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Abstract

Quasiminimal structures play an important role in non-elementary

categoricity. In this paper we explore possibilities of constructing

quasiminimal models of a given first-order theory. We present several

constructions with increasing control of the properties of the outcome

using increasingly stronger assumptions on the theory. We also estab-

lish an upper bound on the Hanf number of the existence of arbitrarily

large quasiminimal models.

1 Introduction

An uncountable structure is called quasiminimal if every (first order) defin-
able subset is either countable or cocountable. Quasiminimal structures car-
rying a homogeneous pregeometry play an important role in non-elementary
categoricity (see Zilber [2005b]). Several key analytic structures such as Cexp

are conjectured to be quasiminimal (see Zilber [2005a]).
The study of quasiminimal structures from the first order perspective

is pioneered in Pillay and Tanović [2011]. They isolate a key notion of a
strongly regular type for an arbitrary theory (see Definition 2.1). An im-
portant result is that assuming the generic type (i.e. the type containing
formulas defining cocountable sets) of a quasiminimal structure is definable,
its unique global heir is strongly regular. In this paper we establish the
converse of this: if there is a definable strongly regular type, then we can
construct a quasiminimal model. The definability condition holds in partic-
ular for groups. Thus given a regular group, there is a quasiminimal group
elementarily equivalent to it. (The converse stating that the monster model
of a quasiminimal group is regular is due to Pillay and Tanović [2011].) This
reduces the existence of non-commutative quasiminimal groups and quasi-
minimal fields that are not algebraically closed to respective problems for
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regular groups and fields. See the next section for a detailed discussion of
this.

The techniques of Pillay and Tanović [2011] provide more. If the car-
dinality of a quasiminimal structure is strictly greater than ℵ1, then the
global heir of the generic type is symmetric (i.e. Morley sequence are totally
indiscernible). Thus to construct quasiminimal models of arbitrarily large
cardinalities we need additional assumptions. Here we present two construc-
tions of arbitrarily large quasiminimal models: one assuming the theory has
definable Skolem functions and the other assuming the theory is stable. We
also use a variant of Skolem functions to prove an upper bound on the Hanf
number of having arbitrarily large quasiminimal models.

If we strengthen the stability assumption to ω-stability, we can use the
existence of prime models. We can then easily get quasiminimal models
by taking prime models over Morley sequences in the strongly regular type.
Here we show that a stronger conclusion holds: the class of all such models
is quasiminimal excellent in the sense of Zilber [2005b]. Since this class is
clearly uncountably categorical, its excellence was expected. However She-
lah’s results on deducing excellence from categoricity require additional set
theoretic assumptions and only apply to Lω1,ω sentences. So they can’t be
used to deduce excellence in this generality.

2 Preliminaries

The model theoretic notation is standard. The notions left undefined are
either standard or can be found in Pillay and Tanović [2011] (or both) on
which this paper is based on.

We work in a monster model C of a first order theory T in a countable
language. Types over C are called global types. A global type p(x) ∈ S1(C)
is an ultrafilter on the boolean algebra of definable subsets of C. If we think
of sets in p as “large” and sets outside p as “small”, we can, in analogy with
the algebraic closure, define the closure of A to be the union of all small sets
definable over A. More formally define

clp(A) = {b ∈ C : b 6|= p|A}.

A natural question is when is clp a closure operator (monotone, idempotent,
finitary operator) or better a pregeometry (closure operator with exchange).
To answer that question we need the notion of a strongly regular type.

Definition 2.1. Let A be a subset, p(x̄) be a global A-invariant type and
φ(x̄) ∈ p be a formula over A. The pair (p, φ) is called strongly regular if for
all B ⊇ A and ā satisfying φ either ā |= p|B or p|B ⊢ p|Bā.
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Note that the following statements are all equivalent to p|B ⊢ p|Bā.

• The type p|B has a unique extension to a type over Bā.

• If b̄ |= p|B, then tpx̄(b̄/B) ∪ tpȳ(ā/B) determines a complete type over
B in x̄ȳ.

• If b̄ |= p|B, then tp(a/B) ⊢ tp(a/Bb).

In our case p will be a type in one variable, φ(x) will always be the formula
x = x (so we surpass φ from the notation) and we will assume A = ∅ (this
can be achieved by extending the language, if A is countable).

Fact 2.2 (Pillay and Tanović [2011]). Let p ∈ S1(C) be an ∅-invariant type.
Then clp is a closure operator if and only if p is strongly regular. Moreover,
clp is a pregeometry if in addition all (equivalently some) Morley sequences
in p are totally indiscernible.

Here by a Morley sequence in p we mean a sequence of (ai : i < α) sat-
isfying ai |= p|{aj :j<i}. Since p is ∅-invariant, a Morley sequence is always
indiscernible. Also it is easy to see that for the sequence to be totally in-
discernible it is necessary and sufficient that a1a0 ≡ a0a1. In this case p is
called symmetric and it is called asymmetric otherwise.

We can also start from the other end. Let M be a structure and cl
an infinite dimensional pregeometry on it. Assume that the pregeometry
is related to the language in the following way: for every finite B ⊂ M
the set of elements of M outside cl(B) is the set of realisations of a com-
plete type pB(x) over B. Such a pregeometry is called homogeneous in
Pillay and Tanović [2011]. In the context of quasiminimal excellent classes
this property is referred as the uniqueness of the generic type. Now consider
pcl(x) =

⋃
B⊂finM

pB(x). It can be seen that pcl(x) ∈ S1(M) is a complete

type over M . Results of Pillay and Tanović [2011] show that this type ex-
tends to a global strongly regular type.

Fact 2.3 (Pillay and Tanović [2011]). Let (M, cl) be a homogeneous prege-
ometry. Then pcl (defined above) is definable and its unique global heir p is
∅-invariant, generically stable, symmetric strongly regular type. In particular
cl = clp |M .

Thus homogeneous pregeometries (such as those in quasiminimal excellent
classes) come from symmetric regular types and conversely symmetric regular
types induces homogeneous pregeometries. On the other hand we can also
find strongly regular types if we start from quasiminimal structures.
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Let M be a quasiminimal structure. Then

{φ(x) ∈ L(M) : φ defines a cocountable set}

is a complete type over M . We call this type the generic type of M . Under
suitable conditions we can also extend this type to a strongly regular global
type.

