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Modal completeness of sublogics of the

interpretability logic IL

Taishi Kurahashi and Yuya Okawa

Abstract

We study modal completeness and incompleteness of several sublogics
of the interpretability logic IL. We introduce the sublogic IL−, and prove
that IL− is sound and complete with respect to Veltman prestructures
which are introduced by Visser. Moreover, we prove the modal com-
pleteness of twelve logics between IL− and IL with respect to Veltman
prestructures. On the other hand, we prove that eight natural sublogics
of IL are modally incomplete. Finally, we prove that these incomplete
logics are complete with respect to generalized Veltman prestructures. As
a consequence of these investigations, we obtain that the twenty logics
studied in this paper are all decidable.

1 Introduction

The notion of formalized provability is well-studied in the framework of modal
logic. The provability logic of Peano Arithmetic PA is the set of all modal
formulas that are verifiable in PA when the modal operator □ is interpreted as
the provability predicate PrPA(x) of PA. Solovay’s arithmetical completeness
theorem [12] states that the provability logic of PA is exactly axiomatized by
the modal logic GL that is obtained from the smallest normal modal logic K
by adding the axiom scheme □(□A → A) → □A. Segerberg [10] proved that
the logic GL is sound and complete with respect to the class of all transitive
and conversely well-founded finite Kripke frames.

The interpretability logic IL is the base logic for modal logical investigations
of the notion of relative interpretability. The language of IL is that of GL with
the additional binary modal operator ▷. The binary modal operator ▷ binds
stronger than →, but weaker than ¬, ∧, ∨ and □. The intended meaning of the
formula A▷B is “PA+B is relatively interpretable in PA+A”. The inference
rules of IL are the same as those of GL, and the axioms of IL are those of GL
together with the following axioms:

J1 □(A→ B)→ A▷B;

J2 (A▷B) ∧ (B ▷ C)→ A▷ C;

J3 (A▷ C) ∧ (B ▷ C)→ (A ∨B)▷ C;
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J4 A▷B → (♢A→ ♢B);

J5 ♢A▷A.

The logic IL is not arithmetically complete by itself. The logic ILM is
obtained from IL by adding Montagna’s Principle A ▷ B → (A ∧ □C) ▷ (B ∧
□C), then Berarducci [1] and Shavrukov [11] independently proved that ILM is
arithmetically sound and complete with respect to arithmetical interpretations
for PA. Also let ILP be the logic IL with the Persistence Principle A ▷ B →
□(A▷B). Visser [15] proved the arithmetical completeness theorem of the logic
ILP with respect to arithmetical interpretations for suitable finitely axiomatized
fragments of PA.

These logics have Kripkean semantics. A triple ⟨W,R, {Sx}x∈W ⟩ is said to be
an IL-frame or a Veltman frame if ⟨W,R⟩ is a Kripke frame of GL and for each
x ∈W , Sx is a transitive and reflexive binary relation on R[x] := {y ∈W : xRy}
satisfying the following property: (∗) ∀y, z ∈ W (xRy & yRz ⇒ ySxz). De
Jongh and Veltman [3] proved that IL is sound and complete with respect to all
finite IL-frames. Also they proved that the logics ILM and ILP are sound and
complete with respect to corresponding classes of finite IL-frames, respectively.

The logic IL and its extensions are not only arithmetically significant. It
is known that for extensions of PA, relative interpretability is equivalent to
Π1-conservativity, and this equivalence is provable in PA (see [8]). Therefore
the logic ILM is also the logic of Π1-conservativity for PA (see also [5]). On
the other hand, when we consider the logics of Γ-conservativity for Γ ̸= Π1,
the principle J5 is no longer arithmetically valid. Ignatiev [6] introduced the
logic of conservativity CL which is obtained from IL by removing J5, and he
proved that the extensions SbCLM and SCL of CL are exactly the logic of
Π2-conservativity and the logic of Γ-conservativity for Γ ∈ {Σn,Πn : n ≥ 3},
respectively.

Ignatiev also proved thatCL is complete with respect to Kripkean semantics.
A triple ⟨W,R, {Sx}x∈W ⟩ is said to be a CL-frame if it is a structure with all
properties of IL-frame but (∗). Then CL is sound and complete with respect to
the class of all finite CL-frames. The correspondence between J5 and the prop-
erty (∗) is explained in the framework of IL−-frames. A triple ⟨W,R, {Sx}x∈W ⟩
is called an IL−-frame or a Veltman prestructure if ⟨W,R⟩ is a frame of GL and
for each x ∈ W , Sx is a binary relation on W with ∀y, z ∈ W (ySxz ⇒ xRy).
Then Visser [14] stated that for any IL−-frame, the validity of the scheme J5
is equivalent to the property (∗).

Visser also showed, for example, that for any IL−-frame, the validity of J4
is equivalent to the property ∀x, y, z ∈ W (ySxz ⇒ xRz). However, systematic
study of sublogics of IL through IL−-frames has not been done so far. In this
paper, we do this study, and prove the modal completeness and incompleteness
of several sublogics of IL.

In Section 2, we introduce the logic IL− that is valid in all IL−-frames. We
introduce the notion of IL−

set-frames that serves a wider class of models than
IL−-frames. Then we show that IL− is also valid in all IL−

set-frames. In Section
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3, we investigate several axiom schemata and extensions of IL−. Section 4 is
devoted to proving lemmas used to prove our modal completeness theorems. Our
modal completeness theorem with respect to IL−-frames is proved in Section 5.
In Section 6, we prove several natural sublogics of IL are incomplete with respect
to IL−-frames. In Section 7, we prove these incomplete logics are complete with
respect to IL−

set-frames. Finally, Section 8 concludes the present paper with a
few words.

2 The logic IL−

In this section, we introduce and investigate the logic IL−. The language of IL−

consists of countably many propositional variables p, q, r, . . ., logical constants
⊤, ⊥, connectives ¬, ∧, ∨, → and modal operators □, ▷. The expression ♢A
is an abbreviation for ¬□¬A. We show that every theorem of IL− is valid
in all IL−-frames defined below (see Definition 2.2). In fact, we will prove in
Section 5 that IL− is sound and complete with respect to the class of all (finite)
IL−-frames. The logic IL− is the basis for our logics discussed in this paper.

First, we introduce the logic IL−. Note that the axioms and rules of the
logic IL− are intended to characterize the logic of the class of all IL−-frames.

Definition 2.1. The axiom schemata of the logic IL− are as follows:

L1 All tautologies in the language of IL−;

L2 □(A→ B)→ (□A→ □B);

L3 □(□A→ A)→ □A;

J3 (A▷ C) ∧ (B ▷ C)→ (A ∨B)▷ C;

J6 □A↔ (¬A)▷⊥.

The inference rules of IL− are Modus Ponens
A A→ B

B
, Necessitation

A

□A
,

R1 and R2. Here the rules R1 and R2 are defined as follows:

R1
A→ B

C ▷A→ C ▷B
;

R2
A→ B

B ▷ C → A▷ C
.

The logic GL consists of the axiom schemata L1,L2 and L3, and of the
inference rules Modus Ponens and Necessitation (in the language without ▷).
Hence IL− is an extension of GL. In Subsection 3.5, we prove that IL proves
the axiom J6 and admits the rules R1 and R2 (see Proposition 3.20). Therefore
IL− is a sublogic of IL.

We introduce IL−-frames that are originally introduced by Visser [14] as
Veltman prestructures.
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Definition 2.2. We say that a triple ⟨W,R, {Sx}x∈W ⟩ is an IL−-frame if it
satisfies the following conditions:

1. W is a non-empty set;

2. R is a transitive and conversely well-founded binary relation on W ;

3. For each x ∈W , Sx is a binary relation onW satisfying ∀y, z ∈W (ySxz ⇒
xRy).

A quadruple ⟨W,R, {Sx}x∈W ,⊩⟩ is called an IL−-model if ⟨W,R, {Sx}x∈W ⟩ is
an IL−-frame and ⊩ is a binary relation between W and the set of all formulas
satisfying the usual conditions for satisfaction with the following conditions:

� x ⊩ □A ⇐⇒ ∀y ∈W (xRy ⇒ y ⊩ A).

� x ⊩ A▷B ⇐⇒ ∀y ∈W (xRy & y ⊩ A⇒ ∃z ∈W (ySxz & z ⊩ B)).

A formula A is said to be valid in an IL−-frame ⟨W,R, {Sx}x∈W ⟩ if for all
satisfaction relations ⊩ on the frame and all x ∈W , x ⊩ A.

For each x ∈ W , let R[x] := {y ∈ W : xRy}. In this notation, the third
clause in the definition of IL−-frames states that Sx is a relation on R[x]×W .
Note that this clause can be removed from the definition because it is not forced
by axiom schemata of IL− and does not affect the definition of ⊩. We impose
this clause to simplify our arguments.

We prove that IL− is sound with respect to the class of all IL−-frames.

Proposition 2.3. Every theorem of IL− is valid in all IL−-frames.

