :=2%, Ip:={0} ands)):=0. Assume that our objects are constructed up.to
We first construct an open subge}_ ; of 2 with G C G}, | C G N Gy 41 such that

MG NV Ng) <277 X(Nyr)
if j € I,,. For eachj € I,,, there is an open s&?; with G N NSJ_ CO; CGpe1 N NS}m such that

A0;) <27"?A(Nyr). We then seGy; :=U;¢;, O;.



We now apply Lemma2l5 t6':= -G, ; andG, which gives ar-continuous mayh : 2% — [0, 1]
with h|ﬂGZ+1 =0andhig=1. We selg,, 11 :=min(gy, h), so thatg, , satisfies (2)-(4).

By Lemmal 2.6, lim., fNB\l Sp+1 dN=S,+1(B) for eachs € G. This givesl(5) € w minimal
with ’fNB\l(ﬁ) Sn41 dA—Sp11(8)] < 27 and Ngy5) C G,y The setGy | is the union of the

Npgj(5)'s, which definesl,,; and (sg‘“)jgn+1 (Sn+1(B) is 0'if n is even and 1 otherwise when
BEQqG).

e We then define a partial mafa, : 2% — [0, 1] by foo := ;e (—1)7g;. If B€ G, thenS,,(3) takes
alternatively the values and0, depending on the parity of, so thatf..(3) is not defined. If5 ¢ G,
then there i such that3 € -G | € =G}, , C ... This implies thatf..(3) is defined and equal to
Sn(B). ASO<E,<q (92p— G2p+1) = S2g+1 < S2g = go+L1<p<q (92p — 92p—1) < 90, foo takes values
in [0,1]. Sof is a partial\-measurable map definedalmost everywhere sincgG) =0 (we use
Lemmd2Z.4).

e This allows us to defing : 2<“ — [0, 1] by f(s):= f_ foo dX. ASA(N5) =2A(N;e) for eache €2,

F(8)=fx, foo A= I I Cﬁjv/f)“l Joo D 160) | J61) and f is a martingale.

o If 3¢ G, then there isy with S € G} \ G}, .1, so thatf(3) = S,(8). By Lemmd 2.6} > n implies
that lim;_, mel Sk+1 dAA=Sk+1(8) = Sn () sinceSk1 is T-continuous. Note that, for eaéh>n,

‘ mel(foo_SkH) d)‘| §)‘(GZ+2 N NBU)
<Bgucsrt MGlpp NN gs1)
ézﬁ‘le’?Jrl 2_k_4)\(Nsl?+1)

—J J
S A(Ngp)27F 4
Moreover,

’f(ﬁ‘l)_foo(/@)’:’mel Foo A= fo(B)] :’fNB\l (foo—Sk+1) d)\+mel Skr1 dA— S 1(8)]
§2_k_4+’ fNﬁ\z Sk1 dA=Sg11(8)

so that lim_,o f(8]l)= foc(B), 0sq f, 5)=0andf ¢ D(f).

o If &G andn €w, then there ig €w with ﬁeNsy. Note that

f=F  foodr= Sncm][ (Fao—Sh)
N,

Nen Nen s
[f(s1)—=Sn(B)| < §+35 = 1- As S,() takes infinitely often the valuesand0, osd f, 5) > 5 and
BeD(f). O

and| [y (foo—Sn) dA| < A(Gjyy N Nan) < $A(Nan), s0 that] fy, (foo—Sn) dA| < L. By (6),
J J

The main result will be a consequence of the main lemma anfibtlogving.
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Lemma 2.8 Let (f,,)ncw be a sequence of martingales such that

{05 fu 8) | (n,B) €wx 2} {0} U [5, 1]
Then there is a martingal¢ with D(f)=J,,c., D(fn)-
Proof. We first observe the following facts. Leth:2<“ — R be boundedj € 2* anda € R.
(1) osdg+h, B) <osdg, 5)+0sdh, 3).
This comes from the triangle inequality.
(2) osqayg, 5) =|al-0sdg, B).
(3) osdg+h, ) =0sdh, ) if osc(g, 3)=0.

By (1), os¢h, ) <o0sd g+h, 8)+0sd —g, 5) =0sd g+h, 3) <0sdg, 3)+0sq h, 3) =0sd h, (),
so that osth, ) =0sdg+h, ).

(4) osdg, B) <a if g(B]l) €[0,a] for eachl € w.
e We setD,,:= D(f,) foreachnew, andf:=%, ¢, 47" f,. Note thatf is defined and a martingale.

o If 3¢U,.c., Dn,thenos¢f,, 3)=0 for eachn cw. In particular, os¢4~" f,,, ) =0 for eachn € w,
by (2). Lete >0, andM e w with 3,53 47" <e. By (1), 0s¢X,,<nr 47" fn, 8) =0. By (3) and (4),
osd f,B)=08A > 47" fn, B) <Epns>m 47" <e. Ase is arbitrary, os€f, 3) =0, ¢ D(f), which
shows thatD(f) €U,.c., Dn-
o If B, c., Dn,then letm be minimal such that € D,,,. Note that

f:2n<m 4_nfn+4_mfm+2n>m 4_nfn-

By (2) and (3), 0s€f, 3) =0Sq4™"" frn+Xpsm 47" fn, 8). By (1), (2) and (4),

0sqf, B) 20804 ™" fin, B) —0SATn>m 4—“fn,5>z4‘m%—4‘m§ > 0.

Thusge D(f). O

3 Effectivity and uniformity

- We refer to [M] for the basic notions of effective descnptset theory. We first recall some material
present in it.

e Let (p,,)new be the sequence of prime numbers, ...

(0)+1

o If [cw ands ew!, thens:=< 5(0),...,s(1—1) >:=p; ...pfﬁll_l)Jrl € w codess (if [ =0,

then<>:=1).

o If acw® andl cw, thena(l):=< a(0), ...,a(l—1) >€ w codesall €w!, anda* is defined by
removing the first coordinatei* := (a(1), «(2), ...).



o If K € {2,w}, then< .,. >: (k¥)? — k¥ is a recursive homeomorphism with inverse map
a ((a)o, («)1) defined for example bj) (n) :=a(2n+e) if (n,e) ewx2 (we will also consider
recursive homeomorphisms .,.,. >: (k%)% = k¥ and< ., ., ... >: (k) — k¥).

e If u € w, then Se@u) means that there afec w ands € w! (denoted bys(u)) such that
u =< 5(0),...,s(l—1) >. The natural numbefu); is s(¢) if i <, and0 otherwise. The number
l is thelength of v and is denoted by ). If £ <1, thenu(k) :=< s(0),...,s(k—1) >, so that
u(l) = u. The standard basic clopen setNs' := {5 € 2 | Vi < Ih(u) B(i) = (u);}. We set
u” =< (o, s (W y)—g > (™ :=<>if I (u) <1).

e Let X be a recursively presented Polish space. Then we will cendliet effective basic open

SetN (X, u) = Bx (r((u)1 ) aJok1)-

e Letn>1 be a natural number. A subsEbf w” is atree if Seq(u;) and In(u; ) =lh(ug) for each
(uo, ..., un—1) €T and each <n, and(ug(k), ..., un—1 (k) €T if (ug, ..., un—1) €T andk <Ih(uy).

e The next result is a part of 4A.1 in [M].

Theorem 3.1 Letm > 1 be a natural number, and ¢ 59 (w¥ x (w*)™). Then there is a recursive
subsetT” of w” x w™ such that(c, a1, ...,am) € B < 3l € w (a,o1(1),...,an(l) ¢ T, and
To:={(ug, oo up—1) EW™ | (a, ug, ..., um—1) €T} is a tree for eachv e w®.

e The next result is a part of 4A.7 in [M].

Theorem 3.2 Let X be a recursively presented Polish space dhé Al(X). Then we can find a
recursive functionr:w* — X and C € II(w*) such thatr is injective onC and 7 [C]= B.

- We then recall some material from [L].

Notation. Let X be a recursively presented Polish space. Recall that teer@air(VX,C¥) such
that

e WX Cwisall} setof codes for thel] subsets ofX,

e CX Cwx X is II and AL (X) = {CYX | ne WX}, which means thaf¥ is “universal” for the
Al subsets ofY,

e the relation he WX A (n,z)¢CX”is Il in (n, ).
If X =w*x2v, then we simply writ§ W, C) := (WX, CX).
The next result will be extremely useful in the sequel.

The uniformization lemma. Let X, Y be recursively presented Polish spaces, &hd ITH(X xY).
Then the seP*:={ze€ X | Iyc Al(z) (z,y) € P} is II}, and there is a partial;'-recursive map
f:X =Y such that(z, f(x)) € P for eachz € P*. If moreoverS C Pt is a | subset ofX, then
there is a totalA{-recursive magy: X — Y such that(z, g(x)) € P for eachz € S.

- The following definition is inspired by 3H.1 in [M].
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Definition 3.3 (a) LetI" be a class of subsets of recursively presented Polish spandd” be the
associated boldface class. A system of &€tsc I'(w x X ), where isX is a recursively presented
Polish space, is aice parametrization in I" for I' if the following hold:

D) TX)={U | acw®},

(@) T(X)={UX | a€w” recursive,

(3) if X is a recursively presented Polish space, then thefR igv* x w* — w* recursive such
that (o, v, z) €U X & (R, 7), ) eUX if (a,7,2) Ew® xw” x X
(b) If U belongs to a nice parametrization, then we will say #ds a good universal set

(c) If U satisfies all these properties except maybe (3), then weayilthat/ is a suitable universal
set.

