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THE STRONG TREE PROPERTY AND WEAK SQUARE

YAIR HAYUT AND SPENCER UNGER

ABSTRACT. We show that it is consistent, relative to ω many supercompact cardi-

nals, that the super tree property holds at ℵn for all 2 ≤ n < ω but there are weak

square and a very good scale at ℵω.

1. INTRODUCTION

In this paper we consider the strong and super tree properties which character-

ize strong and super compactness at inaccessible cardinals. We show that certain
consequences of supercompactness do not follow from the super tree property. We

begin with some definitions. Let κ ≤ λ be cardinals with κ regular.

Definition 1. We define a (κ, λ)-tree to be a sequence T = 〈Tx | x ∈ Pκλ〉 such that

for all x ∈ Pκλ:

(1) Tx is a nonempty set of functions from x to 2 and

(2) for all y ⊆ x and all f ∈ Tx, f ↾ y ∈ Ty.

Definition 2. A (κ, λ)-tree T is thin if for all x ∈ Pκλ, |Tx| < κ.

Definition 3. A function b : λ → 2 is a cofinal branch through a (κ, λ)-tree T if for
all x ∈ Pκλ, b ↾ x ∈ Tx.

Definition 4. We define two reflection properties:

(1) TP(κ, λ) holds if every thin (κ, λ)-tree has a cofinal branch.

(2) ITP(κ, λ) holds if for every thin (κ, λ)-tree T and every sequence 〈dx | x ∈
Pκλ〉 such that for all x, dx ∈ Tx, there is a cofinal branch b through T such

that {x | b ↾ x = dx} is stationary.

Note that TP(κ, κ) is just the tree property at κ. We say that κ has the strong

tree property if TP(κ, λ) holds for all λ ≥ κ and κ has the super tree property if

ITP(κ, λ) holds for all λ ≥ κ. The notion of thinness was isolated by Weiss [9]. It
allowed for the reformulation of previous results of Jech [3] and Magidor [5] char-

acterizing strong and super compactness respectively. In particular an inaccessible
cardinal κ is strongly compact if and only if it has the strong tree property and it is

supercompact if and only if it has the super tree property.

In order to state our main theorems, we give some standard definitions. We start
with the square principles �µ,λ, which were first defined in [7].

Definition 5. Let λ ≤ µ be cardinals. We define a �µ,λ-sequence and say that
�µ,λ holds if and only if there is a �µ,λ-sequence. A sequence 〈Cα | α < µ+〉 is a

�µ,λ-sequence if

(1) for all α < µ+, 1 ≤ |Cα| ≤ λ,

(2) for all α < µ+ and all C ∈ Cα, C is club in α and otp(C) ≤ µ, and
(3) for all α < µ+ and all C ∈ Cα, if β ∈ acc(C), then C ∩ β ∈ Cβ .

The main ideas for this paper were conceived at the Workshop on High and Low forcing at the

American Institute of Mathematics in January 2016.
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Note that �µ,µ is typically written �∗
µ and by a theorem of Jensen [4] it is equiva-

lent to the existence of a special µ+-Aronszajn tree. We will sometimes write �µ,<λ

with the obvious interpretation.
Next we give some definitions from PCF theory. Let µ be a singular cardinal of

cofinality ω. Let 〈µi | i < ω〉 be an increasing sequence of regular cardinals cofinal
in µ. We define an ordering on

∏
i<ω µi as follows. Let f, g ∈

∏
i<ω µi and set

f <∗ g if and only if there is a j < ω such that for all i ≥ j, f(i) < g(i). We say

that 〈fβ | β < µ+〉 is a scale of length µ+ in
∏

i<ω µi if it is increasing and cofinal in∏
i<ω µi under the <∗ ordering. A point α < µ+ of uncountable cofinality is a good

point (respectively very good) if there is an unbounded (respectively club) A ⊆ α
such that 〈fβ(i) | β ∈ A〉 is strictly increasing for all large i. If α is not good, then

we say that α is a bad point. A scale 〈fβ | β < µ+〉 is good (respectively very good)
if there is a club F ⊆ µ+ such that each α ∈ F with cf(α) > ω is good (respectively

very good). Bad scales of length µ+ are those which are not good. In particular a
bad scale has stationarily many bad points.