Proof. We prove the claim by induction on the length of proofs in IL−. Since the
modal logic GL is sound with respect to the class of all transitive and conversely
well-founded Kripke frames (see [2]), all theorems of GL in the language of IL−

are valid in all IL−-frames. That is, L1, L2 and L3 are valid in all IL−-frames,
and the rules Modus Ponens and Necessitation preserve the validity. Then it
suffices to prove that J3 and J6 are valid in all IL−-frames, and the rules R1
and R2 preserve the validity.

Let F = ⟨W,R, {Sx}x∈W ⟩ be an IL−-frame, x ∈ W be any element and ⊩
be any satisfaction relation on F .

J3: Suppose x ⊩ (A▷ C) ∧ (B ▷ C). Let y ∈ W be any element with xRy
and y ⊩ A ∨ B. In either case of y ⊩ A and y ⊩ B, there exists z ∈ W such
that ySxz and z ⊩ C. Thus we obtain x ⊩ (A ∨B)▷ C.

J6: (→): Suppose x ⊩ □A. Then there is no y ∈ W such that xRy and
y ⊩ ¬A. Hence x ⊩ (¬A)▷⊥.

(←): Suppose x ⊩ (¬A) ▷ ⊥. If there were y ∈ W with xRy and y ⊩ ¬A,
then there would be some z ∈ W such that z ⊩ ⊥, a contradiction. Thus if
xRy, then y ⊩ A, and this means x ⊩ □A.

R1: Assume A → B is valid in F . Suppose x ⊩ C ▷ A and let y ∈ W be
such that xRy and y ⊩ C. Then there exists z ∈W such that ySxz and z ⊩ A.
By the assumption, z ⊩ B. Then we obtain x ⊩ C ▷B.
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R2: Assume A → B is valid in F . Suppose x ⊩ B ▷ C and let y ∈ W be
such that xRy and y ⊩ A. By the assumption, y ⊩ B, and hence there exists
z ∈W such that ySxz and z ⊩ C. Thus we have x ⊩ A▷ C.

By the rules R1 and R2, we immediately obtain the following proposition.

Proposition 2.4. Let L be a logic with the inference rules R1 and R2. If
L ⊢ A0 ↔ A1 and L ⊢ B0 ↔ B1, then L ⊢ A0 ▷B0 ↔ A1 ▷B1.

In this paper, we freely use Proposition 2.4 without any mention. In IL−,
the inference rule R2 is strengthened as follows.

Proposition 2.5.

1. IL− ⊢ □¬A→ A▷B.

2. IL− ⊢ □(A→ B)→ (B ▷ C → A▷ C).

Proof. 1. Since IL− ⊢ ⊥ → B, we have IL− ⊢ A▷⊥ → A▷B by the rule R1.
By the axiom J6, we obtain IL− ⊢ □¬A→ A▷B.

2. Since IL− ⊢ □(A → B) → □¬(A ∧ ¬B), we have IL− ⊢ □(A → B) →
(A∧¬B)▷C by 1. Then IL− ⊢ □(A→ B)∧(B▷C)→ ((A∧¬B)∨B)▷C by the
axiom J3. Since IL− ⊢ A→ (A∧¬B)∨B, we have IL− ⊢ ((A∧¬B)∨B)▷C →
A ▷ C by the rule R2. Therefore we conclude IL− ⊢ □(A → B) ∧ (B ▷ C) →
A▷ C.

Thus IL− is deductively equivalent to the system obtained from IL− by
replacing the rule R2 by the axiom scheme □(A→ B)→ (B ▷ C → A▷ C).

In Section 5, we will prove that several extensions of IL− are complete with
respect to corresponding classes of IL−-frames. On the other hand, we will also
prove that several logics are not complete. To prove this incompleteness, we use
the notion of IL−

set-frames that is a general notion of ILset-frames or generalized
Veltman frames introduced by Verbrugge [13] (see also [16, 9]).

Definition 2.6. A tuple ⟨W,R, {Sx}x∈W ⟩ is called an IL−
set-frame if it satisfies

the following conditions:

1. W is a non-empty set;

2. R is a transitive and conversely well-founded binary relation on W ;

3. For each x ∈ W , Sx is a relation on W × (P(W ) \ {∅}) such that ∀y ∈
W, ∀V ⊆W (ySxV ⇒ xRy);

4. (Monotonicity) ∀x, y ∈W, ∀V, U ⊆W (ySxV & V ⊆ U ⇒ ySxU).

As in the definition of IL−-frames, we can define IL−
set-models ⟨W,R, {Sx}x∈W ,⊩

⟩ with the following clause:

� x ⊩ A▷B ⇐⇒ ∀y ∈ W (xRy & y ⊩ A⇒ ∃V ⊆ W (ySxV & ∀z ∈ V (z ⊩
B))).
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Let M = ⟨W,R, {Sx}x∈W ,⊩⟩ be an IL−-model. For each x ∈ W , we define
the relation S′

x ⊆ W × (P(W ) \ {∅}) by yS′
xV :⇐⇒ ∃z ∈ V (ySxz). Then it is

shown that ⟨W,R, {S′
x}x∈W ⟩ is an IL−

set-frame. Let ⊩′ be the unique satisfaction
relation on this IL−

set-frame satisfying that for any x ∈W and any propositional
variable p, x ⊩′ p if and only if x ⊩ p. Then ⟨W,R, {S′

x}x∈W ,⊩′⟩ is an IL−
set-

model, and for any x ∈ W and any formula A, x ⊩ A if and only if x ⊩′ A.
Therefore, in this sense, every IL−-frame (resp. model) can be recognized as an
IL−

set-frame (resp. model). We strengthen Proposition 2.3.

Proposition 2.7. Every theorem of IL− is valid in all IL−
set-frames.

Proof. Let F = ⟨W,R, {Sx}x∈W ⟩ be an IL−
set-frame, x ∈W be any element and

⊩ be any satisfaction relation on F . As in the proof of Proposition 2.3, we only
prove the cases J3, J6, R1 and R2.

J3: Suppose x ⊩ (A ▷ C) ∧ (B ▷ C). Let y ∈ W be any element such that
xRy and y ⊩ A ∨ B. In either case that y ⊩ A and y ⊩ B, there exists V ⊆ W
such that ySxV and ∀z ∈ V (z ⊩ C). Therefore x ⊩ (A ∨B)▷ C.

J6: This follows from the following equivalences:

x ⊩ □A ⇐⇒ ∀y(xRy ⇒ y ⊩ A),

⇐⇒ ∀y(xRy & y ⊩ ¬A⇒ ∃V (V ̸= ∅ & ySxV & ∀z ∈ V (z ⊩ ⊥))),
⇐⇒ x ⊩ (¬A)▷⊥.

R1: Assume that A → B is valid in F . Suppose x ⊩ C ▷ A. Let y ∈ W
be such that xRy and y ⊩ C. Then there exists V ⊆ W such that ySxV and
∀z ∈ V (z ⊩ A). For each z ∈ V , z ⊩ B by the assumption. Therefore we
conclude x ⊩ C ▷B.

R2: Assume that A→ B is valid in F . Suppose x ⊩ B ▷ C and let y ∈ W
be any element with xRy and y ⊩ A. Then y ⊩ B by the assumption, and
hence there exists V ⊆ W such that ySxV and ∀z ∈ V (z ⊩ C). Thus we have
x ⊩ A▷ C.

Remark 2.8. In the proof of Proposition 2.7, Monotonicity of IL−
set-frames is

not used at all. As in the case of IL−-frames, conditions 3 and 4 in Definition
2.6 are introduced because they are useful properties to have.

In usual definition of ILset-frame ⟨W,R, {Sx}x∈W ⟩, each Sx is a relation on
R[x]× (P(R[x]) \ {∅}). Therefore ILset-frames are not IL−

set-frames because of
our definition of Monotonicity. On the other hand, from Proposition 3.10 below,
when we deal with logics containing J4+, we can restrict conditions 3 and 4 in
Definition 2.6 so that Sx is a relation on R[x]× (P(R[x]) \ {∅}).

3 Extensions of IL−

In this section, we investigate several additional axiom schemata and several
extensions of IL−. Let Σ1, . . . ,Σn be axiom schemata. Then IL−(Σ1, . . . ,Σn)
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is the logic IL− together with the axiom schemata Σ1, . . . ,Σn. Let L be an
extension of IL−. We say that L is complete with respect to finite IL−-frames
(resp. IL−

set-frames) if for any formula A, L ⊢ A if and only if A is valid in all
finite IL−-frames (resp. IL−

set-frames) where all axioms of L are valid.

3.1 The axiom scheme J1

In this subsection, we investigate the axiom scheme J1.

J1 □(A→ B)→ A▷B.

First, we show that the following axiom scheme J1′ is equivalent to J1 over
IL−.

J1′ A▷A.

Proposition 3.1. The logics IL−(J1) and IL−(J1′) are deductively equivalent.

Proof. IL−(J1) ⊢ J1′: This is because IL− ⊢ □(A → A) and IL−(J1) ⊢
□(A→ A)→ A▷A.

IL−(J1′) ⊢ J1: By Proposition 2.5.2, IL− ⊢ □(A→ B)→ (B▷B → A▷B).
Since IL−(J1′) ⊢ B ▷B, we obtain the desired result.

Therefore, in this paper, we sometimes identify the axiom schemata J1 and
J1′. The following proposition is stated in Visser.