By 3E.2, 3F.6 and 3H.1 in [M], there is a nice parametrizaiiordZ! for II., for each natural
numbern > 1.

- We now recall two results that can essentially be found ih][KThe first one is Theorem 2.2.3.(a)
(see also [T1]).

Theorem 3.4 (Tanaka) LetU € X} (w* x w*) bew~-universal for the analytic subsets ©f. Then
LU):={(a,p) €w xw | \(Ua N29) > 20 Y is 2L

Corollary 3.5 Let Be A}(w® x2%).

(@) The map\p : w* — R defined by\g(a) := \(B,) is Ai-recursive, and the partial function
(n, @) A(Cn.a) is II{-recursive on its domaimy x w®.

(b) LetD Cw, Op € I} (wxw“x2¥), andO; € II} (wxw*x2*) be such thah ((Op)n.a) =A((O1)n.a)

if n.€ D. Then the partial mapo : D x w* — R defined by\o(n, @) :==A((Og)n,o) is X} -recursive
and I1}!-recursive on its domain.

(c) The partial mapip : w* x2* — R defined byis (o, 3):=d(B,, ) is Al-recursive, and the partial
map(n, a, 8)+—d(Cn.a, B) is II{-recursive on |tsIYl1 domain

{(n,a, B)eWxw” x2¥ | d(Cy,q, B) eXists.

(d) Leth:w* ><2°J—>IR{ beA1 recursive taking values if, 1]. Then the partial mapy, : w“ xw —R
defined byis (v, u):= [, h(e,.) dX is Aj-recursive on itsA) domainw® x {uew | Sequ)}.

Proof. (a) It is enough to see that the relatiaRg(a, p) < A\(By) >1p:=(—1)P)o. (p(ﬁ)jrl and
@B(a,p) & A(Ba)<rp

are A} to see that\ 5 is Aj-recursive. Note that there is: w? — w recursive withry, ) =r,— 5

F1-
Thus

Qp(a,p) & Alew MBo)<rp— 117

& 3dlew ~(MBa)>1p—137)

s Jlcw ﬁPB(a,qﬁ(p,l)),
so that it is enough to see thBg is Al.
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e Now let S € X} (w” x (w*)?) be a goodv“-universal for the analytic subsets @f“)?. We set

U, y) < S((@)o, (@)1,7),

so thatU € X} (w¥ x w¥) is w*-universal for the analytic subsets ©f. Let A be aX| subset of
w® x 2%, Then there isyy € w® recursive withA=S,,,,, so that

vEAL & (ap,,7)ES & (< o, >,y)€U.
This implies that the relatio® 4 (v, p) < A(Aq) >, €quivalent to
((p)oisodd A (p)1>0) V ((p)oiseven A (< ag, o >, < (p)1,(p)2 >) € L(U)),
is X!, by Theoreni 3.
e In particular, this applies tel := B, so thatPp is X}. Now note that
Pp(a,p) & A((~B)a) <1-r1p & Q-p(a. ¢ (p)),
for some¢’ :w — w is recursive, so thaby is 11} by the previous computation.
o We setC’:={(v,8) ew” x2¥ | v(0)eW A (v(0),~*,8) €C}. AsC'is I},
A:={(a,p) ew’xw | A((=C")a) >1p}
is XL, by the previous discussion. So te€ W. Note that

AMCna)>1p € M—Cha) <1—71p & AM(=C)na) <1—7p
& Jlew A((—-C)na) §1—rp—l+il & dlew (na,¢"(p,l)) ¢ A,

for some recursive” : w? — w. Similarly, the relation A(C,, ) < 7, is II{ in (n,a, p) since the
relation “‘neW A (n,a, 8)¢C"is II}, so that(n, o) — A(Cp o) is II} -recursive oy x w®.

(b) Let A := {(a, 8) € w*x2¥ | (a(0),0*,8) € Op}. Note thatd is X!. By (a), the relation
Ra(a,p) & A(An) > 1, is XL, Therefore the relatioRo, (n, a,p) < Ra(na,p) is X} too.
Moreover,Ro, (n, o, p) < A((Oo)n.a) >1p < Ao(n, a)>1p.

e Assume now that € D. Then as above there ¢¢ :w? — w recursive such that

Xo(n,a)>r, < )\((Ol)ma) >r, & )\((ﬂOl),W) <l-rp
< dlew )\((ﬂOl)n’a) Sl_rp_l-i-% s dlew _‘<A((_‘Ol)n,a) >T¢”(p,l))
& 3Jlew ~Ro, (n,a,¢"(p,1)),

which shows the existence &, € II}' such that\o(n, a)>r, & R (n,o,p)if neD.
e Assume that€ D. Then there i’ : w — w recursive such that
Ao(n,a) <rqg & A((O1)na) <rq © M(m01)na) >1—7¢ & R0, (n, o, ¢'(q)),

which shows the existence &) € X} such that\o (n, o) <rq < R, (n,a,q) if neD.
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e Assume thai € D. Then there i$)” :w? — w recursive such that

Xo(n,a)<ry < )\((OO)n,a) <rgedlew )\((OO)n,a) < 1_771_14%1

s dlew ﬂ()\((Oo)n,a) >r¢n(q7l)) & Jlew —Ro, (n, a,¢"(g,1)),
which shows the existence & € II}' such that\o(n, a) <r, < Rj (n,a,q) if neD.

e Finally, r, <Ao(n,a) <ry & Ro,(n,a,p) A Rp, (n, a, q) and
Tp < )\0(71, Oé) <Tq <= R/Oo (TL, «, p) A R/O//o (’I’L, «, Q)
if n€ D, which shows thad, is X} -recursive and7;-recursive onD x w.

(c) We first prove the following. LeKX, Y be a recursively presented Polish spaces@aidxw —Y
be aAi-recursive map. Then the partial mapX — Y defined by

h(z):=1lim;_ 0 g(z,1)
when this limit exists isA{-recursive.

Indeed, the domai of his {z€ X |Vrew ILew Vk,I1>L dy(g(z,k),g(z,1)) <277}, so
that D is Al. If x€ D, thenh(x) € N(Y,u) is equivalent to

D ((u)1)1

Ip,qcw <
q

+1 ((u)1)2 +1

and we are done.

A ALew VI>L g(x,1)eN(Y,{0,< (w)1)yp,q>)),

o We SetBliz{(Oé,’}/)waXQW | ((Oé)(],’}/) €B A /VGN(OC)I‘(OC)l(O)}’ SO thatBa ﬁN5|l:B,<a,lB>

and B’ is A{. By (a), the mapy : w* x 2 x w — [0, 1] defined byg(a, 8,1) :=27'A(B, N Nygy;) is
Al-recursive. By the previous point, the partial nfagp~ x 2« — [0, 1] defined by

h(a, B) =i 27" A(Ba N Nyyp)
when it exists is alsa\}-recursive. Buti=d.

e Fix neW. Then there ig(n) € W such that

Comy=1(7:0) €w” x 2% | (n, (7)0,0)€C A (7)7](7)1(0) S}
Moreover, we may assume thats I7}!-recursive onV, by the uniformization lemma. A& has
the substitution property, the map: (n, o, 3,1) = 27'A(Cy(n) <aip>) =27 A(Cn,a N Ngpp) is 1T}~
recursive oV x w® x 2“ x w. As above, the map

Wi (n,a, B) 1M 27'A(Cpia N Nap) =d(Cna, B)

is IT}-recursive on thdl} set{(n,a, 8) EWxw® x2% | d(Cp,.a, B) €Xists.
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(d) The argument here is partly similar to 11.6 and 17.25 i?][KVe set, for(k, () € w?,

k k+1
-1
Api:=h ([?7 T))
and defing; :w® x 2* — [0, 1] by hy =% <o %XAk,l' We also define? Cw® x 2% x w3 by
k E+1 "
R(a, B,u, k, 1) @agh(a,5)<7 A Sequ) N BENY,

so thatR is Al. Then we defin€ C w* x 2¢ by
O(a, ) < Seda(0)) A th(a(0))=3 A R(a",8, (a(0)),, (a(0)) . (a(0)),),
so thatO is Af.

Note that(h;) is a sequence of Borel functions pointwise converging.t8y Lebesgue’s domi-
nated convergence theorefy,, h(a,.) dA=lim;_,o [y. hi(e,.) dXif Seq(u). Note that

Syvu halas ) dA = [yu Specar Zxa,, () dAA=Sco ZA((Agg)a NNY)

=Y %A(Ra,u,k,l) =Yt %A(O<u,k,l>a)-

Using (a), this implies that the mafy, u,l) — [y. fu(e,.) dX is Aj-recursive on itsA} domain
w*x {u€w | Sequ)} xw. As in the proof of (c);, is Al-recursive on its domain. O

We now prove a uniform version of Theorem 4.3.2 in [K1] (duGéamaka, see [T2]).