Fact 2.4 (Pillay and Tanović [2011]). Assume that the generic type p of
a quasiminimal structure M is ∅-definable, then its unique global heir p is
strongly regular. Moreover if |M | > ℵ1, then the definability condition holds
(after adding parameters) and p is symmetric and generically stable.

However there are no guarantees that the strongly regular type p is sym-
metric (unless |M | > ℵ1). For example the structure (ℵ1 × Q, <) in the
lexicographic order is quasiminimal. Indeed it has quantifier elimination (as
a dense linear order) and every formula of the form x < a defines a countable
set, while every formula of the form x > a defines a cocountable set. Now
the generic type is the completion of {x > a : a ∈ ℵ1 ×Q}, so is ∅-definable.
But its unique global heir is clearly asymmetric (no indiscernible sequence is
totally indiscernible because of the order).

The definability condition holds in particular if (M, ·) is a quasiminimal
group. The generic type is definable using the fact that a definable set
X ⊆ M is cocountable if and only if X ·X = M . Indeed, if X is countable,
then so is X · X and hence it can’t be the whole of M . Conversely if X
is cocountable, then so is mX−1 for a given m ∈ M . Hence mX−1 ∩ X is
nonempty and therefore m ∈ X · X . Thus using the Fact 2.4, we see that
the monster model of M has a strongly regular type. Such groups are called
regular in Pillay and Tanović [2011].

One of the questions Pillay and Tanović [2011] asks is whether every reg-
ular group is commutative. A similar question of whether every quasiminimal
group is commutative has been around for some time. By the above, given
a non-commutative quasiminimal group, its monster model is a regular non-
commutative group. Our results imply the converse of this: if there is a
regular non-commutative group, there is a quasiminimal non-commutative
group. Pillay and Tanović [2011] eludes to a possible construction of a reg-
ular non commutative group, but to the best of our knowledge the problem
is still open.

A related question is whether every regular (or quasiminimal) field is
algebraically closed. It is known for regular fields where the strongly regular
type is symmetric and hence for quasiminimal fields of cardinality > ℵ1 (see
Hyttinen et al. [2005] and Gogacz and Krupiński [2014]). However the case

4



of an asymmetric regular field and a quasiminimal field of cardinality ℵ1

remain open. Our results together with Fact 2.4 reduce these two cases to
each other.

In the rest of the paper we are mainly concerned with constructing quasi-
minimal models. From the above we know that in well behaved quasimini-
mal structures (certainly for large quasiminimal structures) the generic type
is strongly regular and induces a closure operator. So a natural question is
given a theory with a strongly regular type, can we construct a quasiminimal
model. Note also that a model will be quasiminimal if and only if it satisfies
the countable closure property (i.e. closure of a countable set is countable).
We present several constructions with increasing control of properties of the
outcome using increasingly stronger assumptions on the theory.

3 Arbitrary Theories

In this section we describe a method for constructing a quasiminimal struc-
tures which we then apply to construct a quasiminimal model of a theory
with a strongly regular type. Our method is based on the original method of
Morley and Vaught [1962] of constructing an (ℵ1,ℵ0) model from a Vaugh-
tian pair. The method is widely known among model theorists (although
not used often outside of its original context) and expositions are available
in many model theory texts.

Definition 3.1. A special pair for a theory T is a pair of models M ≺ N
where N is a proper elementary extension and there is an ∅-definable type
p ∈ S1(M) such that all a ∈ N \M realise p.

Let M ≺ N be a special pair of models of T . Let p ∈ S1(M) be the type
of elements in N \M and dp be the schema defining p (note that all schemas
defining p are equivalent). Add a new predicate symbol R to the language
and consider the theory T̂ of N where R is interpreted as M . The theory T̂
in particular encodes the following

• The universe is a model of T ;

• R defines a proper elementary substructure;

• {φ(x, ā) : ā ∈ R ∧ dpxφ(x, ā)} is a complete type over R;

• ∀x 6∈ R ∀ȳ ∈ R(φ(x, ȳ) ↔ dpxφ(x, ȳ)) (every element outside R realises
the above type).
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Thus any model of T̂ provides a special pair for T . So if we have a special pair
for T , we can construct a countable one. Therefore without lose of generality
assume that N is countable. Further by iteratively realising types in M and
N we may assume that both M and N are homogeneous and realise the same
types over ∅. Indeed we can construct a sequence

(N0,M0) 4 (N1,M1) 4 (N2,M2) 4 ...

of countable models of T̂ such that

• if p ∈ Sn(T ) is realised in N3i, then it is realised in M3i+1;

• if ā, b̄, c ∈ M3i+1 and tpM3i+1(ā) = tpM3i+1(b̄), then there is d ∈ M3i+2

such that tpM3i+2(ā, c) = tpM3i+2(b̄, d);

• if ā, b̄, c ∈ N3i+2 and tpN3i+2(ā) = tpN3i+2(b̄), then there is d ∈ N3i+3

such that tpN3i+3(ā, c) = tpN3i+3(b̄, d);

Then take (N,M) =
⋃
i<ω(Ni,Mi). Now M and N would be homogeneous

by the second and third close and realise the same types over ∅ by the first
close. In particular M and N would be isomorphic. This is a standard step
in Vaught’s two cardinal theorem and more details can be found in standard
textbooks such as Marker [2002].

Proposition 3.2. If T has a special pair, then it has a quasiminimal model
of cardinality ℵ1.

Proof. Let M ≺ N be a special pair, p the type of elements in N \M and
dp the defining scheme. By the above discussion we may assume that M and
N are countable, homogeneous and isomorphic. We construct an elementary
sequence (Aα : α < ℵ1) of structures, each isomorphic to M (and hence N)
such that for each β < α every element of Aα \Aβ realises the unique heir of
p over Aβ . The construction is by transfinite recursion.

• Take A0 = M .