The following theorem of Magidor and Shelah [6] shows that strongly compact

cardinals have some accumulated affect on the universe.

Theorem 6. Let λ be a singular limit of strongly compact cardinals. Then λ+ has the

tree property.

Note that it is consistent that κ is supercompact but the tree property fails for

every cardinal above κ [1]. This shows that the fact that λ+ has the tree property
could not be deduced only from the existence of a single strongly compact below

it, but we had to use the full power of the cofinal sequence of the strongly compact

cardinals.
The following theorem of Shelah shows that supercompact cardinals have an

effect on the PCF structure above them.

Theorem 7. If κ is supercompact and µ > κ is singular cardinal of cofinality ω, then

all scales of length µ+ are bad. In particular, there are no very good scales of length

µ+.

In this paper, we show that it is not possible to replace the large cardinal as-

sumptions in the above theorems with the super tree property.

Theorem 8. It is consistent relative to ω many supercompact cardinals that for 2 ≤
n < ω the super tree property holds at ℵn and �∗

ℵω
. Similarly it is consistent that the

super tree property holds at each ℵn for 2 ≤ n < ω and there is a very good scale of

length ℵω+1.

In fact we get the consistency of �ℵω,<ℵω
together with the super tree property at

every ℵn with n ≥ 2. Note that this is the strongest possible square at this scenario,
since the super tree property at ℵn implies the failure of �λ,<ℵn

for all λ ≥ ℵn by a

theorem of Weiss [9].
The theorems of this paper can be seen as extensions of work of the second

author [8] who showed that the super tree property at the ℵn’s is consistent with

the combinatorial principle ℵω+1 ∈ I[ℵω+1], which implies that all scales of length
ℵω+1 are good and is a weakening of �∗

ℵω
.

Throughout the paper we work in ZFC. Any large cardinals assumption will be

specified. Our terminology is mostly standard. We denote by V [P] the generic
extension of the model V by a generic filter for P. We write "V [P] |= φ" for the

assertion "V |=
P φ".

2. MAIN THEOREM

Towards the proof of the main theorem we need the following lemma.
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Lemma 9. Let 〈κn | n < ω〉 be an increasing sequence of supercompact cardinals.

There is a forcing extension in which for all n < ω, κn = ℵn+2, the super tree property

holds at ℵn+2 and it is indestructible under any ℵn+2-directed closed forcing.

To prove this we repeat the argument from Theorem 7.5 of [8] in the presence
of this extra ℵn-directed closed forcing. In particular the conclusion of the lemma

holds in Cummings and Foreman’s [2] model for the tree property at ℵn for all

n ≥ 2. We will follow the notation of [8] closely. The interested reader is advised
to have a copy of it on hand. The less interested reader can take the lemma as a

black box.

Proof. Let Rω be the Cummings-Foreman iteration defined from the sequence 〈κn |
n < ω〉. In the extension by Rω, let X be ℵn+2-directed closed. Working in V [Rn+1],
we let AX = A(X,Rω/Rn+1) be the forcing of Rω/Rn+1-terms for elements of X.
Clearly AX is κn-directed closed in V [Rn+1]. By increasing the amount of super-

compactness if necessary we can find a generic embedding with critical point κn

and domain V [Rω][AX] using the argument from Section 3 of [8]. We do this by in-
corporating AX into the name returned by j(F )(κn) where F is the Laver function.

We fix a thin (ℵn+2, λ)-tree T and a sequence 〈dx | x ∈ Pκλ〉 such that for all
x, dx ∈ Tx. Using the generic embedding, we have a cofinal branch b : λ → 2
through T such that the set {x | b ↾ x = dx} is stationary. By the analogs of Lemmas

4.1 and 4.2 for our embedding, we have that b is in the extension of V [Rω][X] by
the product of SX = S(X,Rω/Rn+1) (a quotient forcing defined from AX) and the

forcing from Lemma 4.2 of [8].