Theorem 3.6 Let B € Al (w* x2¥), ande:w*” — R be Al-recursive such that(a) € (0, 1] for each
a€w®. Then there iF" € Af (w* x w) such that

(a) T,, is a tree for eachy € w®,
(b)if K={(a, B) ewx2¥ |View (a,B(l)) €T}, thenK, C B, and\(Kqo) > A(B,) —¢(«) for
eachaew”.

Proof. Theoreni3.R gives : w® — w® x 2¢ recursive and” € I1?(w*) such thatr is injective onC'
and7[C] = B. We setQ :={(a, 3,7) € (w*)? | y€C A7(y) = (o, B)}. AsQ € I1{, Theoreni 311
gives a recursive subsétof w* x w? such tha(e, 8,7) €Q < Vicw (a,3(1),5(1)) €T andT, is
a tree for eaclw e w®.

e We set, foru, v ew,
u<%v & Sedu),Sedv) A Ih(u)=Ilh(v) A Vi<lh(u) (u); <(v);.
e Then we set, for, € w with Sequ) anda e w®,
Bi:={pe2¥ | Iyew” F(lh(v)) <"u A Vlicw (o, B(1),5(1)) €T}
and B’ := {(a, B) €w* x 2% | Seda(0)) A Be B}, Note thatB’ is X} In fact, B’ is Al by

uniqueness of the witness
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¢ We now define), € w* as follows. We definé, (i) by induction on:. We first set

5a(0):=min{kcw | \(BZF>) >A(Ba)—@}.

This number exists sincB,, is the increasing union of thB<*>'s. Then
. . i €(a g¢e’
So(i+1):=minf{kew | A(Ba(0)0al )”“>)>>\(Ba)—%—...—%}.
Note thaty, € A}(«), by Corollary(3.5.(a).

o We setT :={(a,v) Ew* xw | Seqv) A Ju < 5, (Ih(v)) (o, v,u) €T}, so thatl € A} (w* x w)
andT, is a tree for eachvcw?.

o We setl :={(a, f) ew® x 2 | Vlew fe B, so thatk, C B, and

AE) =Moo A(BE D) > \(By) — ()

07

for eacha € w* since (Bff(l))lew is decreasing. It remains to apply Konig's lemma to see that
K={(a,B)ew”x2¥ |Vlew (a,B(l)) €T} since

{sews? < s(0),....s(|s|—1) ><" 64 (|s]) A (e, B(|s]), < 5(0),...,s(]s|-1) >) €T}
is a finitely splitting tree. d

- We want to prove an effective and uniform version of the bugienchoff lemma. We first need the
following result, which slightly and uniformly refines Themn A in [L] at the first level of the Borel
hierarchy.

Lemma 3.7 LetO be aAl subset ofsx2 with open vertical sections. Then there iglg-recursive
map f :w* —w* such thatO,, is the disjoint uniorl J { N/@®) | y e w A Seq f(a)(u)) }, for each
aEw”.

Proof. Let P:={ (o, u) cw” xw | Sequ) A (Ih(u)=0 V (N*CO, A N* Z0O,))}. Note thatP

is IT}, since a nonemptyl}(«) closed subset & contains aAi(«) point, by 4F.15 in [M]. We then
define a relatior? onw® x2%xw by R(a, B,u) < P(a,u) A B€ N, so thatR is II;!. Note that, for
each(a, 8) € O there isu with R(«, 3,u). By 4B.5in [M], there is aAi-recursive ma : w®x2% —w
such thatR(c, 8, g(«, 8)) for each(a, 8) € O. Fix o € w®. Note thatS*:={g(c, 8) | B€ On} is a
Y (a) subset ofu contained in thel} («) setP,. By 4B.11 and 4C in [M], there i®* € Al(a) with
S C D*C P,. Note thatO, C UueDa N*C O,, so thatO,, is the disjoint union of the sequence
(N")yepe. We defined, € w® by

uif ueD,,
Salu):= { 0 otherwise.

Note thats, € A}(a) andO,, is the disjoint unionJ { N%®) | u € w A Seqda(u))}. As the set
{(oz, §) Ew® xw® | § € A(a) A Oy is the disjoint unionJ { N°®) | uew A Sed5(u)) }} is I7}, it
remains to apply the uniformization lemma to get the desineg f. O
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Notation. We setW; :={neW | Vacw® Iy, € Al (a) Cra=U {NV"(“) | uew A Seqyn(u)) },
so that, by Lemm&a=3. 9y, is aIl} set of codes for thell subsets ofv* x 2« with open vertical
sections.

Lemma 3.8 Let F be a Al subset ofu* x 2 with closed vertical sections, anl be a A} subset
of w* x 2% such thatB D F andd(B,, 3) = 1 for each(a, 8) € F. Then there is aAl subsetC of
w® x 2¢ with closed vertical sections such that

(1) FcCcs,
(2) d(By, 8)=1 for each(«, 5) € C,
(3)d(Cy, B)=1for each(a, B) € F.

Proof. Lemmal3.Y gives a\l-recursive mapf : w* — w“ such that(—F), is the disjoint union
U {N/@W | uew A Seq f(a)(u)) }, for eacha e w®. We set

B'i={(a,7) € x2* | ((a)o,7) € B A Seq f((a)o) ((@)1(0))) A ye NS (@)@,

so thatB’ is Al and B, N N/ (@)W =B .. if Seq(f(a)(u)). By Corollary(35.(c), the partial
map(a, 3, u) —d(B, N NT@W  3)is Al-recursive. We then set

B":={(a,v)eB"| d(B(a), N Nf((a)o)((a)l(o)),v) =1},
s thatB" is Af and {5 € By N N/ | d(By nNT@W, ) =1} = BL, . if Seq(f(a)(w)).
We definec:w® — R by

{ 2~ (@O X\(BL) if \(B.,)#0,
elx) = .
1 otherwise,

so thate is Al-recursive by Corollary315.(a), arda) € (0, 1] for eacha € w*. Theoreni 36 gives
T € A} (w® xw) such that

(@) T, is a tree for eacly € w®,

(b) if K={(o,B)ewx2% |View (a,B(1)) €T}, thenK, C B/ andA(K,) > A(Bl) —€(w)
for eacha € w®.

We set, foru € w,
FU:={(a, B)ew” x27 | Seq f(a)(u) A (< a,u™ >,B)eK AN ANBL, ) #0}.

As K is A} with closed vertical sections, so I, If Seq(f(a)(u)) and\(BL,, ,~-) = 0, then
A(By N Nf(@W)=0 and F* =), so thatF* C {3 € B, N N/ | d(B, N Nf(®)®) g)=1} and
AFE) > (1=27%)AN(Bo N NF@W) 1f Seqf f(a)(u)) andA(BL,, 4o ) #0, then

Fl=K quosC By pos ={BE B, N NI@W | 4(B, N N/@W) g)=1}.
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Moreover,

A(Fg):)‘(K<a,u°°>) > )‘(BZa,uw>)_6(< «, u™ >) :)‘(BZa,uw>)_2_u)‘(B/<a,u°°>)
=(1—-2"")A(By N NT(@)®)

since\(B, N N/(@W) = \({B € B, N N/ @™ | d(B, n N/(®)® 5)=1}), by Theoreni ZI1. It
remains to se€:=F U/, ., F“. We conclude as in the proof of Lemial2.2. O

Ucw

- We now want to prove an effective and uniform version of Lenfib.

Lemma 3.9 LetC be aA{ subset ofo” x 2 with closed vertical sections; be a Borel subset &
with A(G) =0, andG be aA} subset ofu¥ x 2% with G vertical sections, contained in“ x G and
disjoint fromC. Then there is aAl-recursive maph : w* x 2 — R such thath(a, -) : 2¥ — [0, 1] is
T-continuous for eachv € w”, hjc=0andh=1.

Proof. By Theorem 3.5 in [L], there is a\} subsetF of w x w* x 2* such thatF,, , is closed for
each(n,a) cwxw* and-G={J F,,. Moreover, we may assume thdt, ) .., is increasing and
Fy=C.

new

e We will define, by primitive recursion, a partial mgpw — w which is I7}! -recursive on its domain
such thatf (n) essentially codes the s€t. constructed in the proof of Lemra2.5. As this map will
27L

in fact be total, it will beAl-recursive by the uniformization lemma.

We first apply Lemma 318 té¢" := F and B := —~G. This is possible becaugé, C G, so that
(=@G), hasA-measure one and therefore density one at any poiett dor eacha € w”. Lemmd3.8
givesC; € Al with closed vertical sections such that’ © C; 2 Fy. Let f(0) € Wy with Cs0y=—C1.

More generally, we will hav€,,) = ﬁCQ%. As mentioned above; will be defined by primitive

recursion, which means that there will be a partial pap? — w such thatf (n+1) = g(f(n), n)
This partial maygy will be I7!-recursive on itd7! domain{m e W | =C,, € -G} x w, so thatf will
be I1,!-recursive on its domain by 7A.5 in [M]. The mapwill take values inW;, and is constructed
in such a way that, if{:=—-C,, C -G and A’ := “Cy(m,n), then

(1) AUF, 1 CACG,
(2) Y(e, B)e A" d((=G)a, B) =1,
(3)V(a, ) EAU Foyy d(AL,B)=1.