Proposition 3.2 (Visser [14]). Let F = ⟨W,R, {Sx}x∈W ⟩ be any IL−-frame.
Then the following are equivalent:

1. J1 is valid in F .

2. ∀x, y ∈W (xRy ⇒ ySxy).

Proof. (1 ⇒ 2): Assume that J1 is valid in F . Suppose xRy. Let ⊩ be any
satisfaction relation on F satisfying that for any u ∈ W , u ⊩ p if and only if
u = y for some fixed propositional variable p. Then y ⊩ p. Since xRy and
x ⊩ p▷ p, there exists a z ∈ W such that ySxz and z ⊩ p. By the definition of
⊩, z = y, and hence ySxy.

(2 ⇒ 1): Assume ∀x, y ∈ W (xRy ⇒ ySxy). Let y ∈ W be such that xRy
and y ⊩ A. Then ySxy, and thus we conclude x ⊩ A▷A.

We prove a similar equivalence concerning IL−
set-frames.

Proposition 3.3. Let F = ⟨W,R, {Sx}x∈W ⟩ be any IL−
set-frame. Then the

following are equivalent:

1. J1 is valid in F .

2. ∀x, y ∈W (xRy ⇒ ySx{y}).
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Proof. (1 ⇒ 2): Assume that J1 is valid in F . Suppose xRy. Let ⊩ be a
satisfaction relation on F satisfying for any u ∈ W , u ⊩ p if and only if u = y
for some fixed propositional variable p. Then y ⊩ p. Since xRy and x ⊩ p▷ p,
there exists V ⊆W such that ySxV and ∀z ∈ V (z ⊩ p). By the definition of ⊩,
V = {y} because V is non-empty. We obtain ySx{y}.

(2 ⇒ 1): Assume ∀x, y ∈ W (xRy ⇒ ySx{y}). Let y ∈ W be such that
xRy and y ⊩ A. Then ySx{y} and ∀z ∈ {y}(z ⊩ A). Thus we conclude
x ⊩ A▷A.

3.2 The axiom scheme J4

This subsection is devoted to investigating the axiom scheme J4.

J4 (A▷B)→ (♢A→ ♢B).

First, we prove that J4 is equivalent to the following axiom scheme J4′ over
IL−. The principle J4′ is introduced in Visser [14].

J4′ (A▷B)→ (B ▷⊥ → A▷⊥).

Proposition 3.4. The logics IL−(J4) and IL−(J4′) are deductively equivalent.

Proof. This is because IL− ⊢ (♢A→ ♢B)↔ (B ▷⊥ → A▷⊥) by J6.

Since J4′ is a particular instance of the axiom scheme J2, we obtain the
following corollary.

Corollary 3.5. IL−(J2) ⊢ J4.

The axiom scheme J4 does not behave well by itself in the sense of modal
completeness. In fact, we will prove in Section 6 that for instance, IL−(J4)
is not complete with respect to corresponding class of IL−-frames. Thus we
introduce a well-behaved axiom scheme J4+ whose corresponding class of IL−-
frames is same as that of J4. The principle J4+ is originally introduced in
Visser [14]. We also introduce the schemata J4′

+ and J4′′
+ as follows:

J4+ □(A→ B)→ (C ▷A→ C ▷B).

J4′
+ □A→ (C ▷ (A→ B)→ C ▷B).

J4′′
+ □A→ (C ▷B → C ▷ (A ∧B)).

Proposition 3.6. The logics IL−(J4+), IL
−(J4′

+) and IL−(J4′′
+) are deduc-

tively equivalent.

Proof. IL−(J4+) ⊢ J4′
+: Since IL− ⊢ A → ((A → B) → B), IL− ⊢ □A →

□((A→ B)→ B). Then we have IL−(J4+) ⊢ □A→ (C▷ (A→ B)→ C▷B).
IL−(J4′

+) ⊢ J4′′
+: Since IL

− ⊢ B → (A→ A∧B), IL− ⊢ C▷B → C▷(A→
A ∧B) by the rule R1. Then IL−(J4′

+) ⊢ □A→ (C ▷B → C ▷ (A ∧B)).
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IL−(J4′′
+) ⊢ J4+: By the axiom J4′′

+, we have IL−(J4′′
+) ⊢ □(A → B) →

(C ▷ A → C ▷ ((A → B) ∧ A)). Since IL− ⊢ (A → B) ∧ A → B, we have
IL− ⊢ C ▷ ((A→ B)∧A)→ C ▷B by the rule R1. Thus IL−(J4′′

+) ⊢ □(A→
B)→ (C ▷A→ C ▷B).

The axiom scheme J4+ is a strengthening of the inference rule R1, and
hence in extensions of IL−(J4+), the inference rule R1 is redundant.

We show that J4+ implies J4 over IL−.

Proposition 3.7. IL−(J4+) ⊢ J4.

Proof. Since IL− ⊢ B ▷ ⊥ → □¬B by J6, IL− ⊢ B ▷ ⊥ → □(B → ⊥). Then
by J4+, we have IL−(J4+) ⊢ A▷B → (B ▷⊥ → A▷⊥). By Proposition 3.4,
we conclude IL−(J4+) ⊢ J4.

We prove that J4 and J4+ have the same frame condition with respect to
IL−-frames. This is stated in Visser [14].

Proposition 3.8 (Visser [14]). Let F = ⟨W,R, {Sx}x∈W ⟩ be any IL−-frame.
Then the following are equivalent:

1. J4+ is valid in F .

2. J4 is valid in F .

3. ∀x, y, z ∈W (ySxz ⇒ xRz).

Proof. (1⇒ 2): By Proposition 3.7.
(2⇒ 3): Assume that J4 is valid in F . Suppose ySxz. Let ⊩ be a satisfaction

relation on F such that for any u ∈ W , u ⊩ p if and only if u = y, and u ⊩ q if
and only if u = z for some fixed propositional variables p and q. Then x ⊩ p▷ q
by the definition of ⊩ and our supposition. Since xRy and y ⊩ p, we have
x ⊩ ♢p. Then by the validity of J4, x ⊩ ♢q. Hence there exists u ∈ W such
that xRu and u ⊩ q. By the definition of ⊩, we obtain xRz.

(3⇒ 1): Assume that ∀x, y, z ∈ W (ySxz ⇒ xRz). Suppose x ⊩ A▷ B and
x ⊩ ♢A. Then there exists y ∈ W such that xRy and y ⊩ A and hence there
exists z ∈W such that ySxz and z ⊩ B. By the assumption xRz and therefore
we obtain x ⊩ ♢B. That is, J4+ is valid in F .

On the other hand, J4 and J4+ can be distinguished by considering IL−
set-

frames. That is, these logics have different frame conditions with respect to
IL−

set-frames.

Proposition 3.9. Let F = ⟨W,R, {Sx}x∈W ⟩ be any IL−
set-frame. Then the

following are equivalent:

1. J4 is valid in F .

2. ∀x, y ∈W, ∀V ⊆W (ySxV ⇒ ∃z ∈ V (xRz)).

9



Proof. (1 ⇒ 2): Assume that J4 is valid in F , and suppose ySxV . Let ⊩ be a
satisfaction relation on F such that for any u ∈ W , u ⊩ p if and only if u = y,
and u ⊩ q if and only if u ∈ V for some fixed propositional variables p and q.
Then x ⊩ p▷ q because V is non-empty. Since xRy and y ⊩ p, we have x ⊩ ♢p.
Then by the validity of J4, x ⊩ ♢q. Hence there exists z ∈ W such that xRz
and z ⊩ q. By the definition of ⊩, we obtain z ∈ V .

(2 ⇒ 1): Assume ∀x, y ∈ W, ∀V ⊆ W (ySxV ⇒ ∃z ∈ V (xRz)). Suppose
x ⊩ (A▷B)∧♢A. Then there exists y ∈W such that xRy and y ⊩ A, and also
there exists a V ⊆W such that ySxV and ∀z ∈ V (z ⊩ B). By the assumption,
xRz for some z ∈ V . Hence x ⊩ ♢B. This shows that J4 is valid in F .

Proposition 3.10. Let F = ⟨W,R, {Sx}x∈W ⟩ be any IL−
set-frame. Then the

following are equivalent:

1. J4+ is valid in F .

2. ∀x, y ∈W, ∀V ⊆W (ySxV ⇒ ySx(V ∩R[x])).

Proof. (1 ⇒ 2): Assume that J4+ is valid in F . Suppose ySxV . Let ⊩ be a
satisfaction relation on F such that for any u ∈ W , u ⊩ p if and only if u = y,
u ⊩ q if and only if u ∈ V , and u ⊩ r if and only if (u ∈ V and xRu), for some
fixed propositional variables p, q and r. Then x ⊩ p▷q because V is non-empty.
Let y ∈ W be any element such that xRy and y ⊩ q, then y ∈ V and xRy.
This means y ⊩ r. Therefore x ⊩ □(q → r). By the validity of J4+, we obtain
x ⊩ p ▷ r. Since xRy and y ⊩ p, there exists a U ⊆ W such that ySxU and
∀z ∈ U(z ⊩ r). By the definition of ⊩, for each z ∈ U , z ∈ V and xRz. That is,
U ⊆ V ∩R[x]. By Monotonicity, we conclude ySx(V ∩R[x]).