• If δ is a limit ordinal, then take Aδ =
⋃
α<δ Aα. Note that Aδ is

homogeneous, countable and realises the same types (over ∅) as M .
Hence Aδ ∼= M . For β < δ every element in Aδ \Aβ is in some Aα with
β < α < δ. Therefore it realises the unique heir of p over Aβ.

• Assume Aα is constructed. Let f : M → Aα be an isomorphism. Then
f extends to an isomorphism f̂ : N → B for some structure B. Take
Aα+1 = B. Then Aα ≺ Aα+1 and Aα+1

∼= N ∼= M . It remains to show
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that every c ∈ Aα+1 \ Aα realises the unique heir of p over Aα. Let
ā ∈ Aα and Aα+1 |= dpxφ(x, ā). Let c′ = f̂−1(c), ā′ = f̂−1(ā). Note

that c′ ∈ N \M . Since f̂ is an isomorphism, we have N |= dpxφ(x, ā′).

But f̂ extends f and since ā ∈ Aα, we have ā′ = f−1(ā) ∈M . Therefor
N |= φ(c′, ā′) and so Aα+1 |= φ(c, ā).

Now take A =
⋃
α<ℵ1

Aα. If ā ∈ A, then ā ∈ Aα for some countable α. Now
if dpxφ(x, ā) is satisfied, then every element in A \ Aα satisfies φ(x, ā) and
hence it defines a cocountable set. Otherwise φ(x, ā) defines a countable set.
Thus A is quasiminimal. Also observe that countability is weakly definable
in A in the sense of Zilber [2003].

Now we can apply this method to construct a quasiminimal model from
a strongly regular type.

Theorem 3.3. Let T be a theory with p a ∅-definable strongly regular type.
Then there is a quasiminimal model of T .

Proof. Let M ≺ C be a small model. Consider N = clp(M). Since p|M
must have a realisation, we have N ( C. We claim that N is an elementary
substructure. We use the Tarski-Vaught test. Assume that ā ∈ N and φ(b, ā)
holds for some b ∈ C. If b ∈ N , then we are done. So assume that b 6∈ N .
Then b realises p|M and hence p|N . Now since ā ∈ N , we have that p|M ⊢ p|N
and therefore some L(M)-formula ψ(x) implies φ(x, ā). Since M is a model,
ψ must be realised in M and hence in N . Thus φ is realised in N and N ≺ C.
Now every element of C \ N realises p|N and hence N and C are a special
pair.

We can apply this to regular groups, since by Pillay and Tanović [2011]
the strongly regular type in a group is ∅-definable.

Corollary 3.4. If G is a regular group, then there is a quasiminimal group
H elementarily equivalent to G.

Without additional assumptions we cannot construct quasiminimal mod-
els of cardinalities larger than ℵ1. Indeed by Fact 2.4 the generic type of such
a structure is symmetric. So we at least need to assume that p is symmetric.

4 Theories with definable Skolem functions

We say that a theory T has definable Skolem functions if for every L-formula
φ(y, x̄) there is a ∅-definable function fφ(x̄) such that T |= ∀x̄(∃yφ(y, x̄) →
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φ(fφ(x̄), x̄)). In this section we study symmetric strongly regular types in
theories with definable Skolem functions. So let T be such a theory and let
p be a symmetric strongly regular type. Note that by the Fact 2.3 the type
p is ∅-definable.

We will show that T has a quasiminimal model of arbitrary uncountable
cardinality κ. Since there are definable Skolem functions, for every subset
A there is the least model containing it, namely the submodel with universe
dcl(A). Thus if there is a quasiminimal model containing a Morley sequence
A = (aα : α < κ), then dcl(A) would be one. Thus we need to show
that dcl(A) is quasiminimal. Further since dcl(A) embeds in every model
containing A, all we need is to construct a model M containing A such that
for a fixed countable A0 ⊆ A we have that clp(A0)∩M is countable. For that
we will use the technique of self-extending models originally due to Vaught
[1965].

The type p is an ultrafilter on definable subsets. We can use this ultrafilter
for a definable analogue of the ultrapower construction. More specifically
given a model M of T we can associate a canonical extension M∗ defined as
follows. The elements of M∗ are all definable (with parameters) functions
f : M →M modulo agreeing on a large set (i.e. a member of p). That is f, g :
M →M are considered equal if f(x) = g(x) ∈ p. The nonlogical symbols of
L are interpreted as follows. Given an n-ary relation R and elements f1, ..., fn
ofM∗, the formula R(f1, ..., fn) holds inM∗ if and only ifR(f1(x), ..., fn(x)) ∈
p. Just as in the regular ultrapower construction, one sees that this does not
depend on the representatives f1, ..., fn. Similar definitions are applied to the
interpretation of constant and functional symbols. We have the analogue of
 Loś’s Theorem.

Lemma 4.1. Given an L-formula φ(y1, ..., yn) and elements f1, ..., fn ∈ M∗

we have M∗ |= φ(f1, ..., fn) if and only if φ(f1(x), ..., fn(x)) ∈ p.

Proof. By induction of φ. The only nontrivial case is when φ is of the
form ∃y0ψ(y0, y1, ..., yn). Assuming M∗ |= ∃y0ψ(y0, f1, ..., fn), there exists
f0 ∈M∗ such that M∗ |= ψ(f0, f1, ..., fn). Then by the induction hypothesis
ψ(f0(x), f1(x), ..., fn(x)) ∈ p. And since it implies ∃y0ψ(y0, f1(x), ..., fn(x)),
the latter is also in p. Conversely assume that ∃y0ψ(y0, f1(x), ..., fn(x)) ∈ p.
Since T has definable Skolem functions, there is a definable function fψ :
M →M such that ∀x(∃y0ψ(y0, f1(x), ..., fn(x)) → ψ(fψ(x), f1(x), ..., fn(x))).
Therefore ψ(fψ(x), f1(x), ..., fn(x)) ∈ p and by the induction hypothesis
M∗ |= ∃y0ψ(y0, f1, ..., fn).

Corollary 4.2. If we identify each element of M with the constant function
in M∗, then M∗ is an elementary extension of M .
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Using the fact that p is a strongly regular type, the result of the previous
Lemma can also be expressed as follows. Assume that a is generic over
parameters defining f1, ..., fn in M , then M∗ |= φ(f1, ..., fn) if and only if
M |= φ(f1(a), ..., fn(a)).