Lemma[3.8 ensures that sucly@n,n) € w exists if (m,n) € {g € Wy | =C, C =G} xw. As the
properties (1)-(3) arél; by Corollary[3.5, the uniformization lemma ensures theterise ofg. So
we constructed a\l-recursive magf :w — w, taking values inV;, such thaC% ==Cy(p) IS aAl
subset ofu¥ x 2% with closed vertical sectiong;,, C C’%n C -G, C}n - C#, a21nd

if (a, B)eC

1.
2n
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e Similarly, we construct aﬁ%-recursive mapﬁ:w—m satisfying the following properties, if
D:={pcw|Sedp) A Ih(p)=2 A 0<(p); <2}

a) F(p )em if pED in which case we s, :=Cj,,

(
(
(¢) (( ) B)=lif p,p'eD A B < BL \ (o g)eC,
(0]

2o T 2(Po
e This allows us to definé by

__f 0if (a,B)€G,
1—h(a,5).—{ sup{ 2L [N |peD A (a,B)€C,}if (o, B)¢G.

2(p)o

Note thath is Al-recursive sincd € A9, so that the relationp'e D A (a, 8) € C,,"is A in (p, a, B).
We conclude as in the proof of Lemial2.5. O

- We are now ready to prove the main lemma in this section. \Wepete spaceo, 1]2@ with
the distance defined by(f,g) =% Sequ) ‘f(s(“);w We give a recursive presentation of

([0,1]2~, d). We set

((n)s)o+((n)s)1+1
0 otherwise,

; (S)::{ —— e __if Seqn) A Vk<Ih(n) (Seq(n)i) A Ih((n)s)=2) A 5<Ih(n),

so that(f,,) is dense in0, 12 It is now routine to check that the relationg(,,,, f») < 47" and
“d(fm, fn) < 727" are recursive iNm, n, p, ). Itis also routine to check thaft : w* — [0,1)2"" is
Al-recursive if the mag’ : w x w* — R defined byF’ (u, «) :=F(a)(s(u)) if Seq(u), 0 otherwise,

is Al-recursive §(u) was defined at the beginning of Section 3).

Lemma 3.10 LetV := {(f,3) € M x2¥ | osdf, 3) >0}, G be a nonempty:s N Al subset oPv
with A\(G) =0, and G be aAl subset ofv* x 2, contained inu” x G, and withG; vertical sections.
Then there is a\}-recursive magF :w* — [0, 1>~ taking values inM, and such thaGa = Vg ()
for eacha e w®.

Proof. We will define, by primitive recursionf : w — w* codingg,, S,, G%, and(s )jer, defining

G considered in the proof of the Lemimal.7. We must find*xw — w* with f(n—|—1) =r(f(n),n).
In practice,

(1) fo
(2) f1
(3) f2
(4) f3

n)e W, codesG;, Cw® x 2%,
e W x2“xR codes the graph af, :w® x 2¥ - R,
e W x2“xR codes the graph of,, :w® x 2 =R,

e W~ codes the graph of the function— (s}"*) jer, .-

n

n

A/_\/_\/_\
~— — ~— ~—

n

e By Theorem 3.5 in [L], there is a\l subsetO of w x w® x 2¢ such thatO,, , is open for each
(n,a) € wxw* andG =N O,,. Moreover, we may assume th@,, ),c., is decreasing and
O() =w"“ x 2%,

new
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e Letng € Wy with Cpy =w“x2%, ny € W X2 xR with C&" 2R = {(q, B, 1) ewx2“xR | r=1},
andng € W< with C& %% = {(a, y) €w® xw® | y=10}. We setf (0):= (ng,n1, n1,n3), SO
thatC,,, = G, C< ¥ 2 R =Gr(gy) = Gr(Sp), C&*“* =Gr(a— 10°),

1 Yng

{uew|Seq(10™)(u)) } ={0} =1y
and(10)(0) =1=<>=s). Sof(0) is as desired.
e We now study the induction step. This means that we must defing n1, no, n3,n) € w.

(1) We first definerg(ng, n1,na, ng, n) coding Gy, ;. Fix ng € W<"*“" coding the graph of a
Af-recursive functiong : w” — w* such that the sequence$g()(u)) coded by theu's with
Seq¢(a)(u)) are pairwise incompatible and, C |J{N*@® | u € w A Seqp(a)(u))} (we
call P; the I1}! set of suchng’s). Leta € w”. Assume that Sefg(c)(u)) (which intuitively means
thatue I,, , ands;’ is coded byp(«)(u)). By continuity of A,

=A(Ga N Nd)(a)(u)):“mj—)oo A(Oja N Ne@W),

This givesj(n, o u) > n minimal With A(O;(n.a.u).a N N¥@®) < 271=3= IN@@ @) (note that
9-IN@(@) () = \(N¢@(®))). Moreover,G,N N¥@® COj 0y o N¢(a)(u)g0n+1’am No@ @),
S0 thatO;(, o.u),o N N*@ ™ satisfies the properties of the €84 in the proof of Lemma2]7. We
will have G}, = Useqp(a)w) Oitmam.a N N By Corollary(3% and the uniformization
lemma, we may assume that the mjaip Al-recursive on itsA} domain

{(n,0,u) ewxwxw | Seqg(a)(w))}.

Note thatG, , , is aA{ subset ofu* x 2% with open vertical sections, which givese JV; such that
Cm =G, .. By incompatibility, G;; , | , N N =0, o N N4 So we proved that, for
each(ns,n) € P; xw, there ism € W, such that, for each € w®,

(1) Ga CCima COnt1,0a NU{NDW | yew A Seqp(a)(u)) },
(5) A(Cpa N N¥@@) < g=n=3-IN(g(a)(w)) |fu€w/\Sec{¢ )(u)).

By Corollary[3.5 and the uniformization lemma, we may asstina¢ the map : (ng,n) — m is
II}-recursive onPs x w. We setro(ng, n1,n2,n3,n) := 7o(n3, n), which defines a partial magp,
which is I1;l-recursive on itd7;} domainw? x Py x w.

(2) We now define (ng, n1, ne, ng,n) codingg,+1. We use Lemma_3l9 and its proof. Note that
ro(no, n1,n2,n3,n) € Do :={m € Wy | G C Cp}. The proof of Lemma 3|9 shows that for any
me Dy there isE), €w® N Al satisfying the conditions (a), (b), (c) and

(d)VpeD —(0<(p)1=2P°) v Cx , CCp.

Fm (p )

The uniformization lemma shows that we may assume that th@pmap F : m — F, is II}'-
recursive onDy.
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The definition off in the proof of Lemma 3]9 and the uniformization lemma shoevekistence
of a partial mapf : w — w, which is I1} -recursive onDy, and such that (m) is in W«**2“x& and
codes the graph of 41-recurive maph:w® x 2% — R with

ey ] Oif (. 8)€G
—h(a, B):= SUp{ 2L | peD A (0, B)£Chpmyp } If (0 B) £ G

if me Dy. We setP; :={cc W *2"xR | ¢ _is the graph of a functiog,}. It is routine to check that
there is all{ -recursive partial map: w? — w on its domainP} such thatl (c, ¢/) e W= *2**R is the
graph of the function mift., () if ¢, ¢’ € P;. We set

r1(no, n1,M2,13,1) izf(nh H (ro(no, n1,n2,ng, n)))
so thatr; is 1} -recursive on itd1; domainw x Py X w x P3 x w.
(3) We now definey(ng, n1, ne, ng,n) coding

g Sn+gn+1 if nis odd,
" S, — gt if nis even.,

It is routine to check that there isfd!-recursive partial map : w® — w on its domainP? x w such
that S(c, ¢, n) € W x2"*R codes the graph of the function

Cela, B) 4y (e, B) if mis odd
(a, 5)'_){ Ce(a, B)—Co (e, B) if mis even

if (c,d/,n) € P} xw. We setry(ng,n1,ng,n3,n) = S(ng,rl(no,nl,ng,ng,n),n), so thatry is
II!-recursive on itd7} domainw x PZ x P3 x w.
(4) We now define3(ng, n1,n2, n3,n) coding the graph of the functiom — (s?“’a)jgn%a. We
want to ensure the two following conditions:
(1) Ga CUjerp0 Nontra SGhi1a
(6) [ fy 0 Svr(e) AA=Suga (e )| <272 i j€ i1 A BEGa N N pra
Sj ’

Note first that in practice
0if nis even

S"+1(O"5):{ 1if n is odd

if (o, B) € G sinceg,(a, 8) =1 for eachp in this case. So there i8:w — R? recursive with

s
J

\ ][ Spi1(a,.) dA—=Spi1(a, B)| <273 < hp(n) <][ Spi1(a,.) dr<i(n)
N§@+l,a

N (L+1,a

if (o, 8) € G. We use Corollar{/3]5 and its proof. Note thatng, n1, ne, ng,n) € Pi.
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We first considemy, € W; andn), € P, (codingG;, |, and S, respectively) as variables. We
defineRy, Ry Cwxw® x 2% xw?> by

Ro(ny, v, Bk, 1) & IreR ~(ng €W 2R A (nh, o, B,r) €272 XF) A
(z<r<it A Sedu) A FENY)