(2 ⇒ 1): Assume ∀x, y ∈ W, ∀V ⊆ W (ySxV ⇒ ySx(V ∩ R[x])). Suppose
x ⊩ (A ▷ B) ∧ □(B → C). Let y ∈ W be such that xRy and y ⊩ A, then
there exists a V ⊆W such that ySxV and ∀z ∈ V (z ⊩ B). By the assumption,
ySx(V ∩R[x]). In particular, for each z ∈ V ∩R[x], z ⊩ B and z ⊩ B → C, and
hence z ⊩ C. We have shown x ⊩ A▷ C. Therefore J4+ is valid in F .

By Proposition 3.10, when we consider logics containing J4+, for each IL−
set-

frame ⟨W,R, {Sx}x∈W ⟩, we may assume that for every x ∈ W , Sx is a relation
on R[x]×(P(R[x])\{∅}). This is required in the usual definition of ILset-frames
(see [16, 9]).

3.3 The axiom scheme J2

In this subsection, we discuss the axiom scheme J2.

J2 (A▷B) ∧ (B ▷ C)→ A▷ C.

As in the case of the axiom J4, we introduce the following new axiom
schemata J2+ and J2′

+ which are stronger than J2.

J2+ (A▷ (B ∨ C)) ∧ (B ▷ C)→ A▷ C.
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J2′
+ (A▷B) ∧ ((B ∧ ¬C)▷ C)→ A▷ C.

Proposition 3.11. The logics IL−(J2+) and IL−(J2′
+) are deductively equiv-

alent.

Proof. IL−(J2+) ⊢ J2′
+: Since IL− ⊢ B → (B ∧ ¬C) ∨ C, we have IL− ⊢

A ▷ B → A ▷ ((B ∧ ¬C) ∨ C) by the rule R1. Then IL− ⊢ (A ▷ B) ∧ ((B ∧
¬C) ▷ C) → (A ▷ ((B ∧ ¬C) ∨ C)) ∧ ((B ∧ ¬C) ▷ C). Thus IL−(J2+) ⊢
(A▷B) ∧ ((B ∧ ¬C)▷ C)→ A▷ C.

IL−(J2′
+) ⊢ J2+: Since IL− ⊢ (B ∨ C) ∧ ¬C → B, IL− ⊢ B ▷ C →

((B ∨ C) ∧ ¬C)▷ C by the rule R2. Then IL− ⊢ (A▷ (B ∨ C)) ∧ (B ▷ C)→
(A ▷ (B ∨ C)) ∧ ((B ∨ C) ∧ ¬C) ▷ C. Therefore we conclude IL−(J2′

+) ⊢
(A▷ (B ∨ C)) ∧ (B ▷ C)→ A▷ C.

The axiom scheme J2+ is slightly stronger than J2. In fact, the following
proposition shows that J2 and J2+ are equivalent over the logic IL−(J1).

Proposition 3.12.

1. IL−(J2+) ⊢ J2.

2. IL−(J1,J2) ⊢ J2+.

Proof. 1. This is because IL− ⊢ A▷B → A▷ (B ∨ C).
2. Since IL−(J1) ⊢ B ▷ C → (B ∨ C) ▷ C by J1 and J3, we have

IL−(J1,J2) ⊢ (A▷ (B ∨ C)) ∧ (B ▷ C)→ A▷ C.

We proved in Corollary 3.5 that IL−(J2) proves J4. Analogously, we prove
that J2+ is stronger than J4+ over IL−.

Proposition 3.13. IL−(J2+) ⊢ J4+.

Proof. Since IL− ⊢ □(A → B) → □¬(A ∧ ¬B), we have IL− ⊢ □(A → B) →
(A∧¬B)▷B by Proposition 2.5.1. Then IL−(J2′

+) ⊢ □(A→ B)→ (C ▷A→
C ▷B). By Proposition 3.11, we obtain IL−(J2+) ⊢ J4+.

The following corollary is straightforward from Propositions 3.12.2 and 3.13.

Corollary 3.14. IL−(J1,J2) ⊢ J4+.

We prove that J2 and J2+ have the same frame condition with respect to
the IL−-frames.

Proposition 3.15. Let F = ⟨W,R, {Sx}x∈W ⟩ be any IL−-frame. Then the
following are equivalent:

1. J2+ is valid in F .

2. J2 is valid in F .

3. J4 is valid in F and for any x ∈W , Sx is transitive.

11



Proof. (1⇒ 2): By Proposition 3.12.1.
(2⇒ 3): This is proved in Visser [14].
(3⇒ 1): Assume that J4 is valid in F and for any x ∈ W , Sx is transitive.

Suppose x ⊩ (A ▷ (B ∨ C)) ∧ (B ▷ C). Let y ∈ W be any element such that
xRy and y ⊩ A. Then there exists z ∈ W such that ySxz and z ⊩ B ∨ C. We
shall show that there exists u ∈ W such that ySxu and u ⊩ C. If z ⊩ C, then
this is done. If z ⊮ C, then z ⊩ B. Since xRz, by our supposition, there exists
u ∈W such that zSxu and u ⊩ C. By the transitivity of Sx, we obtain ySxu.

Therefore we conclude x ⊩ A▷ C. That is to say, J2+ is valid in F .

We prove that J2 and J2+ have different frame conditions with respect to
IL−

set-frames.

Proposition 3.16. Let F = ⟨W,R, {Sx}x∈W ⟩ be an IL−
set-frame. Then the

following are equivalent:

1. J2 is valid in F .

2. J4 is valid in F and

∀x, y ∈W, ∀V ⊆W

ySxV & ∀z ∈ V ∩R[x](zSxUz)⇒ ySx

 ∪
z∈V ∩R[x]

Uz

 .

Proof. (1 ⇒ 2): Assume that J2 is valid in F . Then by Corollary 3.5, J4 is
valid in F . Suppose ySxV and ∀z ∈ V ∩ R[x](zSxUz). Let ⊩ be a satisfaction
relation on F such that for any u ∈ W , u ⊩ p if and only if u = y, u ⊩ q if and
only if u ∈ V , and u ⊩ r if and only if ∃z ∈ V ∩ R[x](u ∈ Uz). Then x ⊩ p▷ q
and x ⊩ q ▷ r. By the validity of J2, x ⊩ p ▷ r. Since xRy and y ⊩ p, there
exists a U ⊆ W such that ySxU and ∀w ∈ U(w ⊩ r). By the definition of ⊩,
U ⊆

∪
z∈V ∩R[x] Uz. By Monotonicity, ySx(

∪
z∈V ∩R[x] Uz).

(2⇒ 1): Assume that J4 is valid in F and ∀x, y ∈W, ∀V ⊆W (ySxV & ∀z ∈
V ∩R[x](zSxUz)⇒ ySx(

∪
z∈V ∩R[x] Uz)). Suppose x ⊩ (A▷B) ∧ (B ▷ C). Let

y ∈ W be any element with xRy and y ⊩ A. Then there exists a V ⊆ W such
that ySxV and ∀z ∈ V (z ⊩ B). Since J4 is valid in F , we have V ∩ R[x] ̸=
∅. Then for each z ∈ V ∩ R[x], there exists Uz ⊆ W such that zSxUz and
∀w ∈ Uz(w ⊩ C). By the assumption, ySx(

∪
z∈V ∩R[x] Uz) because the set∪

z∈V ∩R[x] Uz is non-empty. Also ∀w ∈
∪

z∈V ∩R[x] Uz(w ⊩ C). We have shown
w ⊩ A▷ C. Hence J2 is valid in F .

The condition ∀x, y ∈ W, ∀V ⊆ W (ySxV & ∀z ∈ V ∩ R[x](zSxUz) ⇒
ySx(

∪
z∈V ∩R[x] Uz)) stated in Proposition 3.16 is required in the usual definition

of ILset-frames.

Proposition 3.17. Let F = ⟨W,R, {Sx}x∈W ⟩ be any IL−
set-frame. Then the

following are equivalent:

1. J2+ is valid in F .
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2. J4 is valid in F and

∀x, y ∈W, ∀V0, V1 ⊆W

ySx(V0 ∪ V1) & ∀z ∈ V0 ∩R[x](zSxUz)⇒ ySx

 ∪
z∈V0∩R[x]

Uz ∪ V1

 .

Proof. (1 ⇒ 2): Assume J2+ is valid in F . Since IL−(J2+) ⊢ J4, J4 is also
valid in F . Suppose ySx(V0 ∪ V1) and ∀z ∈ V0 ∩ R[x](zSxUz). Let ⊩ be a
satisfaction relation on F such that for any u ∈ W , u ⊩ p if and only if u = y,
u ⊩ q if and only if u ∈ V0, and u ⊩ r if and only if (∃z ∈ V0 ∩R[x](u ∈ Uz) or
u ∈ V1). Then x ⊩ p▷ (q ∨ r) and x ⊩ q ▷ r. By the validity of J2+, x ⊩ p▷ r.
Since xRy and y ⊩ p, there exists a U ⊆W such that ySxU and ∀w ∈ U(w ⊩ r).
Then by the definition of ⊩, we have U ⊆

∪
z∈V0∩R[x] Uz ∪V1. By Monotonicity,

ySx(
∪

z∈V0∩R[x] Uz ∪ V1).