It remains to show that this forcing cannot have added the branch. To do this
we just incorporate SX with the other S forcings from Lemma 4.2 of [8]. In par-

ticular we show that SX is ℵn+1-closed and < ℵn+2-distributive over M [Rω][X].
The closure is immediate from Lemma 2.12 of [8] and the fact that Rω/Rn+1 is

< ℵn+1-distributive in V [Rn+1]. The distributivity is immediate from the ℵn+2-

directed closure of AX in Mn = V [Rn+1] and the end of the proof of Lemma 4.4 on
[8]. This finishes the proof. �

Let us define next the forcing notions for adding and threading weak square as
well as forcing notions for adding and threading a very good scale.

Definition 10. Let S be the forcing notion for adding �µ,<µ using bounded approx-

imations. A condition in S is a sequence of the form 〈Cα | α ≤ γ〉 where:

(1) γ < µ+.

(2) 0 < |Cα| < µ for all limit α ≤ γ.
(3) Every C ∈ Cα is closed unbounded subset of α with otp(C) ≤ µ.

(4) If β ∈ accC, C ∈ Cα then C ∩ β ∈ Cβ .

We order S by end extension.

The generic filter for S is a �µ,<µ-sequence. For such sequences C, we define the
threading forcing Tρ. The elements of T are members of Cα for some α < µ+, with

order type < ρ, ordered by end extension.

The following fact is standard:

Claim 11. S ∗ Tρ has a ρ-directed closed dense subset.

It follows that forcing with S preserves cardinals up to µ+. Let us define now a

forcing for adding a very good scale at µ+ and the corresponding threading forcing.

Definition 12. Let µ be a singular cardinal of countable cofinality, and let 〈µn |
n < ω〉 be an increasing sequence of regular cardinals cofinal at µ.

The forcing notion Ssc is the forcing for adding a very good scale using bounded

approximations. A condition in Ssc is a pair 〈d, s〉 where:
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(1) s = 〈gα | α ≤ γ〉, γ < µ+, where gα ∈
∏

n<ω µn, increasing modulo finite.
(2) d ⊆ γ + 1 is closed set of very good points for s.

We order Ssc by end extension.

It is straightforward to see that this forcing adds a very good scale of length µ+.

Similarly to the square forcing, there is a natural threading forcing for Ssc. For
n < ω, let Tsc,n be the forcing notion for adding a club E in µ+ such that for every

α < β in E and m ≥ n, gα(m) < gβ(m) with approximations of ordertype at most

µn ordered by end extension.

Lemma 13. For n < ω, Ssc ∗ Tsc,n has a µn-directed closed dense subset.

Proof. Let us show first that Ssc is < µ+-distributive.

Claim 14. Ssc is < µ-strategically closed.

Proof. Let us define for an ordinal ρ < µ, a winning strategy for the generic game

of length ρ. Let us pick n such that ρ < µn. Assume that we played the first β steps

in the game and let 〈pα | α < β〉 be the play so far. Let us denote pα = 〈dα, sα〉 and
let γα = maxdom sα, 〈fi | i < supα γα〉 =

⋃
α<β sα, the scale constructed so far.

Let d =
⋃

α<β dα.

The strategy will be to pick pβ = 〈e, 〈fi | i < sup γα〉
a〈g〉〉 where:

(1) e = d if β is not a limit ordinal and otherwise e = d∪{γβ}, γβ = supα<β γα.

(2) g is an upper bound (modulo finite errors) of all fi, i < sup γα and for all
α < β, and m ≥ n, g(m) ≥ fγα

(m).

We need to verify that γβ is indeed a good point whenever β is a limit ordinal. The

club {γα | α < β} witnesses that this is the case. �

Since µ is singular, we conclude that Ssc is µ+-distributive. Therefore the ele-

ments of Tsc,n are members of the ground model. Let us show now that Ssc ∗Tsc,n

contains a dense µn-directed closed subset.
Let D be the set of all 〈〈d, s〉, č〉 ∈ Ssc ∗ Tsc,n such that c ∈ V , and maxdom s =

max d = max c. D is µn-directed closed, since for every sequence of pairwise com-

patible elements of length ρ < µn, {〈〈si, di〉, či〉 | i < ρ}, has a lower bound. The
only thing that we need to verify is that one can add a member of

∏
n<ω µn in the

top of the scale
⋃

i<ρ si in a way that will make it a good point and this is witnessed

by the club
⋃

i<ρ ci.