Ri(nh, o, B, u,k,1) & VreR (npe W2 E A (nh a, 8,7) ¢ Co >3 E) v
(5r<r<Bt A sedu) A feNY),

so thatRy is X}, Ry is I}, and Ry(nb, o, B, u, k,1) < Ry(nh,a, B,u, k,1) if n, € P. Then, as in
the proof of Corollary 355.(d), we defin@,, O1 Cw xw* x 2¥ by
O-(ny, 0, 8) < Seda(0)) A h(a(0)) =3 A R (nh,a, B, (a(0)),: (a(0), (a(0)), )
if € €2, so thatOy is X, Oy is I}, andOy(nl, o, B) & O1(nh, o, B) if ny € P. In particular,
nk € P; and Se@u) imply that
. k
/u Sn+1(a7 ) d)\:"ml—mo Ek§2l ?A((Oa)né,<u,k,l>a)

for eache €2. Thusa < [y. Sn+1(e,.) dA<bis in this case equivalent to

Po 90 Po k
Ipo, p1,90,q1, N € <——AN——=<bAVI>N <X —A((O¢),
Po, P1, 90, q1 wa 1 1 =Nt k<25 (( 8)n2,<u,k,l>o¢)

By Corollary[3.5.(b) applied t® := P, the partial map\o : P; x w* — R defined by
)‘O(nl27 Oé) = )‘((Oo)né,a)

is X'l-recursive and7}-recursive on its domain. By 3E.2, 3G.1 and 3G.2 in [M], thge classes of
functions are closed under composition. In particular,pheial map

k
(nl27 a,u, l) = Ek§2l ?A((Oa)ng,<u,k,l>a)

SQ_O'
q1+1

is X -recursive and7{ -recursive onP; xw* xw?. This shows the existence @ € X} (w? xw® xw)
andQ; € IIH(w? x w¥ xw) such that

Qo(nb,n,a,u) < Q1(nh,n,a,u) < Sedu) A o(n)< Snt1(a,.) dA<i(n)
Nu
if n}, € P,. We now considen(, € W, andn/, € P, as parameters. We set
Py ny(n, 0, u) <
Qu(nh,n,,u) A N*CCpy o A VE<IN() (=Qo(nh,n, o, u(k)) v N¥ W ZCp ).
Note that for each{«, 8) € G there isl € w minimal with the properties thaWg; C Cri and
Q1(nh,n,a, < B(0),..., B(1—1) >), so thatP, ., (n,a, < B(0), ..., 8(1—1) >) sinceny € W, and

nhe Py. Asnye Wy, Nﬂ(’“)\cn{)@ is aAl(a) compact subset @, so that it contains a1 («) point
if it is not empty (see 4F.15 in [M]). This shows that%,n/2 is IT1.
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The uniformization lemma provides}-recursive mag:w x w® x 2* —w such that

Pnf),né (TL,OZ, < 5(0)7 75(L(n7avﬁ)_1) >)
if (o, ) €G. Note that theZ} set
o:={(n,o,u) Ewxw* xw | ILEG, u=< B(0),..., 8(L(n, o, B)—1) >}

is contained in thdl} setn:={(n,a,u) Ewxw* xw | P ity (s @, w) b By 7B.3in [M], there is
a Al subsety of w x w* x w such thatr C § C 7. We now also considet as a parameter and define
gp:w“’ —w® by

wif (n,a,u) €9,
0 otherwise.

Note thaty is A{-recursive, and that Ség(a)(u)) is equivalent tdn, o, u) €4. In particular,

(1)GoCU {NSD(O‘ u) |ucw A Sec(go(oz)(u)) } _an{)u
6) ’ thp(a)(u) Sn+1(a, ) d)\—Sn+1(a, ,8)’ < 2_3 if Seq(cp(a)(u)) VAN BE Ga N N(p(a)(u)
for eacha € w®. Letk € W*** such thaiCy” " = Gr(y). We now considen, n, andn as
variables again. Note that for eatiy), n5, n er x Py xw there isk €w such that
ke W xw A
(VaEw“’ Vyew® (k:eW“’wX“’w A =C" > (b o, ) V
(1) Ga CU{N'™ | ucw A Seqy(u) )}an&a
A (6) Vuew —Sed(u) V Qi(nh,n,a,u)))

Note thatR € II!(w*). The uniformization lemma provides a partial map: w3 — w which is
II!-recursive on itd7] domainW; x Py xw, andR(n{, n, n, K (nf, nh,n)) if

R(nfy niy,n, k)

(ng,nh,n) EWL X Py Xw.

It remains to sets(ng, n1, na, ng, n) = K(ng, nh, n) if nj=ro(ng, n1, n2,n3,n) and
nby=rs(ng,n1,n2,n3,M),

so thatrs is I -recursive on itd7;: domainW; x P? x P3 x w.

Finally, r is IT;!-recursive oW, x PEx Pyxw, f is I} -recursive onw, and thusf is A}-recursive
by the uniformization lemma since it is total.

» We are now ready to define the dimension two versionsofg,, S,, and(s})er,:

(1) _Cfo (n)» s

(2) gn ( ) p & (fi(n),a,B,p) eC*F xR,

(3) Sn(a, B)=p < (fa(n),a, B, p) €C" ¥ *E,

() { jEIna@)Eléew (f3(n),a,8) €C" <" A Sedd(4)),
"“—5 Vif jel, o

By construction of-, these objects satisfy the conditions (1)-(6) of the prddfemmal2.T.
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e Consequently, the martingalé(«) will be defined in such a way that if € w codess € 2<%,
then F'(a)(s) = fyu foo(a,.) dX. Note thatG = G, so that—G is the disjoint union of the
Gy \Gy,1's. Thus

fNu foolas; ) d/\:fNu\Ga foola,.) AA=Xe, fN"ﬂ(G;)a\(G,’;H)a foola,.) dX
=Znew Bj<n (1Y Jyunaganag, ) 9900 ) X

new

Consequently, in order to prove thatis Al-recursive, it is enough to check that the partial map
(u, a’j’n)HfN“ﬂ(G;;)a\(G;H)a g;i(a,.) d\is Aj-recursive from{ucw | Sequ)} xw® xw? into R.
By Corollary[3.5, it is enough to check that the nfapo“ x 2¢ — R defined by

9(a(0))o (Oé*, 5) if SGC](CY(O)) A Ih(a(O)) =2 A (a*, ,8) S G>(koc(0))1 \GZX(O)h-i-l’
0 otherwise,

(e B) ::{
is Al-recursive. This comes from the facts that
(0, B) Gy & (foln), 0, B) €C & ~(fo(meW A (fo(n),a,8) £C)
is Alin (o, 8,n) and

gn(a, B)EN(R,p) & JpeR ﬁ(fl(n)EW“XWXR A (fl(n),a,ﬁ,p)gécwxszR) A

peN(R,p)
& VpeR (filn) €W 2R A (fi(n),a, B, p) £C727F) v
pEN(R,p)
is Alin (a, 8,n,p).
e Finally, the mapF is Af-recursive and is as required. g

4 First consequences
(A) Universal sets
- We first recall some material from [K2]. The first result canfbund in Section 23.F (see also [Za]).

Theorem 4.1 (Zahorski) LetB be a subset df), 1]. The following are equivalent:

() there areS € X9 and P € I3 with m(P) = 1, wherem is the Lebesgue measure {ih1], such
that B=SnN P,

(b) there isf € C([0,1]) with B={xz € [0,1] | f'(x) existg (we consider only one-sided derivatives
at the endpoints).

The second result is 23.23.
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Theorem 4.2 LetG be aGy subset of0, 1) with m(G)=0. Then
{(f,2)€C([0,1])x G | f'(x) existg

is C([0, 1])-universal forTI3(G).

- We prove results in that spirit here.

Theorem 4.3 Let B be a subset df*. Then the following are equivalent:

(@) B is =Y and has\-measure zero,

(b) there isf e M with B={g€2“ | osd f, 5) >0}.

Proof. (a) = (b) Write B = | J,,c,, G, Where theG,’s areGs. Lemmal2.V gives, for each, a
martingalef,, with G,, = D(f,,) and{osqf,, 8) | B€2} C {0} U [3,1]. Lemmd 2B giveg € M
with D(f)=B.

(b) = (a) We already noticed in the introduction thais 9. By Doob’s theorem3 has\-measure
zero (see [D]). O

Corollary 4.4 LetG be aG; subset o2 with A\(G) =0. Then{(f,3) e M xG | osd f,3) >0} is
Me-universal fors9(G).

For example{3€2* | Vnew B(2n)=0} is all copy of2* and has\-measure zero.
(B) Complete sets

- By 33.G in [K2], there is a uniform version of Zahorski’'s trem, which allows to prove the
following result

Theorem 4.5 (Mazurkiewicz) The set of differentiable functiongli{0, 1]) is TI}-complete.
- Here again, there is a result in that spirit.
Theorem 4.6 The setP:={feM | V3€2¥ osdf,3) =0} is II}-complete.

Notation. Let K :={3€2¥ | Vnew B(2n) =0}, which is alI{ copy of the Cantor spac®’ with
A(K)=0. In particular,K is a nonemptyGs N Al subset o2~ .