(2⇒ 1): Assume that J4 is valid in F and ∀x, y ∈W, ∀V0, V1 ⊆W (ySx(V0∪
V1) & ∀z ∈ V0∩R[x](zSxUz)⇒ ySx(

∪
z∈V0∩R[x] Uz∪V1)). Let x ⊩ (A▷(B∨C))∧

(B ▷ C). Let y ∈ W be such that xRy and y ⊩ A, then there exists a V ⊆ W
such that ySxV and ∀z ∈ V (z ⊩ B∨C). Since J4 is valid, we have V ∩R[x] ̸= ∅.
Let V0 := {z ∈ V : z ⊩ B} and V1 := {z ∈ V : z ⊩ C}, then V = V0 ∪ V1. In
particular, for each z ∈ V0 ∩ R[x], there exists a Uz ⊆ W such that zSxUz and
∀w ∈ Uz(w ⊩ C). By the assumption, we have ySx(

∪
z∈V0∩R[x] Uz ∪V1) because∪

z∈V0∩R[x] Uz ∪ V1 is non-empty. Since ∀w ∈
∪

z∈V0∩R[x] Uz ∪ V1(w ⊩ C), we
obtain w ⊩ A▷ C. Therefore J2+ is valid in F .

3.4 The axiom scheme J5

We investigate J5.

J5 ♢A▷A.

The following proposition is stated in Visser [14].

Proposition 3.18 (Visser [14]). Let F = ⟨W,R, {Sx}x∈W ⟩ be any IL−-frame.
The following are equivalent:

1. J5 is valid in F .

2. ∀x, y, z ∈W (xRy & yRz ⇒ ySxz).

Proof. (1 ⇒ 2): Assume that J5 is valid in F . Suppose xRy and yRz. Let ⊩
be a satisfaction relation on F such that for any u ∈ W , u ⊩ p if and only if
u = z for some fixed propositional variable p. Then yRz and z ⊩ p, and hence
y ⊩ ♢p. Since xRy and x ⊩ ♢p ▷ p, there exists u ∈ W such that ySxu and
u ⊩ p). By the definition of ⊩, we have u = z. Therefore ySxz.

(2 ⇒ 1): Assume that ∀x, y, z ∈ W (xRy & yRz ⇒ ySxz). Let ⊩ be any
satisfaction relation on F . Let y ∈W be any element such that xRy and y ⊩ ♢A.
Then there exists z ∈ W such that yRz and z ⊩ A. By the assumption, ySxz
and hence we obtain x ⊩ ♢A▷A. That is, J5 is valid in F .
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Proposition 3.19. Let F = ⟨W,R, {Sx}x∈W ⟩ be any IL−
set-frame. Then the

following are equivalent:

1. J5 is valid in F .

2. ∀x, y, z ∈W (xRy & yRz ⇒ ySx{z}).

Proof. (1 ⇒ 2): Assume that J5 is valid in F . Suppose xRy and yRz. Let ⊩
be a satisfaction relation on F such that for any u ∈ W , u ⊩ p if and only if
u = z for some fixed propositional variable p. Then yRz and z ⊩ p, and hence
y ⊩ ♢p. Since xRy and x ⊩ ♢p▷ p, there exists a V ⊆ W such that ySxV and
∀w ∈ V (w ⊩ p). By the definition of ⊩, we have V = {z}. Therefore ySx{z}.

(2 ⇒ 1): Assume ∀x, y, z ∈ W (xRy & yRz ⇒ ySx{z}). Let y ∈ W be any
element such that xRy and y ⊩ ♢A. Then there exists z ∈ W such that yRz
and z ⊩ A. By the assumption, ySx{z}. Since ∀w ∈ {z}(w ⊩ A), we obtain
x ⊩ ♢A▷A. That is, J5 is valid in F .

The condition stated in the second clause in Proposition 3.19 is required in
the original definition of ILset-frames.

3.5 The logics CL and IL

In this subsection, we show that the logics CL and IL are exactly IL−(J1,J2)
and IL−(J1,J2,J5), respectively. Since IL−(J1,J2,J5) proves J4, J4+ and
J2+ by Propositions 3.7, 3.12 and Corollary 3.14, our logics studied in this
paper are actually sublogics of IL. The logic CL is GL plus J1, J2, J3 and
J4. Also the logic IL is CL plus J5.

Proposition 3.20.

1. CL ⊢ □A↔ (¬A)▷⊥.

2. CL ⊢ □(A→ B)→ (C ▷A→ C ▷B).

3. CL ⊢ □(A→ B)→ (B ▷ C → A▷ C).

Proof. 1. (→): Since CL ⊢ □A→ □(¬A→ ⊥), CL ⊢ □A→ (¬A)▷⊥ by J1.
(←): By J4, CL ⊢ (¬A) ▷ ⊥ → (♢¬A → ♢⊥). Since CL ⊢ ¬♢⊥, CL ⊢

(¬A)▷⊥ → ¬♢¬A. That is, CL ⊢ (¬A)▷⊥ → □A.
2. This is because CL ⊢ □(A → B) → A ▷ B by J1 and CL ⊢ (C ▷ A) ∧

(A▷B)→ C ▷B by J2.
3. This is because CL ⊢ □(A → B) → A ▷ B by J1 and CL ⊢ (A ▷ B) ∧

(B ▷ C)→ A▷ C by J2.

Proposition 3.21. The logics CL and IL−(J1,J2) are deductively equivalent.

Proof. CL ⊢ IL−(J1,J2): This follows from Proposition 3.20.
IL−(J1,J2) ⊢ CL: This is because IL−(J2) ⊢ J4 by Corollary 3.5.

Corollary 3.22. The logics IL and IL−(J1,J2,J5) are deductively equivalent.
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Then de Jongh and Veltman’s and Ignatiev’s theorems are restated as fol-
lows:

Theorem 3.23 (de Jongh and Veltman [3]). For any formula A, the following
are equivalent:

1. IL−(J1,J2,J5) ⊢ A.

2. A is valid in all finite IL−-frames where all axioms of IL−(J1,J2,J5) are
valid.

Theorem 3.24 (Ignatiev [6]). For any formula A, the following are equivalent:

1. IL−(J1,J2) ⊢ A.

2. A is valid in all finite IL−-frames where all axioms of IL−(J1,J2) are
valid.

In the following, we identifyCL with IL−(J1,J2), and IL with IL−(J1,J2,J5).

4 Lemmas for proofs of modal completeness the-
orems

In this section, we prepare some definitions and lemmas for our proofs of the
modal completeness theorems of several logics. In this section, let L be any
consistent logic containing IL−. For a set Φ of formulas, define Φ▷ := {B :
there exists a formula C such that either B ▷ C ∈ Φ or C ▷ B ∈ Φ}. For

each formula A, let ∼A :≡

{
B if A is of the form ¬B
¬A otherwise

. We say a finite set

Γ of formulas is L-consistent if L ⊬
∧
Γ → ⊥, where

∧
Γ is a conjunction of

all elements of Γ. Also we say Γ ⊆ Φ is Φ-maximally L-consistent if Γ is L-
consistent and for any A ∈ Φ, either A ∈ Γ or ∼A ∈ Γ. Notice that if Γ is
Φ-maximally L-consistent and L ⊢

∧
Γ→ A for A ∈ Φ, then A ∈ Γ.

Definition 4.1. A set Φ of formulas is said to be adequate if it satisfies the
following conditions:

1. Φ is closed under taking subformulas and applying ∼;

2. ⊥ ∈ Φ▷;

3. If B,C ∈ Φ▷, then B ▷ C ∈ Φ;

4. If B ∈ Φ▷, then □∼B ∈ Φ;

5. If B,C1, . . . , Cm, D1, . . . , Dn ∈ Φ▷, then □
(
B →

∨m
i=1 Ci ∨

∨n
j=1 ♢Dj

)
∈

Φ.
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Note that □ is in our language as a symbol, and □A is not an abbreviation
for (¬A)▷⊥. Then the following proposition holds.

Proposition 4.2. Every finite set of formulas is contained in some finite ade-
quate set.

Until the end of this section, we fix some finite adequate set Φ. Let KL :=
{Γ ⊆ Φ : Γ is Φ-maximally L-consistent}. Then KL is also a finite set.

Definition 4.3. Let Γ,∆ ∈ KL and C ∈ Φ▷.

1. Γ ≺ ∆ : ⇐⇒ 1. for any □B ∈ Φ, if □B ∈ Γ, then B,□B ∈ ∆ and 2.
there exists □B ∈ Φ such that □B /∈ Γ and □B ∈ ∆.

2. Γ ≺C ∆ :⇐⇒ Γ ≺ ∆ and for any B ∈ Φ, if B ▷ C ∈ Γ, then ∼B ∈ ∆.

3. Γ ≺∗
C ∆ :⇐⇒ Γ ≺ ∆ and for any B ∈ Φ, if B▷C ∈ Γ, then ∼B,□∼B ∈

∆.