Let us show that D is dense. Let p ∈ Ssc ∗ Tsc,n. By extending p, if necessary, we

may assume that p = 〈〈s, d〉, č〉. Using the strategy, we know that we can extend
〈s, d〉 to a condition 〈s′, d′〉 such that maxdom s′ = max d. Moreover, we may pick

the last element in s′ to be above all elements in s ↾ c in all its coordinates, besides
the first n. Thus, we can extend c to include max d. �

The next two lemmas show that the threading forcing corresponding to the weak

square forcing and the very good scale forcing cannot add a new branch to a Pκλ-

tree.

Lemma 15. Let κ, λ be regular cardinals such that κ is not strong limit and κ ≤ λ.

Let ν ≤ µ be cardinals with κ < ν. Let S be the forcing for adding a �µ,<ν sequence.

Let T be the threading forcing with approximations of order type less than κ. Then

forcing with T over V [S] does not add any new branch to a thin Pκλ tree.

Proof. Assume otherwise, and let ḃ be a name for this branch. Let ρ be the least
cardinal for which 2ρ ≥ κ. Since κ is not strong limit, ρ < κ and 2<ρ < κ. Let s ∈ S

and t ∈ T be arbitrary. Since ḃ is new, one can extend the condition 〈s, t〉 ∈ S ∗T to

pair of conditions 〈s′, t0〉, 〈s
′, t1〉 that force different values for ḃ at some x ∈ Pκλ.



THE STRONG TREE PROPERTY AND WEAK SQUARE 5

Let {ηi | i < 2<ρ} be an enumeration of all elements of <ρ2, such that if ηi E ηj
then i ≤ j. Let us define by induction a sequence of conditions sα, α < 2<ρ and tη,

η ∈ <ρ2, such that:

(1) For every α < 2<ρ, sα 
 tηα
∈ T.

(2) For every η ∈ <ρ2 there is xη ∈ Pκλ such that sα forces tηa〈0〉, tηa〈1〉 are

stronger than tη and force different values for ḃ in xη where α is such that

ηα = η.
(3) If ηα ⊳ η and ηα 6= η then max tη ≥ maxdom sα.

For η ∈ ρ2 let tη =
⋃

i<ρ tη↾i. Let A be a set of κ many different elements in 2ρ.

Let s⋆ be the condition
⋃

α saα 〈{tη | η ∈ A}〉. Let x⋆ =
⋃

η∈<ρ2
xη. s⋆ 
 tη ∈ T

for all η ∈ A, and it forces that if η 6= η′ and η, η′ ∈ A then tη, tη′ force different

values on ḃ in x⋆ - but this contradicts the assumption that the tree is thin. �

Lemma 16. Let µ be a singular cardinal of countable cofinality, λn → µ. Force with

Ssc. If κ < λn is not a strong limit, then the forcing Tsc,n cannot add a new branch to

a Pκλ tree.

The proof is essentially the same as the previous lemma. We are now ready to
complete the proof of the main theorem.

Proof. Let W be the Cummings-Foreman model for the tree property at ℵn for n ≥
2. Let S be the forcing to add either a �ℵω,<ℵω

-sequence or a very good scale of

length ℵω+1. We claim that W [S] is the desired model. Clearly W [S] has either the

appropriate weak square sequence or a very good scale based on the choice of S.
So it remains to show that the super tree property holds at ℵn+2 for all n < ω.

Let n < ω and let Tn be the appropriate threading forcing so that S ∗ Tn is
ℵn+2-directed closed in W . By Lemma 9, the super tree property holds at ℵn+2 in

W [S ∗ Tn]. So by either Lemma 15 or 16 applied with κ = ℵn+2, the super tree

property holds at ℵn+2 in W [S]. �
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