We call M∗ the canonical extension of M . (This explains the terminology
self-extending.) The following property of the canonical extension is crucial
for our purposes.

Proposition 4.3. If M is an infinite dimensional model, then its canonical
extension M∗ is a proper extension where every new element realises p|M .

Proof. First note that since p|M is not isolated, the identity function in M∗

is different from all constant functions modulo p. Hence M∗ is a proper
extension of M .

On the other hand, let f ∈ M∗ be an element that does not realise p|M .
Then there is an L(M)-formula ψ(ā, y) 6∈ p such that M∗ |= ψ(ā, f). Let
φ(b̄, x, y) define f in M . Pick an element c generic over āb̄. By the assumption
d = f(c) satisfies ψ(ā, y) in M . But then d ∈ clp(ā) and since c is generic over
āb̄ we see that f(x) = d for every generic x. Thus f is a constant function
(modulo p) and so is already in M .

Theorem 4.4. Let p be a symmetric strongly regular type in a theory T with
definable Skolem functions. Then T has quasiminimal models of arbitrarily
large cardinalities.

Proof. We follow the approach outlined in the beginning of the section. Let
κ be an uncountable cardinal and let A = (aα : α < κ) be a Morley sequence
in p. We show that dcl(A) is quasiminimal. Let A0 ⊆ A be countably
infinite. Let M be a countable model containing A0. Iterating the previous
Proposition we obtain an extension N such that dimp(N) = κ and clp(A0) ∩
N = clp(A0) ∩M is countable. By conjugating N with an automorphism
if necessary we may assume that A ⊆ N . But then dcl(A) ⊆ N and hence
clp ∩ dcl(A) is also countable. This shows that dcl(A) is quasiminimal.

In the rest of this section we do not assume that T has definable Skolem
function. Instead we add functional symbols to the language that will re-
semble Skolem functions. We use this to prove that if T has a quasiminimal
model of cardinality iω1

, then it has quasiminimal models of all uncountable
cardinalities. The existence of such a cardinal follows from a very general
argument due to Hanf, and so the least such cardinal is often called the Hanf
number. In this terminology we show that the Hanf number of the existence
of quasiminimal models is at most iω1

.
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Theorem 4.5. If T has a quasiminimal model of cardinality iω1
, then it has

quasiminimal models of arbitrarily large cardinalities.

Proof. Let M |= T with |M | = iω1
. Then by the Fact 2.4 (after adding

parameters) there is a global symmetric regular type p that extends the type
of cocountable subsets of |M |. Since M is quasiminimal, its dimension (with
respect to clp) is iω1

and so there is a Morley sequence (aα : α < iω1
) in p.

Expand the language by n-arey functional symbols f in for each i, n < ω
(nullary functional symbols being constant symbols). Interpret f in in M such
that for every α1 < ... < αn < κ the set {f in(aα1

, ..., aαn
) : i < ω} enumerates

the closure clp(aα1
, ...., aαn

) in M . Denote the resulting language, theory and
structure by L′, T ′ and M ′ respectively.

Given a cardinal κ, there is an indiscernible sequence B = (bβ : β < κ)
in the monster model C′ of T ′ such that for every m there are α1 < ... < αm
satisfying

tpC′

(b0, ..., bm−1) = tpM
′

(aα1
, ..., aαm

).

(This is commonly known as “Morley’s method”. A proof can be found for
example in Tent and Ziegler [2012] or Casanovas [2011] where the length of
the sequence is assumed to be i(2|T |)+ . The better bound of iω1

for countable
theories is from Grossberg et al. [2002].)

Now let N = {f in(bβ1, ..., bβn) : i, n < ω, β1 < ... < βn < κ} ⊆ C′ be the
closure of this indiscernible sequence under all f in-s. Note that B ⊂ N is a
Morley sequence in p. Also each f in(bβ1 , ..., bβn) ∈ clp(bβ1 , ..., bβn) (since this is
encoded in the type of the corresponding sequence in M ′). Hence N ⊆ clp(B)
has dimension κ.

We claim that N is a quasiminimal model of T . This essentially follows
from the fact that for every β1 < ... < βn < κ there are α1 < ... < αn < iω1

such that the mapping sending f in(bβ1 , ..., bβn) 7→ f in(aα1
, ..., aαn

) is elementary
in L. Now by embedding a suitable fragment of N inside M in this way we see
that the elements of N \ {f in(bβ1, ..., bβn) : i < ω} are generic over bβ1 , ..., bβn.
This shows that N is quasiminimal. Similarly each satisfiable L-formula over
f i1n (bβ1 , ..., bβn), ..., f imn (bβ1 , ..., bβn) is either in p and hence realised in B (since
B is infinite dimensional), or not in p and realised in {f in(bβ1 , ..., bβn) : i < ω}.
This shows that N is an L-elementary substructure of C′ and hence a model
of T .

5 Stable Theories

In this section we assume that apart from having a strongly regular type
p, the theory T is stable. This automatically makes p symmetric (all indis-
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cernible sequence are totally indiscernible in stable theories). And since all
symmetric global regular types are ∅-definable, the results of Section 3 apply
here.

Some standard background on stable theories would be assumed. To
construct a quasiminimal model we use the technology of local isolation and
local atomicity. It was first introduced by Lachlan [1972] in order to prove
a two cardinal theorem for stable theories. Here we present the background
on local isolation in order to make our account more complete. More details
can be found in advanced books on stability theory such as Shelah [1990],
Baldwin [1988]. Our notion of local isolation coincides with Flℵ0

-isolation of
Shelah [1990].

Definition 5.1. A type p(x̄) ∈ S(A) is called locally isolated if for every L-
formula φ(x̄, ȳ) there is a formula ψφ(x̄) ∈ p such that ψφ(x̄) ⊢ p(x̄)|φ. (Here
p(x̄)|φ = {φ(x̄, ā) : φ(x̄, ā) ∈ p} ∪ {¬φ(x̄, ā) : ¬φ(x̄, ā) ∈ p} is the φ-part of
p.) A set B is called locally atomic (over A) if every type (over A) realised
in B is locally isolated.