Proof. Let U € I (w® x 2¢) bew*-universal for the co-analytic subsets2f, and
I:={acw” | ((a)o, (a)1) €U}.

Note thatll € 1. If P € II}(2¥), thenP = U, for somea € w®, so that the mag —< «a, 8 > is
a continuous reduction a? to IT and1l is I1i-complete. LetH € I19(w® x 2¥) with —I1 =TI [H].
We setG:={(a, B) ew” x2¥ | (a, (B)1) €H A BEK}, so thatG € Af(w® x2¥), hasGj vertical
sections andr C w*x K. Lemmd3.1D gived':w” — M Borel such thatz,, = Vp,) for eacha € w®.
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Thus
a¢ll < 32 (o,f)€eH < €2 (o, B)€CG & €2 (F(),B)€V & F(a)¢P.
ThusIl=F~}(P) andP is BorelI1{-complete. By 26.C in [K2]P is ITi-complete. O

- We now prove Theorein_1.8. Léf be a metrizable compact space ande a Polish space. We
equipC(X,Y") with the topology of uniform convergence, so that it is a Slolspace (see 4.19 in
[K2]). We use the map’ defined before Theorem 1.8.

Theorem 4.7 (a) The seP; :={ (fi)kew €P | (¥/(fr)) ., POINtwise converggsis IT;-complete.

(b) The sePy := {(fi)rew €P* | (¥(fx)) ., POINtwise converges to zeds IT;-complete.

(c) The setS := {(fr)kew € P¥ | Iv € w* (¥(fy5))),,, POINtWise converges to zerds ;-
complete.

Proof. We definep:C(2¥, [0,1]) = M by ¢(h)(s) := {5 h d). Asin the proof of Lemm&a2]7, is
well-defined. It is also continuous, and injectivehif£ 1/, then we can find € w ands € 2<% such
thath(8)—h'(B8) >271 for eachB € N, or b/ () —h(B) >21 for eachf € Ny, so that

Iw(h)(S)—w(h’)(S)lzﬁl /N - /N Wz

This implies that the rang® of ¢ is Borel andy) := ¢~ ! : R — C(2%,]0,1]) is Borel. As every
continuous mag:2* — [0, 1] is 7-continuous,

M () (EID =M £ dA=1(5)
Bl

for each € 2¥, by Lemmd_2.6. This implies that € P and vy (f)(8) = lim;_, f(5]!) for each
Be2vif feR.

(a) Note that the proof of 33.11 in [K2] shows that the set
Pri={(hi)rew € (C(2°,[0,1]))* | (hx)rew POINtwise converges

is IIj-complete. ASC := {(fi)rew € R* | (¥(fr)),, POINtwise converggs= ()~ ' (P,), the
equalitiesP; = ()71 (&) = (¢*)~1(P1) hold andP; is IT}-complete.

(b) We argue as in (a).
(c) As in [B-Ka-L], the set
S:={(h)rew€ (C(29,[0,1]))" | 3yew® (hy),o,, POINtwise converges to zefp

is X1-complete. Indeed, fiK) € 5(2¢).
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Lemma 2.2 in [B-Ka-L] giveggx, ) rew € (C(2x2¥, 2))" such that, for eachic 2, the following
are equivalent:

() deq,
(i) Fy€w” VBE2? Mo gy(i) (8, 8) =0

We defineg:2< — (C(2,[0,1]))” by g(6)(k)(8) := gk (6, B). Theng is continuous and reduces
QtoS. As

& ={(fr)hew R | Iycw® (w(f’Y(i)))iew pointwise converges to zefe= (¢*) (),

S= () HEN=(¢*)"1(S) andS is Ti-complete. O

5 Universal and complete sets in the space¥2“, X)

- Itis known that ifT" is a self-dual Wadge class atd is a Polish space, then there is no set which
is X -universal for the subsets &f in T" (see 22.7 in [K2]). This is no longer the case if the space of
codes is different from the space of coded sets.

Proposition 5.1 Let X be a Polish spacel’ be a Wadge class with complete et I'(X), and
Ut :={(h,B)eC(2¥, X)x2¢ | h(B)€C}. Then/I' is C(2«, X)-universal for thel' subsets 0f~.

Proof. As the evaluation magh, 3) — h(53) is continuousi/™ € T. If AcT'(2¥), thenA=hr"1(C)
for someh€C(2¢, X), so thatd=U". O

We will partially strengthen this result to get our uniformiversal sets.

- Recall that it is proved in [K3] that a Bordll}-complete set is actuall¥Ii-complete. In fact,
Kechris's proof shows the result for the clasd@§. Our main tool is a uniform version of this.
Kechris’s result has recently been strengthened in [P]lsfs.

Theorem 5.2 (Pawlikowski) Let: > 1 be a natural number, an@ C X C 2¢. If Borel functions from
2¢ into X give as preimages @ all IT. subsets o2“, then so do continuous injections.

The main tool mentioned above is the following:

Theorem 5.3 Let n > 1 be a natural numbei/™:2“ be a suitablew*-universal set for thdIl
subsets o2, X be a recursively presented Polish spacée II}(X), R : w* xw* — w* be a
recursive map, and:w* — X be aAl-recursive map such that

(o, B) e = b(R(a, B)) €C
for each(a, ) €w® x 2. Then there is a\i-recursive magf :w* —C(2*, X) such that
(o, ) U™ & f(a)(B)€C

for each(a, §) € w® x 2¢.
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- We first recall some material from [K3].

Definition 5.4 (a) Acoding systenmfor nonempty perfect binary trees is a p&iP, O), whereD C 2%
and©:D—{T €22~ | T is a nonempty perfect binary trgés onto.
(b) A coding systerfD, O) is nice if

(i) for any a € w* and anyAl (a)-recursive map : 2« x 2 —w, we can finds € D N Al (a) and
ke w such thatH (3, §) =k for eachd in the body|O(3)] of O(5),

(i) Dis I and, for3 €D, the relation

R(m, B) ¢ Sedm) A ((m)o, ... (M)jhny-1) €O(B)
is Al i.e., there arelI}! relationsIly, IT; such thatR(m, 8) < Iy(m, 3) < —I1;(m, B) if B€D.

Nice coding systems exist. if € D, then there is a canonical homeomorphisinfrom [O(5)]
onto2“. We now check that the construction @f is effective.

Lemma 5.5 (a) The partial functiore: (3, §) — 5*(6) is IIt-recursive on its/7{ domain
Domain(e):={(5,0) e Dx2“ | 6 €[O(B)]}.

(b) The partial function : (3,~) +— the uniques € [O(3)] with 3*(8) =~ is II{-recursive on its/I;!
domainD x 2¢.

Proof. (a) We define dI! relationQ onw? x (2*)? by
Ap,p', B,9) & ((V€€2 o ((8]p')e, B)) A (Vp<p'<p' Fee€2 H1((5|p”)€,5))>-

Note that

. B Jlew Seql) A lh(l)=n+1 A 6((1),)=¢ A Q(0, (1), B.6) A
Fo)n)=e « { tmen Om<Omit A QOmtlOmir 5:8) )

if 3e€D. The proof of (b) is similar. O

- Let X be a recursively presented Polish space, @égdand (7:X),.c., be respectively a distance
function and a recursive presentation ¥f We now give arecursive presentation ofC(2¥, X),
equipped with the usual distance defined by

d(hv h/) ::Su%e%f dx (h(ﬁ)v h/(ﬁ)),

since this is not present in [M]. We define, by primitive resian, a recursive magp:w — w such that
v(i) enumerategs € 2<¢ | |s|=1}. We first set/(0):=1=<>. Then

V(i+1)=k < Sedk) A lh(k)=21*1 A VI<2i Vee2 (k)eziH:s((l/(i))l)z—:.
If Seq(n) and Ih(n) =2¢ for somei (< n), then we definé,, : 2% — X by h,,(5) ::r()fl)z if
ﬂ\i:sf::s((u(i))l).

If =Seqn) or Ih(n) # 2! for eachi, then we defing,, : 2 — X by h,(3) :=r if 3€2%. In any
caseh, €C(2¥, X) and takes finitely many values.
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Lemma 5.6 Let X be a recursively presented Polish space. Then the sequUgne-., is a recursive
presentation of (2*, X), equipped withi.

Proof. We have to see thdh,,) is dense inC(2*, X). So leth € C(2¥, X), e > 0 andm € w with
2™ < £. As h is uniformly continuous, there isc w such thatdx (h(8), h(6)) <2~™ if Bli=4li.
We choose, for each< 2/, n; €w such thatdx (r;5, h(s{0°)) <27. We setn:=< ng, ..., ngi_1 >.
If B2+ andgli=s], thendx (h(B), hn(8)) <dx (h(ﬂ) h(s5;0°°))4dx (h(s{0%), 7 ) <27m427™,
so thatd(h, hy,) <e. Itis routine to check that the relationd(h,,, h,,) < ;" and “d(hm,h )<
are recursive ifm,n,p, q).

We saw in the proof of Propositidn 5.1 that the evaluation i) — h(/3) is continuous from
C(2¥, X)x 2% into X. We can say more iX is recursively presented.