The relation ≺∗
C was introduced by de Jongh and Veltman [3], and Γ ≺∗

C ∆
is read as “∆ is a C-critical successor of Γ”1. The relation ≺C was introduced
by Ingatiev [6]. Obviously, Γ ≺∗

C ∆ implies Γ ≺C ∆.

Lemma 4.4. For Γ,∆ ∈ KL, if Γ ≺ ∆, then Γ ≺∗
⊥ ∆.

Proof. Suppose Γ ≺ ∆. If B▷⊥ ∈ Γ, then □∼B ∈ Γ by J6. Then ∼B,□∼B ∈
∆. This means Γ ≺∗

⊥ ∆.

Lemma 4.5. Let Γ,∆,Θ ∈ KL and C ∈ Φ▷. If Γ ≺∗
C ∆ and ∆ ≺ Θ, then

Γ ≺∗
C Θ.

Proof. Suppose Γ ≺∗
C ∆ and ∆ ≺ Θ. If B ▷ C ∈ Γ, then □∼B ∈ ∆. Then

∼B,□∼B ∈ Θ. Therefore Γ ≺∗
C Θ.

Lemma 4.6. Let Γ ∈ KL and D,E ∈ Φ▷. If D ▷ E /∈ Γ, then there exists
∆ ∈ KL such that D ∈ ∆ and Γ ≺E ∆. Moreover:

a. If L contains J5, then we can find ∆ such that in addition □∼E ∈ ∆
holds.

b. If L contains J2 and J5, then we can find ∆ such that in addition Γ ≺∗
E ∆

and □∼E ∈ ∆ hold.

Proof. Suppose D▷E /∈ Γ. Let X := {G : G▷E ∈ Γ}. Then □(D →
∨

X) ∈ Φ.
By J3, we have IL− ⊢

∧
Γ→

∨
X ▷ E.

1For every set S of formulas, more general notion of assuring successor ≺S was introduced
and investigated in Goris et al. [4]. Then ≺∗

C is exactly ≺{¬C}. However, in this paper, ≺C

and ≺∗
C are sufficient for our purpose.
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� Suppose, for the contradiction, that □(D →
∨

X) ∈ Γ. Then IL− ⊢∧
Γ → (

∨
X ▷ E → D ▷ E) by Proposition 2.5.2. Hence IL− ⊢

∧
Γ →

D▷E, and thus D▷E ∈ Γ. This contradicts our supposition. Therefore
□(D →

∨
X) /∈ Γ.

Let

Y0 := {B,□B : □B ∈ Γ} ∪ {D,□(D →
∨

X)} ∪ {∼G : G ∈ X},

then Y0 ⊆ Φ. Suppose that the set Y0 were L-inconsistent. Then for some
□B1, . . . ,□Bk ∈ Γ,

L ⊢
k∧

i=1

(Bi ∧□Bi)→ (□(D →
∨

X)→ (D →
∨

X)),

L ⊢
k∧

i=1

□Bi → □(□(D →
∨

X)→ (D →
∨

X)),

L ⊢
∧

Γ→ □(D →
∨

X).

Thus □(D →
∨
X) ∈ Γ, and this is a contradiction. We have shown that

Y0 is L-consistent.

Let ∆ ∈ KL be such that Y0 ⊆ ∆. Then D ∈ ∆. Since □(D →
∨

X) ∈
∆ \ Γ, Γ ≺ ∆. Moreover, if G▷ E ∈ Γ, then G ∈ X, and hence ∼G ∈ ∆.
This means Γ ≺E ∆.

� a. Assume that L contains J5. Let X1 := X ∪ {♢E}. Then □(D →∨
X1) ∈ Φ. If □(D →

∨
X1) ∈ Γ, then IL− ⊢

∧
Γ → (

∨
X1 ▷ E →

D ▷E). Since IL− ⊢
∧
Γ→

∨
X ▷E and L ⊢ ♢E ▷E by J5, we obtain

L ⊢
∧
Γ→

∨
X1 ▷ E. Thus L ⊢

∧
Γ→ D ▷ E and D ▷ E ∈ Γ. This is a

contradiction. Therefore □(D →
∨
X1) /∈ Γ.

Let

Y1 := {B,□B : □B ∈ Γ}∪{D,□(D →
∨

X1)}∪{∼G : G ∈ X}∪{□∼E}.

Then it can be proved that Y1 is also an L-consistent subset of Φ as
above. Let ∆ ∈ KL be such that Y1 ⊆ ∆. Then ∆ satisfies the required
conditions.

� b. Assume that L contains J2 and J5. Let X2 := X ∪ {♢G : G ∈
X} ∪ {♢E}. Then □(D →

∨
X2) ∈ Φ. For each G ∈ X, we have

L ⊢
∧
Γ→ (♢G▷G) ∧ (G▷E) by J5. Then by J2, L ⊢

∧
Γ→ ♢G▷E.

Therefore we obtain L ⊢
∧
Γ →

∧
G∈X(♢G ▷ E). Since we also have

IL− ⊢
∧
Γ →

∨
X ▷ E and L ⊢ ♢E ▷ E, we get L ⊢

∧
Γ →

∨
X2 ▷ E.

This implies □(D →
∨
X2) /∈ Γ.

Let

Y2 := {B,□B : □B ∈ Γ}∪{D,□(D →
∨

X2)}∪{∼G,□∼G : G ∈ X}∪{□∼E}.
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Then Y2 is also an L-consistent subset of Φ, and any ∆ ∈ KL with Y2 ⊆ ∆
is a desired set.

Lemma 4.7. Let Γ,∆ ∈ KL and D,E, F ∈ Φ▷. If D ▷ E ∈ Γ, Γ ≺F ∆ and
D ∈ ∆, then there exists Θ ∈ KL such that E ∈ Θ and ∼F ∈ Θ. Moreover:

a. If L contains J4+, then we can find Θ such that in addition Γ ≺ Θ holds.

b. If L contains J2+, then we can find Θ such that in addition Γ ≺F Θ holds.

c. If L contains J2+ and J5, then we can find Θ such that in addition Γ ≺∗
F

Θ and □∼F ∈ Θ hold.

Proof. Suppose D ▷ E ∈ Γ, Γ ≺F ∆ and D ∈ ∆.

� Suppose, towards a contradiction, that the set {E,∼F} is L-inconsistent.
Then L ⊢ E → F . By the rule R1, we have L ⊢ D ▷ E → D ▷ F , and
hence D ▷ F ∈ Γ. Since Γ ≺F ∆, we have ∼D ∈ ∆. This contradicts the
L-consistency of ∆. Therefore {E,∼F} is L-consistent. Let Θ ∈ KL be
such that {E,∼F} ⊆ Θ, and then Θ satisfies the required conditions.

� a. Assume that L contains J4+. If □(E → F ) ∈ Γ, then by J4+,
L ⊢

∧
Γ → (D ▷ E → D ▷ F ). Since D ▷ E ∈ Γ, we obtain D ▷ F ∈ Γ.

Then ∼D ∈ ∆ because Γ ≺F ∆, and this is a contradiction. Therefore
□(E → F ) /∈ Γ.

Suppose Y1 := {B,□B : □B ∈ Γ}∪{E,∼F,□(E → F )} were L-inconsistent.
Then there would be □B1, . . . ,□Bk ∈ Γ such that

L ⊢
k∧

i=1

(Bi ∧□Bi)→ (□(E → F )→ (E → F )),

L ⊢
k∧

i=1

□Bi → □(□(E → F )→ (E → F )),

L ⊢
∧

Γ→ □(E → F ).

Then □(E → F ) ∈ Γ, and this is a contradiction. Thus Y1 is L-consistent.
Let Θ ∈ KL be such that Y1 ⊆ Θ. Then □(E → F ) ∈ Θ \ Γ, and hence
we conclude Γ ≺ Θ.

� b. Assume that L contains J2+. Let X := {G : G ▷ F ∈ Γ}. If □(E →∨
X ∨F ) ∈ Γ, then L ⊢

∧
Γ→ □(E ∧¬F →

∨
X), and hence L ⊢

∧
Γ→

(
∨

X▷F → (E∧¬F )▷F ) by Proposition 2.5.2. Since L ⊢
∧
Γ→

∨
X▷F ,

we have L ⊢
∧
Γ → (E ∧ ¬F ) ▷ F . Since D ▷ E ∈ Γ, L ⊢

∧
Γ → D ▷ F

by J2′
+. Thus D ▷ F ∈ Γ. Then ∼F ∈ ∆ because Γ ≺F ∆, and this is a

contradiction. Hence □(E →
∨
X ∨ F ) /∈ Γ.
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Let

Y2 := {B,□B : □B ∈ Γ}∪{E,∼F,□(E →
∨

X∨F )}∪{∼G : G ∈ X},

then Y2 is L-consistent. Let Θ ∈ KL be such that Y2 ⊆ Θ. Then □(E →∨
X ∨ F ) ∈ Θ \ Γ, and hence Γ ≺ Θ. Moreover, Γ ≺F Θ.