The notion of local isolation can be seen through the topology of φ-types
as follows. Let Sφ(A) be the space of all complete φ-types over A. Topologise
Sφ(A) by taking the basic clopen sets to be of the form [ψ] = {p ∈ Sφ(A) : p ⊢
ψ} where ψ is any boolean combination of φ-formulas over A. Then Sφ(A)
is a boolean topological space (compact, Hausdorff and totally disconnected)
and the canonical restriction σφ : S(A) → Sφ(A) is continuous (and hence
also closed). Now a type p ∈ S(A) will be locally isolated if and only if
σ−1
φ (σφ(p)) is a neighbourhood of p for every φ (i.e. contains an open set

containing p).
Recall that in stable theories Sφ(C) is a scattered topological space of

finite Cantor-Bendixson rank (see Casanovas [2011]). For a partial type p we
denote by CBφ(p) and Mltφ(p) the Cantor-Bendixson rank and degree of the
set σφ([p]) = {q ∈ Sφ(C) : p ∪ q is consistent} in Sφ(C).

We would like to show that for every subset A, there is a model M ⊇ A
that is locally atomic over A. For that we prove

Lemma 5.2. For any set A, locally isolated types are dense in S(A).

Proof. Given a formula χ(x̄) over A, we need to find a locally isolated type
that contains χ. Enumerate (φn(x̄, ȳn) : n < ω) all formulas in L. Put
p0 = {χ(x̄)} and pn+1 = pn ∪ {ψn(x̄, ān)} where ψn is chosen such that
CBφn(pn+1) is the least possible and among those Mltφn(pn+1) is the least
possible. We claim that p =

⋃
n<ω pn has a unique completion which is locally

isolated. Indeed given φn(x̄, ȳn) and b̄n ∈ A, we can’t have both φn(x̄, b̄n)
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and ¬φn(x̄, b̄n) consistent with pn+1 as it contradicts the choice of ψn. Hence
pn+1, which is finite isolates the φn-part of the completion of p.

This allows us to iteratively realise formulas by locally isolated types
similar to the constructible models in ω-stable theories. To make the whole
construction locally atomic over A we need

Lemma 5.3. If A is locally atomic over BC and B is locally atomic over C,
then AB is locally atomic over C.

Proof. Let ā ∈ A and b̄ ∈ B and φ(x̄, ȳ, z̄) be a formula. It is enough to find
a formula ψ(x̄, ȳ) ∈ tp(āb̄/C) such that for every c̄ ∈ C for which φ(ā, b̄, c̄)
holds we have ψ(x̄, ȳ) → φ(x̄, ȳ, c̄). Since tp(ā/BC) is locally isolated, we
have a formula χ(x̄, b̄′) over C in tp(ā/BC) such that χ(x̄, b̄′) → φ(x̄, b̄, c̄)
whenever φ(ā, b̄, c̄) holds. Now we have ∀x̄(χ(x̄, z̄) → φ(x̄, ȳ, c̄)) ∈ tp(b̄b̄′/C).
By the local isolation of the latter there is a formula σ(ȳ, z̄) ∈ tp(b̄′b̄/C) such
that

σ(ȳ, z̄) → ∀x̄(χ(x̄, z̄) → φ(x̄, ȳ, c̄))

whenever ∀x(χ(x̄, b̄′) → φ(x̄, b̄, c̄)) holds. Or equivalently

(∃z̄(σ(ȳ, z̄) ∧ χ(x̄, z̄))) → φ(x̄, ȳ, c̄).

Thus ∃z̄(σ(ȳ, z̄) ∧ χ(x̄, z̄)) is the required formula ψ(x̄, ȳ).

Now the two combine to give

Proposition 5.4. For every A in a stable theory there is a model M ⊇ A
that is locally atomic over A and |M | = |A| + ℵ0.

Proof. We imitate the construction of prime models in ω-stable theories.
Given B construct B′ as follows: enumerate (φα(x̄α) : α < κ) all consistent
L(B) formulas that are not realised in B. Then add realisations bα to B′ such
that tp(bα/B{bβ : β < α}) is locally isolated. By Lemma 5.3, B′ is locally
atomic over B. Now take A0 = A and An+1 = A′

n. Finally M =
⋃
n<ω An is

the required model.

The final tool that we need for working with local isolation is the analogue
of the Open Mapping Theorem.

Proposition 5.5. (Local Open Mapping Theorem) If p ∈ S(A) does not
fork over B ⊆ A and is locally isolated, then so is p|B.
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Proof. Let N(A/B) be the set of types in S(A) that don’t fork over B. By
the usual Open Mapping Theorem the restriction map π : N(A/B) → S(B)
is open. Now fix a formula φ(x̄, ȳ). By the local isolation of p we have that
σ−1
φ (σφ(p)) ∩N(A/B) is a neighbourhood of p in N(A/B). Hence its image

under π, which is contained in σ−1
φ (σφ(p|B)) is a neighbourhood of p|B.

We can use locally atomic models to construct a proper extension of a
given model M where all the new elements realise the type p|M . (In the
previous section we used the canonical extension of a model for theories with
definable Skolem functions for this purpose.) Indeed let a realise p|M and let
N be locally atomic over Na. Now let b ∈ N \M . Then tp(b/Ma) is locally
isolated and tp(b/M) is not (otherwise it would be realised). Hence by the
Local Open Mapping Theorem b 6 |⌣M

a. But then by symmetry we have
a 6 |⌣M

b, which means that a 6|= p|Mb, i.e. a ∈ clp(Mb). Hence b 6∈ clp(M), as
otherwise a ∈ clp(M).

However the situation is a bit more delicate here. The problem is that
there is no equivalent notion of local primness. That is we cannot in general
embed a locally atomic or a locally constructible model over A in an arbitrary
model containing A. So we cannot use the same idea as in the previous section
to construct arbitrarily large quasiminimal models.

As an alternative we could try to construct a locally atomic model over a
Morley sequence A in the following way. Enumerate A = (aα : α < κ). Then
build a sequence (Mα : α < κ) such that Mα+1 is locally atomic over Mαaα.
Then all the elements in Mα+1 \Mα will be generic over Mα, so we do not
extend the closure. The problem with this, however, is that for α ≥ ℵ1 the
models Mα will be uncountable. And so in general Mα+1 adds uncountably
many elements.