Lemma 5.7 Let X be a recursively presented Polish space. Then the evaluatap is recursive.
Proof. Note that

h(B)eN(X,n) & dx (h(ﬁ) ()((n) )o ) (((() )12) 1 4

& Im,i,lew Sedm) A Ih(m)=2" A Bli=si A (m);=(( )1)

d(h h ) (Onrat

which gives the result. d

- We then strengthen 7A.3 in [M] abogtrimitive recursion as follows. If Z,Y are recursively
presented Polish spaces; Z — Y andh: Y xwx Z — Y areIl}-recursive andf : wx Z — Y is

defined by

f(0,2):=g(z),

f(’I’L—I—l, Z) = h(f(nv Z)> n, Z),
then f is also 1} -recursive. Ifm: Z — Z is II}}-recursive, then the proof of 7A.3 in [M] shows that
the mapf’:wx Z —Y defined by

£(0,2):=g(2),
f'(n+1,2) :zh(f’(n, m(z)),n, z),

is also I1{-recursive. As in 7A.5 in [M], this can be extended to parfiaictions which are/T;'-
recursive on their domain.

- We are ready for the proof of our main tool.

Proof of Theorem[5.3.3E.6 in [M] providesr: w* — X recursive,F € II?(w*) and aAi-recursive
injection p : X — w® such thatr| z is injective, 7[F] = X andp is the inverse ofrr. Let us show
that the magu: h+— 7 o h is Af-recursive fromC(2¢,w*) into C(2¢, X). More generally, let” be a
recursively presented Polish space, @and” — C(2¥, X). Note that

Y(y) EN(C(24, X),n) & A1), b)) < gl
& IMEew SUPsegw dx (VW) (B), h(n)1)o (B)) < (((,f{ﬁ))g)il < ((%?)2&1

)1)1

& 3mew VB2 dx (W(u)(B): b (B)) < it < o

andh(,),), (8) = rﬁnﬁ) for some recursive magp: w x 2% — w.
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In the present casé&, =C (2%, w*) andy)(y)(3) == (y(3)). Thus

dx (W) (B): hnyo(8)) < (22 & dx (7 (y(B)) 70 ) ) < oty

& m(y(B)) e N(X,(0,<g(n, B), (m)1),, ((M)1),>))
& (y(8),(0,<g(n,B), ((mh),, ((m)1),>)) €GT,

whereG™ is the X neighborhood diagram of. As the evaluation map is recursivie;» 7 o h is
IT}-recursive and total, and thus}-recursive.

e Let us show that there is Af-recursive magf : w* — C(2*, X) such that/n?" = (f(a))_l(C)
for eacha € w*”. We adapt the proof of the main result in [K3]. We set=7"1(C). AsC € IT}(X),
AcITHw?). If < 82,6 >€2¥, then we inductively define, farc w, m;, 511, 5*+1 as follows. If
(B%,6") is given and in Domaite), then(3%)*(6*) =< x;, B+, 6! > and

| the location of the first O in; if it exists,
! 2 otherwise.

We then seQ):= {(a, < 8°,8° >) cw”x2¥ | Vicw (§,6") € Domaine) A (a, (m;)) U™}
and B* := Q,, so thatQ € I} (w* x 2¥) and 8 € B* < (a, 3) € Q for each(a, B) €w® x 2% (note
that B* depends omx, but we denote it like this to keep the notation of [K3]). Wdide [ : w“ — 2%
by I(a): =0 10*(M1... Note thatl a Al-recursive injection onto thél) set

Poo:={B€2” |Vpew J¢>p B(q)=1},

so that there is a\}-recursive mag:2* — w* which is the inverse of onP,,. We set

Q':={5€2* | (9)o€Psc A (#((0)o), (5)1) €Q},

H ,2¢

so thatQ’ € IT}(2¢). AsU™Mn2” is suitable, there | i €w® recursive withQ)' = . Note that

BEB* & (0, B)€Q &< I(a), 8 >€Q' + (ag, < I(a), B >)eYMm?’
& b(R(ag, < I(a),B8>))eC p(b(R(aQ, <I(a),B >))) €A

We setG::p(b(R(aQ, < I(a),. >))>, so thatG': 2¥ — w® is Al(a)-recursive andk °,6° > is
in B*if and only if G(< 8°,6" >)€ A.

e As in [K3], we can findF : 2<“ — (2¥ x w) <% satisfying the following properties:

(1) tCt = F(t)CF(t')
(2) [F(t)|=t]+1
(3) (@) if F(0)=(8", ko), thenpcD A V§%€[0(B%)] G(< p°,8° >)(0)=ko
(ZZ) if F(E(]v" ) (5 k())ﬂlyklv"wﬂn—’_lakn—i-l)’then
(a)Vi<n+1 BieD
(b) for all 6"+ e [O(Bm+1)), if 67, ..., 6° are the uniquely determined members of
[O(B™)], ..., [O(B%)] such thati <n (8°)*(§") =< g, BT, 6L > where
g;=1501°, thenVi<n+1 G(< B°,6° >)(i)=k;.
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We will need an effective version of this, so that we give teéads of the construction af'. In
fact, thes"'s involved in the definition of” can beAi(«). In order to see this, we first define

H0:2“><2“—>w

by Ho(B,6) := G(< B,5 >)(0). As G is Al(a)-recursive,Hj too, and the niceness of the coding
system giveg3 € D N Al(a) andkg € w such thatG(< 8°,6° >)(0) = k for eachs® € [O(8%))].
Now suppose that €w, (e, ..., £,) @and F (g, ..., en—1) = (8, ko, ..., B, k,) are given. We define

Hn+1 1 29% 2% s w
as follows. Given(3,d)€2¥ x 2%, lets", ..., 6" be the uniquely determined memberd®{3")], ...,
[O(B°)] resp., such thats™)*(6") =< z,, 3,6 >, and(B°)*(8") =< &7, BiTL, 6L > if i <n. Put
Hp1(8,6) :=G(< B°,8° >)(n+1). As H,41 is Al(a) (it is total andII} («)-recursive since is

II}-recursive), the niceness of the coding system gixes! € D N Al(a) andk,, 1 € w such that
G(< BY,8° >)(n+1)=kp1 for eachs™ 1 € [O(B"H1)]. Then

F(E(]v "'>€n) ::(ﬁoy k(]v “"571—‘,-1’ kn—i—l)y

so thatF’ is as desired. So we can assume thatifeare Al («) in the conditions required faf.

¢ By [K3] again, the maph,, : (¢;) — (k;) is continuous andlg}“w = h;'(A). As this is not too
long to prove, we give the details for completeness. The maip in fact more than continuous: it is
Lipschitz, by definition. Fixs;). We applyF to the initial segments dfz;), which gives(5*). For
eachn, we define perfect setsy, C7, ...,C* C2¢ with CI* C[O(BY)] if i <n, as follows:

Crri= (8" € [O(8")] | 301 €2 (87" (") =< 5 71,811 >},
Cry= (o e[O(Em ] | 3 e Cn (5 () =< L 07 >,

Cp = {0 e[0(8%)] | I ey (5% (5% =<5, 8", 5" >}.
Note that

(4) e Cy = < B, 6" >€ Domain(e) for eachi <n, whered!, ..., 5" are computed according
to the formula in(3).(i7).(b),
(5)n'>n=Vi<n CZ?“’QCZ-”.

This implies thafO(3%)] 2C) 2 C3 2CE 2 ... and,,c,, C§ contains somé’. Note that< 5, §* >
is in Domair(e), and(8%)*(6%) =< &, 871, 51 > for eachi cw. By (3).(i1).(b),

G(< 8°68° >)=k;
foreachicw. As< 8°,8° >e B* & G(< °,0° >) e A,
(View < §,8 >cDomair(e) A (g;) €U?) & (k;) € A.

As < 81,6 > is in Domair(e) for eachi €w, (£;) €U & ho((e1)) = (ki) € A.
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« Sowe found, for each €w®, h, €C(2¢, w*) such thalit™* = (0 ha) "1(C) = (u(ha)) " (C).
It remains to see that the map: a — h,, from w* into C(2¥,w*), can beAl-recursive (thenf
will be o v). By the previous discussion, it is enough to see that thatiosl “k; = k" is Al in
(a, (€)1, k) Ew™ X 2% x w?.

e We will define, by primitive recursion, a}-recursive mapf : w x w” x 2¢ — 2¥ x w such that

f(n, e, () will be of the form(< 3%, ..., B, 3", ... >, < k°,...,k" >) and can play the role of
F(eo,...,en—1). We first set

P::{(a, (£0), B, k) €w¥ x (29)2 xw |
vicw (8);=(B)oeD N Ak(a) AV [O((B)o)] G(< (80,6 >)(0)=k}.