� c. Assume that L contains J2+ and J5. Let X := {G : G ▷ F ∈ Γ} and
X1 := X ∪{♢G : G ∈ X}∪{♢F}. Then □(E →

∨
X1 ∨F ) ∈ Φ. For each

G ∈ X, L ⊢
∧
Γ→ (♢G▷G) ∧ (G▷ F ) by J5. Then L ⊢

∧
Γ→ ♢G▷ F

by J2. Since L ⊢
∧
Γ→

∨
X ▷F and L ⊢ ♢F ▷F , we obtain L ⊢

∧
Γ→∨

X1 ▷ F .

Suppose, towards a contradiction, □(E →
∨
X1 ∨ F ) ∈ Γ. Then L ⊢∧

Γ → □(E ∧ ¬F →
∨
X1), and thus L ⊢

∧
Γ → (

∨
X1 ▷ F → (E ∧

¬F ) ▷ F ) by Proposition 2.5.2. Hence L ⊢
∧

Γ → (E ∧ ¬F ) ▷ F . Since
D ▷ E ∈ Γ, by J2′

+, we have L ⊢
∧

Γ → D ▷ F . Thus D ▷ F ∈ Γ.
Then ∼F ∈ ∆ because Γ ≺F ∆. This is a contradiction. Hence we obtain
□(E →

∨
X1 ∨ F ) /∈ Γ.

Let

Y3 := {B,□B : □B ∈ Γ}∪{E,∼F,□(E →
∨

X1∨F )}∪{∼G,□∼G : G ∈ X}∪{□∼F},

then we can prove that Y3 is L-consistent. Let Θ ∈ KL be such that
Y3 ⊆ Θ. Then □(E →

∨
X1 ∨ F ) ∈ Θ \ Γ, and hence Γ ≺ Θ. Moreover,

Γ ≺∗
F Θ.

Lemma 4.8. Assume that L contains J4. Let Γ,∆ ∈ KL and D,E ∈ Φ▷. If
D ▷ E ∈ Γ, Γ ≺ ∆ and D ∈ ∆, then there exists Θ ∈ KL such that Γ ≺ Θ and
E ∈ Θ.

Proof. Since D ▷ E ∈ Γ, L ⊢
∧
Γ → (♢D → ♢E) by J4. If □∼E ∈ Γ, then

□∼D ∈ Γ. Since Γ ≺ ∆, we have ∼D ∈ ∆, a contradiction. Thus □∼E /∈ Γ.
Let Y := {B,□B : □B ∈ Γ} ∪ {E,□∼E}, then it is proved that Y is L-

consistent. Thus for some Θ ∈ KL, Y ⊆ Θ. Since □∼E ∈ Θ \ Γ, we obtain
Γ ≺ Θ.

Lemma 4.9. Assume that L contains J2. Let Γ,∆ ∈ KL and D,E, F ∈ Φ▷.
If D▷E ∈ Γ, Γ ≺F ∆ and D ∈ ∆, then there exists Θ ∈ KL such that Γ ≺F Θ
and E ∈ Θ. Moreover:

a. If L contains J5, then we can find Θ such that in addition Γ ≺∗
F Θ and

□∼F ∈ Θ hold.

Proof. Let X := {G : G ▷ F ∈ Γ}. Suppose, towards a contradiction, that
□(E →

∨
X) ∈ Γ. Then by Proposition 2.5.2, IL− ⊢

∧
Γ → (

∨
X ▷ F →

E ▷ F ). Since IL− ⊢
∧
Γ →

∨
X ▷ F , IL− ⊢

∧
Γ → E ▷ F . Also since
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D ▷ E ∈ Γ, we obtain L ⊢
∧
Γ → D ▷ F by J2. Thus D ▷ F ∈ Γ. Since

Γ ≺F ∆, ∼D ∈ ∆ and hence this contradicts the L-consistency of ∆. Therefore
□(E →

∨
X) /∈ Γ.

Let Y0 := {B,□B : □B ∈ Γ} ∪ {E,□(E →
∨
X)} ∪ {∼G : G ∈ X}, then Y0

is L-consistent. Let Θ ∈ KL be such that Y0 ⊆ Θ. Then Θ is a desired set.
a. Assume that L contains J5. Let X1 := X ∪ {♢G : G ∈ X} ∪ {♢F}. If

□(E →
∨
X1) ∈ Γ, then E ▷ F ∈ Γ as in the proof of Lemma 4.6.b. Since

D ▷ E ∈ Γ, we have D ▷ F ∈ Γ by applying J2. This contradicts Γ ≺F Θ
and E ∈ Θ. Therefore □(E →

∨
X1) is not in Γ. Let Y1 := {B,□B : □B ∈

Γ} ∪ {E,□(E →
∨
X1)} ∪ {∼G,□∼G : G ∈ X} ∪ {□∼F}. Then Y1 is L-

consistent. Let Θ ∈ KL be such that Y1 ⊆ Θ.

E ∈ Θ ∼F ∈ Θ Γ ≺ Θ Γ ≺F Θ
Γ ≺∗

F Θ
& □∼F ∈ Θ

✓ ✓ Lemma 4.7
J4 ✓ ✓ Lemma 4.8
J4+ ✓ ✓ ✓ Lemma 4.7.a
J2 ✓ ✓ Lemma 4.9
J2, J5 ✓ ✓ Lemma 4.9.a
J2+ ✓ ✓ ✓ Lemma 4.7.b
J2+, J5 ✓ ✓ ✓ Lemma 4.7.c

Table 1: Conclusions of Lemmas 4.7, 4.8 and 4.9

Lemmas 4.7 and 4.9 state that ifD▷E, Γ ≺F ∆ andD ∈ ∆, then there exists
Θ ∈ KL having several properties depending on each logic L. The statement
of Lemma 4.8 is similar except that Γ ≺ ∆ is assumed instead of Γ ≺F ∆. To
compare the properties that Θ is assured to have, we summarize conclusions of
these lemmas in Table 1. For example, the fifth line of the table shows that if
L contains J2, then such a set Θ satisfying E ∈ Θ and Γ ≺F Θ is obtained by
Lemma 4.9. Note that the assumptions of each lemma are omitted in the table
for the sake of simplicity.

5 Modal completeness with respect to IL−-frames

In the previous sections, we dealt with the additional axioms J1, J2, J2+, J4,
J4+ and J5. From Corollary 3.5 and Propositions 3.7, 3.12 and 3.13, we know
that there are twenty different logics obtained by adding some of these axioms
to IL−. In this section, we prove modal completeness theorems with respect to
IL−-frames for twelve of them. Figure 1 represents the interrelations between
these twelve logics. In the figure, each line segment shows that the logic on the
right side is a proper extension of the logic on the left side, where properness
comes from our investigations in Section 3. It follows that no more line segments
can be drawn in the figure. The remaining eight logics are investigated in
Sections 6 and 7.
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IL−

IL−(J5)

IL−(J1)

IL−(J4+)

IL−(J1,J5)

IL−(J4+,J5)

IL−(J1,J4+)

IL−(J2+)

IL−(J1,J4+,J5)

IL−(J2+,J5)

CL

IL

Figure 1: Sublogics of IL complete with respect to IL−-frames

First, we prove the completeness theorem for logics in Figure 1 other than
IL−(J2+,J5) and IL. Secondly, we prove the completeness theorem for logics
IL−(J2+,J5) and IL. Our proof technique of the second completeness theorem
is essentially same as in the proof of de Jongh and Veltman [3]. However,
the detail of our proof is different from that of proofs presented in [3] and
[8]. Furthermore, our proof of the first completeness theorem admits a simpler
technique than that of the second theorem. More precisely, in the proof of the
second theorem, the universe of a countermodel is defined as a set of tuples
⟨Γ, τ⟩ where Γ is a Φ-maximal L-consistent subset of a finite adequate set Φ
and τ is a finite sequence of formulas in Φ. On the other hand, in our proof
of the first theorem, we simply consider tuples ⟨Γ, B⟩ where B is a formula in
Φ to define a countermodel. As a consequence, our proof of the completeness
theorem of the logic CL is simpler than Ignatiev’s proof in [6].

First, we prove the completeness theorem for logics other than IL−(J2+,J5)
and IL.

Theorem 5.1. Let L be one of the logics IL−, IL−(J4+), IL
−(J1), IL−(J5),

IL−(J2+), IL
−(J1,J4+), IL

−(J4+,J5), IL
−(J1,J5), CL and IL−(J1,J4+,J5).

Then for any formula A, the following are equivalent:

1. L ⊢ A.

2. A is valid in all (finite) IL−-frames where all axioms of L are valid.

Proof. (1⇒ 2): Obvious.
(2 ⇒ 1): Suppose L ⊬ A. Let Φ be a finite adequate set of formulas with

∼A ∈ Φ. The existence of such a set Φ is guaranteed by Proposition 4.2. By
the supposition, there exists Γ0 ∈ KL such that ∼A ∈ Γ0.

Let M = ⟨W,R, {Sx}x∈W ,⊩⟩ be a model satisfying the following clauses:

1. W = {⟨Γ, B⟩ : Γ ∈ KL and B ∈ Φ▷};

2. ⟨Γ, B⟩R⟨∆, C⟩ ⇐⇒ Γ ≺ ∆;
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3. ⟨∆, C⟩S⟨Γ,B⟩⟨Θ, D⟩ ⇐⇒ ⟨Γ, B⟩R⟨∆, C⟩ and the condition CL which is
defined below holds;

4. ⟨Γ, B⟩ ⊩ p ⇐⇒ p ∈ Γ.