To remedy this we employ a construction along the lines of Shelah’s Excel-
lence/NOTOP. The technique was adapted for local atomicity in Bays et al.
[2014b]. Some of our arguments are adapted from that paper. First let us
introduce some notation.

Definition 5.6. Let I be a downward-closed set of subsets (i.e. s ⊆ t ∈ I
implies s ∈ I). An I-system is a collection (Ms : s ∈ I) of models such that
Ms �Mt whenever s ⊆ t. If J ⊆ I we denote MJ =

⋃
s∈JMs.

For s ∈ I denote < s := P(s) \ {s} and 6≥ s := {t ∈ I : t 6⊇ s}.
The system is independent if Ms |⌣M<s

M6≥s.

An enumeration of I is an ordering (sα : α ∈ κ) of I such that α ≤ β
whenever sα ⊆ sβ. If an enumeration is fixed we write < α for {sβ : β < α}.
I.e. M<α =

⋃
β<αMsβ .
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Definition 5.7. Given two subsets A ⊆ B we say that A is Tarski-Vaught
in B (in symbols A ⊆TV B) if every formula over A realised in B is already
realised in A.

We use the Tarski-Vaught condition to lift local isolation to larger sets.

Proposition 5.8. If A ⊆TV B and c̄ is locally isolated over A, then it is
locally isolated over B.

Proof. Let φ(x̄, ȳ) be a formula without parameters and assume that ψ(x̄)
isolates the φ-part of tp(c̄/A). Then ψ(x̄) isolates a φ-type over B. Indeed
if for some b̄ ∈ B we have ∃x̄(φ(x̄) ∧ φ(x̄, b̄)) ∧ ∃x̄(φ(x̄) ∧ ¬φ(x̄, b̄)), then
the same should be true for some ā ∈ A. Thus ψ(x̄) isolates the φ-part of
tp(c̄/B).

Finally we need the following Lemma from Shelah [1990].

Lemma 5.9 (TV Lemma, [Shelah, 1990, XII.2.3(2)]). Let (Ms : s ∈ I) be
an independent system in a stable theory. Assume that J ⊆ I is such that
for all s ∈ I if s ⊆

⋃
J , then s ∈ J . Then MJ ⊆TV MI .

Theorem 5.10. Let p be a strongly regular type in a stable theory T . Then
T has quasiminimal models of arbitrarily large cardinalities.

Proof. Let I be the set of all finite subsets of some uncountable cardinal
κ. We inductively build an independent I-system of countable models as
follows. Enumerate I = {sα : α < κ} so that sα ⊆ sβ implies α ≤ β.
Note that this implies s0 = ∅. For M∅ pick a countable infinite dimensional
model. Given an ordinal α, assume that Msβ has been constructed for β < α.
If sα = {δ} is a singleton, pick aδ a realisation of p|M<α

and let M{δ} be a
countable locally atomic model over M∅aδ that is independent from M<α over
M∅. Otherwise let Ms be a countable locally atomic model over M<s that
is independent from M<α over M<s. Then (Ms : s ∈ I) is an independent
system (this is [Shelah, 1990, Lemma XII.2.3(1)], whose proof is “an exercise
in non-forking”).

Now MI is a model (by Tarski-Vaught test) and |MI | = κ. We claim that
MI is quasiminimal. Fix s = {α1, ..., αn} ⊂ κ. We claim that all elements
of MI \Ms realise p|Ms

over Ms. Since the later is countable, this implies
that every subset of MI definable over Ms is either countable or cocountable.
Since s was arbitrary we conclude that MI is quasiminimal.

Let A = {aα : α < κ}. We show that MI is locally atomic over MsA.
With the above enumeration of I we show by induction on α that M<α is
locally atomic over MsA. This is clear if α = 0 or α is a limit ordinal. So
assume that it holds for α and let us prove it for α + 1. Consider several
cases.
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• If sα ⊆ s, then clearly Msα is locally isolated over M<αMsA.

• If |sα| > 1, then Msα is locally atomic over M<sα. By the first clause
we may assume that sα 6⊆ s. But by TV Lemma (with I = {sβ : β <
α} ∪ P(s) and J = P(sα) \ {sα}) we have M<sα ⊆TV M<αMs. Also
M<αMs ⊆TV M<αMsA since M∅ is infinite dimensional. Hence Msα is
locally atomic over M<αMsA.

• If sα = {δ} is a singleton, then Msα is locally atomic over M∅aδ. By
the first clause we may assume that δ 6∈ s and hence aδ realises p over
M<αMs. Now since M∅ is a model, we have M∅ ⊆TV M<αMs. Using
the definability of p we can show that M∅aδ ⊆TV M<αMsaδ and as
before M<αMsaδ ⊆TV M<αMsA. Thus we conclude that Msα is locally
atomic over M<αMsA.

Thus in all cases we have Msα is locally atomic over M<αMsA. But by the
induction hypothesis M<α is locally atomic over MsA. Hence MsαM<α =
M<α+1 is locally atomic over MsA. This completes the induction.

Now given b ∈M \Ms, it is locally atomic over MsA. Since b is not locally
atomic over Ms (otherwise its type would be realised in Ms), we conclude
by the Local Open Mapping Theorem that b 6 |⌣Ms

A. Pick a finite subset

A′ ⊂ A such that b 6 |⌣Ms
A′. We can also assume that A′ is disjoint from Ms.

Now by symmetry we have A′ 6 |⌣Ms
b. Since A′ is a Morley sequence in p

over Ms, we conclude that dim(A′/Msb) < dim(A′/Ms) (where dim is in the
sense of pregeometry clp). Hence b 6∈ clp(Ms). This finishes the proof.

6 ω-stable Theories

In this section we assume that the theory T is ω-stable. This allows us to
construct prime models over every subset. It is easy to see that a prime
model over an uncountable Morley sequence in p must be quasiminimal.
Here we show more: the class C of prime models over Morley sequences in
p is a quasiminimal excellent class (see Definition 6.4). Since C is clearly
uncountably categorical, its excellence was expected and possibly known to
experts. But we are not aware of a published proof.