Note thatP is II}! and for any(«, (g;)) € w* x2“ there is(3, k) € 2 xw such that{«, (¢;), 8, k) € P.
The uniformization lemma gives Al-recursive mag : w* x 2* — 2 x w such that

(a, (ei),3(c, (EZ))> epP
for each(a;, (¢;)) €w” x2¥. Then we set
D::{(B,p,n,a, (ei)) €2¥ xw? xw®” x2¥ | Sedp) A lh(p)=n+1AVgew (B);€D N A%(a)}.
Note thatD is 1}, as well as
R::{(B,p,n,a, (e1),B k) eDx2xw | Vi>n (8)i=(8)n+1€DN AL (a) A
Sedk ) Alh(K)=n+2AVi<n (8)i=(8)i A (K)i=(p); A
Vo e 2% <E|z§n+1 (6)z¢ [O((,@l)l)] V di<n (5/);k ((5)2) 75< &4, (,Bl)i_;,_l, (5)i+1 >V
Vi<n+1 G( < (8o, (8o > )(@)=(K):) }

Moreover, for eac(3,p, n, a, (€;)) € D =l 2 x . x2 [R] there is(8, k') € (29 N A}(a)) xw
such that(B,p, n,q, (&), 0, k’) € R. The uniformization lemma gives a partial map

hi2¥ xw? xw x 2% — 2% x w

which is I7!-recursive on its domai®, and such that 3,p,n, a, (£;), h(B, p, n, o, (z—:z-))) € Rif
(B,p.n, a, (£;)) € D. This implies that the partial mapdefined by

is II!-recursive.
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Moreover, an induction shows théf(n, a, (£)),n, a, (z—:z-)) € D for each(n, a, (¢;)), so thatf
is in fact total, and thus\!-recursive. More precisely;(n, o, (¢;)) is of the form
(< B9, .., B, B, .. >, < ko, oy ki >),
where(eo, ..., en—1) — (B8, ko, ..., B", k) satisfies the properties (1)-(3) 6t It remains to note that
ki=F (i o () (1) (0). -
- We now prove the consequences of our main tool.

Definition 5.8 LetT" be a class of subsets of recursively presented Polish sp@tbe the corre-
sponding boldface class, Y be recursively presented Polish spaces, &l (Y x X). We say that
U is effectively uniformly Y -universal for the T" subsets ofX if the following hold:

W LX) ={Uy [yeY},

() I'(X)={U, | yeY Al-recursive,

(3) for eachS € T'(w*” x X ), there is a Borel map:w” — Y such thatS,, =l for eacha € w*,

(4) for eachS e T'(w* x X), there is aAl-recursive map:w“ — Y such thatS,, =Uy(,) for each
acw”.

Notation. Let /™1-2” ¢ II}' be a goodv“-universal for thelT} subsets o2, X, be a recursively
presented Polish space, ahdbe all} subset of\; for which there is a\i-recursive map:w® — X
such that

(a, B)eU™ 2 & b(< o, B>)eC

if (o, 8) €ew® x2¥. We define, for each natural numbep 1,
e X, 11:=C(2¥, X,,) (inductively),
e Chi1:={he X, 41 |VBe2¥ h(B)¢Cy,} (inductively),
o Up:={(h,B) € Xn41x2¥ | h(B) ECp}.

Theorem 5.9 Letn >1 be a natural number. Then
(a) the seld,, is effectively uniformlyX,, , ;-universal for thelI}, subsets o2v,
(b) the set,, is TI.-complete.

Proof. We argue by induction on.

(@) Assume first that = 1, and fix S € ITj (w* x 2¥). Our assumption gives; : w* — X;. As
U™ 2° ¢ [T} is a goodw”-universal for thdI! subsets o2, there is by Theoref 5.3 A!-recursive
mapf1:w” —C(2¥, X) such tha(a, 8) eU™:2* & f1(a)(B)€Cy if (a, B) €w” x2%. Letag €w

with S =25 Note that
(a7/8)6S<:> (R(aS7a)7/8) GUH%QW ~ fl (R(QS7Q))(6)661 ~ (fl(R(a37a))7/8> eU.

As Cy is I}, Uy too. If A € TI}(2¥), thenA = uol}%’zw for somea € w*. Applying the previous

discussion te5 :=/M1-2*  we getAd = (UL) £, (R(ag.a))» SO thatd; is Xs-universal for thdl] subsets
of 2, effectively and uniformly.
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We now studyif, 1. Fix S € IT}  (w* x 2¢). Lety™?* be a goodv*-universal for thelT}
subsets o2~ We setVln+12" .= {(a, 8) € ¥ x 2% | V6 € 2¢ (R(a, f),8) ¢ U2}, so that
V12 s a suitables”-universal for thdI!  , subsets of~. Moreover, the induction assumption
gives aAi-recursive map,, ;1 :w* — X,,+1 such that

(0, B) V12 5 W5 €2 (R(a, B),0) ¢UTH2” & V5 2% (an(R(Q, 5)),5) ¢U,
SV5E byyy (R(a, B)) () £Cn < byr1 (R(ar, B)) ECnir

Theoreni5.B gives al-recursive map,,;1 such that(a, 8) € V12 & f,.1(a)(8) € Coyy if
(a, B) Ew® x 2. Let
Q ETT} (W¥ x 2% x 29) CTIL (w* x w® x 2%)

such thata, B) € S & V5€2¥ (a, 8,6) ¢ Q, andag €w® such thal) :Z/lolg“ww XwX2 Note that

1

(a, ) eSeVie2¥ (R(R’(QQ, oz),ﬁ),é) ¢Un?" & (R’(a@ a),ﬁ) c Y12
& far1(R(ag, @) (B) €Cny1 & (fn+1(R/(aQ7a))u8> EUn11.

1 w
AsCp €I}, Cppr €11, andiyq €11, 1. If A€TI, 4 (29), thenA=2/a """ for somea € w*.

Applying the previous discussion 1®:=/M+1:2" we getA = (Un+1) frs1 (R (agy,0))» SO thaldy, 1
is X, 1o-universal for the analytic subsets 2, effectively and uniformly.

(b) By definition,C; € II', andCpy1 € I}, if C, € II}. Assume first thats € IT}(2+). Then
E = (Uy,);, for someheC(2, X,,), by (@). ThusE = h=%(C,). If Z is a zero-dimensional Polish
space andD €IT}(Z), then we may assume that is a G5 subset of2* by 7.8 in [K2], so that
D eI}, (2°). The previous discussion gives C(2¥, X,,) with D=g~*(C,,). ThusD=(g,7)~*(C)
andC, is IT}-complete. O

Proof of Theorem[1.7.By Theoren{ 5.0, it is enough to show thatifl12* ¢ I} is a goodw*-
universal set for th@I} subsets o2, then there is a\l-recursive mag: w” — [0,1]2~ such that
(a,8) e U2 & b(< o, f >) € Pif (a,8) € w¥x2%. Let H € II9(w* x 2* x 2¢) such that
U2 =T 00 [H]. We setG := {(a, B) €w® x 2% | ()0, (@)1, (8)1) € H A BEK}, so that
G € A} (w¥ x 2¥), hasGj vertical sections and Cw® x K. Lemma 3.ID gives a\}-recursive map
Frw®—[0,1]2"", taking values inM, and such tha, =V, for eacha ew®. If (a, B) €w” x 2,
then
(o, B) ¢ U™ 2 = 35 €2% (o, 8,0)€H < €2 (< a,B>,0)eCG
& 36€2% (b(<a,B>),0)eVeb<a,B>)EP.

This finishes the proof. d
Questions.Let U be all subset ofs* x 2 which is universal fodI3(2«). We set

G:={(a,f)ew’xK | (a,(8)1)€U}.

Note thatG is a Il subset ofv“ x 2« contained inu* x K which is universal fofI3(K). Indeed, fix
HeIIY(K). ThenH' :={y€2¥ |< 0>,y > H} is I}, which givesay € w* with H'=U,,. Then
H=Ggp.
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Letar— ((@)k),,, be @ homeomorphism betweeti and(w“)“, with inverse map

ke

(ak)kew =< ap, 01, ... > .
We setS":={acw® | Iyew® View VBe2? B¢ Gy, }. Note thats” is Z;.
(1) Is S" a Borel X}-complete set?

Assume that this is the case. Then theSet= {(fx)rew € M | Iy €w® View f,;) € P} of
sequences of martingales having a subsequence made oiveeegyconverging martingales is Borel
>i-complete. Indeed, Lemnia_3]10 gives a Borel nfapy” — M such thatG,, = V(o) for each

a€cw?. The mapF :w* — M defined byF' () (k)= F((a);) is Borel. Moreover,

F(a)€Sy & Iyew® Vicw Vpe2v ﬁgﬁD(F((a)w(i)))
S dvewY View Ve ﬁ%VF((a)
& Iyew” View VBe2¥ B¢G
S aels,

()
~(4)

so thatS’=F~1(S,).

(2) Is there a Borel magf:C(2¢, [0, 1]) —w* such that, for eaclihy,)xe., € (C(2, [0,1]))” and each
B €2, the following are equivalent:

(@) limy—00 hi(B) =0,

(b)Vkew B §7§ Gf(hk)?

Assume that this is the case. Théh(and thereforeS,) is Borel X1-complete, and thuxi-
complete (see [P]). We defin€: (C(2,[0,1]))” — w* by F((h)kew) =< f(ho), f(h1),... >, SO
that F' is Borel. Note that

F((hk)kew) eS & Ivew” View VB e2v ,Bﬁfo(h’y(i))
& Iyew? VBE2Y lim; o0 hy;)(B8)=0
& (hi)rew €5,

so thatS = F~1(9").
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