Quasiminimal excellent classes play an important role in nonelementary
categoricity. They were originally introduced in Zilber [2005b] where it is
proven that a quasiminimal excellent class is uncountably categorical. The
original formulation contains a technical axiom called excellence. It was
thought to be the key to categoricity, until Bays et al. [2014a] showed that
excellence follows from the rest of the axioms (see also a direct proof of
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categoricity in Haykazyan [2014]). Bays et al. [2014a] called an infinite di-
mensional structure in such a class a quasiminimal pregeometry structure

and following this we called the entire class quasiminimal pregeometry class

in Haykazyan [2014]. However in this paper we are dealing with structure
that are quasiminimal and have a pregeometry but are not quasiminimal pre-
geometry structures in the sense of Bays et al. [2014a]. So we have reverted
the terminology back to quasiminimal excellent.

The following simple observation will be used repeatedly, so it is worth
stating explicitly. We have already used a variant of it for locally atomic
model in the previous section.

Proposition 6.1. Let M be a model a 6∈ clp(M) and N prime over Ma.
Then for every b ∈ N \M we have a ∈ clp(Mb). Hence by the exchange
property also b ∈ clp(Ma) \ clp(M).

Proof. Indeed since tp(b/Ma) is isolated, whereas tp(b/Ma) is not, by the
Open Mapping Theorem we have b 6 |⌣M

a. Hence a 6 |⌣M
b. So that a ∈

clp(Mb).

Let us first show that each uncountable model in C is quasiminimal. One
consequence of quasiminimality is that there are no uncountable indiscernible
sequences except in p. This will help us establish primeness of models in some
cases.

Lemma 6.2. If A is an uncountable Morley sequence in p, then the prime
model over A is quasiminimal.

Proof. This follows the standard pattern we have used already in previ-
ous sections. For a fixed countable A0 ⊆ A we can construct a model
N containing A such that clp(A0) ∩ N is countable. To do so enumerate
A \ A0 = (aα : α < κ) and take Nα+1 to be prime over Nαaα. Let N0 be
an arbitrary countable model containing A0 and Nδ =

⋃
α<δNδ for a limit

ordinal δ. Then take N = Nκ. Finally M embeds into N over A showing
that clp(A0) ∩M is also countable.

In order to satisfy some technical conditions of Definition 6.4, we make
two further assumptions, which can be achieved by expanding the language.
Firstly we assume that the theory T has quantifier elimination. Otherwise we
can consider its Morleysation, i.e. its expansion with predicate symbols for
all ∅-definable relations. Secondly we assume that p|A is not isolated for all
finite A. (Note that this implies that p|A is not isolated for all A.) Otherwise
we can add a countably infinite Morley sequence in p to the language. The
result of the second assumption is
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Lemma 6.3. 1. If M is a model and A ⊆M , then clp(A)∩M is a model.

2. If M is prime over a Morley sequence A in p, then A is a basis for M
(i.e. M ⊆ clp(A)).

Proof. 1. Let N = clp(A)∩M . We use the Tarski-Vaught test. Let φ(x, b̄)
be a formula over N . Since p|b̄ is not isolated, there is a consistent
formula ψ(x, b̄) that implies φ and is not in p. Now every element in
M \N realises p|b̄. Hence a realisation of ψ must be in N .

2. Given b ∈ M , we have that tp(b/A) is isolated. Hence b 6|= p|A and so
b ∈ clp(A).

Note that both assertions can fail without assuming that p|A is isolated
for all finite A. For example both assertions fail in the theory of an infinite
set in the empty language, where p is the unique non-algebraic type (so the
theory is strongly minimal).

Now get prepared for a large definition. In the following a partial embed-
ding is a partial map that preserves quantifier free formulas.

Definition 6.4. A quasiminimal excellent class is a collection C of pairs
(H, clH) where H is a structure and clH is a pregeometry on H satisfying the
following conditions.

1. Closure under isomorphisms

If (H, clH) ∈ C and f : H → H ′ is an isomorphism, then (H ′, clH′) ∈ C,
where clH′ is defined as clH′(X ′) = f(clH(f−1(X ′))) for X ′ ⊆ H ′.

2. Quantifier free theory

If (H, clH), (H ′, cl′H) ∈ C, then H and H ′ satisfy the same quantifier
free sentences.

3. Pregeometry

• For each (H, clH) ∈ C the closure of any finite set is countable.

• If (H, clH) ∈ C and X ⊆ H , then clH(X) is a substructure of H
and together with the restriction of clH it is in C.

• If (H, clH), (H ′, clH′) ∈ C, X ⊆ H , y ∈ H and f : H → H ′ is a
partial embedding defined on X ∪ {y}, then y ∈ clH(X) if and
only if f(y) ∈ clH′(f(X)).
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4. Uniqueness of the generic type over countable closed models

Let (H, clH), (H ′, clH′) ∈ C, subsets G ⊆ H,G′ ⊆ H ′ be countable
closed or empty and g : G → G′ be an isomorphism. If x ∈ H, x′ ∈ H ′

are independent from G and G′ respectively, then g ∪ {(x, x′)} is a
partial embedding.

5. ℵ0-homogeneity over countable closed models

Let (H, clH), (H ′, clH′) ∈ C, subsets G ⊆ H,G′ ⊆ H ′ be countable
closed or empty and g : G→ G′ be an isomorphism. If g ∪ f : H → H ′

is a partial embedding, X = dom(f) is finite and y ∈ clH(X ∪G), then
there is y′ ∈ H ′ such that g ∪ f ∪ {(y, y′)} is a partial embedding.

We don’t elaborate on the definition any further. The interested reader
can consult Zilber [2005b], Bays et al. [2014a] or Haykazyan [2014]. Note
however that given a strongly regular type p in an arbitrary theory, the class
of elementary submodels of the monster model C (closed under isomorphisms)
together with the restriction of clp satisfies axioms 1 and 2. If further the
theory has quantifier elimination and p|A is not isolated for all finite A, then
the class satisfies axioms 3 and 4, except the countable closure property. To
satisfy the countable closure property we need to take the class of elemen-
tary submodels of a large quasiminimal structure (if such a structure exists).
Finally satisfying axiom 5 is the real challenge. For that we need to show
that in a prime model over a Morley sequence, if we pick a different Morley
sequence, then the respective closure is prime over it. The following lemma
is extracted from Makkai [1984].

Lemma 6.5. Assume M is a model a |= p|M and N is a prime model over
Ma. Let b ∈ N \M . Then N is prime over Mb. Consequently there is an
automorphism in Aut(N/M) taking a to b.

Proof. By Proposition 6.1 we have a 6 |⌣M
b. Let θ(x, b) ∈ tp(a/Mb) be a

formula over Mb such that any type containing it forks over M . Let φ(a, y)
be a formula over Ma that isolates tp(b/Ma). We claim that θ(x, b)∧φ(x, b)
isolates tp(a/Mb). It is enough to show that for every a′ ∈ N such that
θ(a′, b) ∧ φ(a′, b) we have a ≡Mb a

′. Given such an a′ we have a′ 6 |⌣M
b.

Then a′ ∈ N \ M . Hence by Proposition 6.1 again a′ |= pM . Now we
can get the desired conclusion from φ(a′, b). Indeed let f ∈ Aut(C/M) be
an automorphism that maps a′ to a. Then φ(a, f(b)) holds. Since φ(a, y)
isolates tp(b/Ma) we have ba ≡M f(b)a ≡M ba′. Hence a ≡Mb a

′.
Now since N is constructible over Ma and tp(a/Mb) is isolated, we con-

clude that N is constructible and hence prime and atomic over Mb.
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Proposition 6.6. Assume that M is prime over a Morley sequence A =
(aα : α < κ) in p. Let B = (bα : α < µ) ⊆ M is another Morley sequence in
p. Then clp(B) ∩M is prime over B.

Proof. By Lemma 6.3, the closure clp(B)∩M is a model. Also by the count-
able closure property it does not contain an uncountable indiscernible se-
quence over B. Thus it remains to show that clp(B) ∩ M is atomic over
B.

We can assume that B is finite. Indeed every a ∈ clp(B) ∩M is in the
closure of a finite subset B0 ⊆ B. Assume we prove that a is atomic over
B0. Then given b ∈ B \ B0, we have that tp(a/B0) ⊢ tp(a/B0b) (see the
discussion after Definition 2.1). Hence tp(a/B0b) is also isolated. Iterating
this we obtain that tp(a/B) is isolated. So assume that B = {b0, ..., bn−1} is
finite.

Further we may assume that B is a subset of A. Indeed by the exchange
property there is a ∈ A such that for A′ = A \ {a} we have that A′ ∪ {b0}
is a basis of M . Now N = clp(A

′) ∩M is a model by Lemma 6.3. Further
M is prime over Na (it is atomic over Na as Na is normal over A) and
b0 ∈ M \ Na. Thus by Lemma 6.5 there is an automorphism of M fixing
A′ and taking a to b0. Thus we can assume that b0 ∈ A. Iterating this
construction we can assume that B ⊆ A.

But now the claim follows from the Open Mapping Theorem. Indeed if
c ∈ clp(B) ∩M , then A |⌣B

c and hence c |⌣B
A. Since tp(c/A) is isolated

so is tp(c/B).

Now we are ready to prove the main result of this section.

Theorem 6.7. Let C be the class of prime models over Morley sequences in
p. Then C together with restrictions of clp is a quasiminimal excellent class.

Proof. The only axiom not covered so far is the ℵ0-homogeneity over count-
able closed models. Let H,H ′ ∈ C be prime over Morley sequences A and
A′ respectively. Let G ⊆ H,G′ ⊆ H ′ be countable closed or empty. Let
g : G → G′ be an isomorphism. If G (and hence G′) is nonempty, we may
assume by Proposition 6.6 that G = clp(A0) ∩ H , G′ = clp(A

′
0) ∩ H ′ where

A0 ⊆ A, A′
0 ⊆ A and g maps A0 to A′

0.
Let f : H → H ′ be a partial embedding with a finite domain. Assume

that dom(f) = āb̄ where ā is independent over G and b̄ ∈ clp(Gā). Then
clp(Gā) ∩H is prime and constructible over Gā. (In case if G is nonempty,
clp(Gā) ∩ H is prime over A0ā by Proposition 6.6 and Gā is normal over
A0ā.) Since tp(b̄/Gā) is isolated, clp(Gā) ∩ H is also constructible and so
prime over Gāb̄. Thus the elementary mapping g ∪ f extends to any element
of clp(Gāb̄) ∩H .
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7 Conclusion

We have shown that iω1
is an upper bound for the Hanf number of the

existence of quasiminimal models. We don’t have an example to show that it
is sharp, we don’t even know if the Hanf number is ℵ2. One way of proving it
would be to show that the existence of a symmetric strongly regular type is
enough to construct arbitrarily large quasiminimal models. We have shown so
using additional assumptions: either stability or presence of definable Skolem
functions. One could try to expand the language with Skolem functions, but
doing so naively will destroy the regular type. Detailed examination of the
proof however reveals that not all Skolem functions are necessary, which gives
this approach some hope.

On the other direction one could ask whether the stability assumptions we
use for our constructions are sharp. For Theorem 5.10 one can ask whether
there is a simple theory with a strongly regular type and no arbitrarily large
quasiminimal model. A candidate for such a theory could be ACFA where
the type of a transformally transcendental element is strongly regular. By
Theorem 3.3 there is a quasiminimal model of ACFA of cardinality ℵ1, but
we don’t know what happens in other cardinalities.

One can also try to construct a quasiminimal excellent class from a weaker
assumption than ω-stability. A reasonable assumption could be a strongly
regular type in a superstable theory with NOTOP. There is a deep analogy
between NOTOP and excellence and one could try to exploit it. The methods
of Bays et al. [2014a] allow one to construct a quasiminimal excellent class if
the theory is superstable and all types are definable over finite subsets. This
is however not very far from an ω-stable theory. Every such theory which is
in addition small (i.e. has countably many pure types) is ω-stable.
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