The condition CL depends on L as follows:

� L ∈ {IL−, IL−(J1)}: If Γ ≺C ∆, then ∼C ∈ Θ.

� L ∈ {IL−(J4+), IL
−(J1,J4+)}: ⟨Γ, B⟩R⟨Θ, D⟩ and if Γ ≺C ∆, then

∼C ∈ Θ.

� L ∈ {IL−(J2+),CL}: ⟨Γ, B⟩R⟨Θ, D⟩ and if Γ ≺C ∆, then D ≡ C, Γ ≺C

Θ and ∼C ∈ Θ.

� L ∈ {IL−(J5), IL−(J1,J5)}: If Γ ≺C ∆ and □∼C ∈ ∆, then ∼C ∈ Θ.

� L ∈ {IL−(J4+,J5), IL
−(J1,J4+,J5)}: ⟨Γ, B⟩R⟨Θ, D⟩ and if Γ ≺C ∆

and □∼C ∈ ∆, then ∼C ∈ Θ.

Here D ≡ C means that formulas D and C are identical. Since ⊥ ∈ Φ▷,
we have ⟨Γ0,⊥⟩ ∈ W and therefore W is non-empty. Also W is finite and
R is a transitive and conversely well-founded binary relation on W . Thus
⟨W,R, {Sx}x∈W ⟩ is an IL−-frame.

Lemma 5.2. Every axiom of L is valid in the frame F = ⟨W,R, {Sx}x∈W ⟩ of
M .

Proof. We distinguish the following several cases:

� L = IL−(J1): Suppose ⟨Γ, B⟩R⟨∆, C⟩. If Γ ≺C ∆, then ∼C ∈ ∆ because
C ▷ C ∈ Γ. Thus ⟨∆, C⟩S⟨Γ,B⟩⟨∆, C⟩ by the definition of CL. Therefore
J1 is valid in F by Proposition 3.2.

� L = IL−(J4+): If ⟨∆, C⟩S⟨Γ,B⟩⟨Θ, D⟩, then ⟨Γ, B⟩R⟨Θ, D⟩. By Proposi-
tion 3.8, J4+ is valid in F .

� L = IL−(J2+): As in the case of IL−(J4+), J4+ is valid in F . Suppose
⟨∆0, C0⟩S⟨Γ,B⟩⟨∆1, C1⟩ and ⟨∆1, C1⟩S⟨Γ,B⟩⟨∆2, C2⟩. Then ⟨Γ, B⟩R⟨∆2, C2⟩.
If Γ ≺C0

∆0, then C1 ≡ C0 and Γ ≺C0
∆1. Since ⟨∆1, C0⟩S⟨Γ,B⟩⟨∆2, C2⟩

and Γ ≺C0
∆1, we have C2 ≡ C0, Γ ≺C0

∆2 and ∼C0 ∈ ∆2. Thus we ob-
tain ⟨∆0, C0⟩S⟨Γ,B⟩⟨∆2, C2⟩. Therefore J2+ is valid in F by Proposition
3.15.

� L = IL−(J5): Suppose ⟨Γ, B⟩R⟨∆, C⟩ and ⟨∆, C⟩R⟨Θ, D⟩. If Γ ≺C ∆
and □∼C ∈ ∆, then ∼C ∈ Θ because ∆ ≺ Θ. Thus ⟨∆, C⟩S⟨Γ,B⟩⟨Θ, D⟩
holds. Then by Proposition 3.18, J5 is valid in F .

� For other cases, the lemma is proved in a similar way as above.
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Lemma 5.3 (Truth Lemma). For any formula C ∈ Φ and any ⟨Γ, B⟩ ∈ W ,
C ∈ Γ if and only if ⟨Γ, B⟩ ⊩ C.

Proof. We prove by induction on the construction of C. We only give a proof
of the case C ≡ (D ▷ E).

(⇒): Assume D ▷ E ∈ Γ. Let ⟨∆, F ⟩ be any element of W such that
⟨Γ, B⟩R⟨∆, F ⟩ and ⟨∆, F ⟩ ⊩ D. Then by induction hypothesis, D ∈ ∆. We
distinguish the following two cases.

� If Γ ≺F ∆, then by Lemma 4.7, there exists Θ ∈ KL such that E ∈ Θ and
∼F ∈ Θ. Moreover, if L ⊢ J4+, Γ ≺ Θ holds. Also if L ⊢ J2+, Γ ≺F Θ
holds.

� If Γ ⊀F ∆, by Lemma 4.7, there exists Θ ∈ KL such that E ∈ Θ because
Γ ≺⊥ ∆. Moreover, if L ⊢ J4+, Γ ≺ Θ holds.

In either case, we have ⟨Θ, F ⟩ ∈ W . Also E ∈ Θ and ⟨∆, F ⟩S⟨Γ,B⟩⟨Θ, F ⟩.
Then by induction hypothesis, ⟨Θ, F ⟩ ⊩ E. Therefore we conclude ⟨Γ, B⟩ ⊩
D ▷ E.

(⇐): Assume D ▷ E /∈ Γ. By Lemma 4.6, there exists ∆ ∈ KL such
that D ∈ ∆ and Γ ≺E ∆. Moreover, if L contains J5, then □∼E ∈ ∆ also
holds. Since ⟨∆, E⟩ ∈ W , ⟨∆, E⟩ ⊩ D by induction hypothesis. Let ⟨Θ, F ⟩ be
any element of W with ⟨∆, E⟩S⟨Γ,B⟩⟨Θ, F ⟩. By the definitions of the relations
S⟨Γ,B⟩ and the condition CL, we have ∼E ∈ Θ in all cases of L. By induction
hypothesis, ⟨Θ, F ⟩ ⊮ E. Therefore we obtain ⟨Γ, B⟩ ⊮ D ▷ E.

Since ⟨Γ0,⊥⟩ ∈ W and A /∈ Γ0, ⟨Γ0,⊥⟩ ⊮ A by Truth Lemma. Therefore A
is not valid in the frame of M .

Our proof of Theorem 5.1 cannot be applied to logics containing both J2
and J5. For example, for L = IL−(J2+,J5), the condition CL which is used to
define the relations S⟨Γ,B⟩ might be as follows: ⟨Γ, B⟩R⟨Θ, D⟩ and if Γ ≺C ∆
and □∼C ∈ ∆, then D ≡ C, Γ ≺C Θ and ∼C ∈ Θ. Then J5 is no longer valid
in the resulting frame ⟨W,R, {Sx}x∈W ⟩. To avoid this obstacle, as mentioned
above, for the modal completeness of such logics, we consider tuples ⟨Γ, τ⟩ as
members of the universe of our countermodel, where τ is a finite sequence of
formulas.

For finite sequences τ and σ of formulas, τ ⊆ σ denotes that τ is an initial
segment of σ. Also τ ⊊ σ denotes that τ is a proper initial segment of σ, that
is, τ ⊆ σ and |τ | < |σ|, where |τ | is the length of τ . Let τ ∗ ⟨B⟩ be the sequence
obtained from τ by concatenating B as the last element.

Theorem 5.4. Let L be one of the logics IL−(J2+,J5) and IL. Then for any
formula A, the following are equivalent:

1. L ⊢ A.

2. A is valid in all (finite) IL−-frames where all axioms of L are valid.
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Proof. (1⇒ 2): Obvious.
(2 ⇒ 1): Suppose L ⊬ A. Let Φ be any finite adequate set with ∼A ∈ Φ.

Let Γ0 ∈ KL be such that ∼A ∈ Γ0.
For each Γ ∈ KL, we define the rank of Γ (write rank(Γ)) as follows:

rank(Γ) := sup{rank(∆) + 1 : Γ ≺ ∆}, where sup ∅ = 0. This is well-defined
because ≺ is conversely well-founded.

Let M = ⟨W,R, {Sx}x∈W ,⊩⟩ be a model satisfying the following clauses:

1. W = {⟨Γ, τ⟩ : Γ ∈ KL and τ is a finite sequence of elements of Φ▷ with
rank(Γ) + |τ | ≤ rank(Γ0)};

2. ⟨Γ, τ⟩R⟨∆, σ⟩ ⇐⇒ Γ ≺ ∆ and τ ⊊ σ;

3. ⟨∆, σ⟩S⟨Γ,τ⟩⟨Θ, ρ⟩ ⇐⇒ ⟨Γ, τ⟩R⟨∆, σ⟩, ⟨Γ, τ⟩R⟨Θ, ρ⟩ and if τ ∗ ⟨C⟩ ⊆ σ,
Γ ≺∗

C ∆ and □∼C ∈ ∆, then τ ∗ ⟨C⟩ ⊆ ρ, Γ ≺∗
C Θ and ∼C,□∼C ∈ Θ;

4. ⟨Γ, τ⟩ ⊩ p ⇐⇒ p ∈ Γ.

Let ϵ be the empty sequence. Then rank(Γ0) + |ϵ| = rank(Γ0), and hence
⟨Γ0, ϵ⟩ ∈ W . Therefore W is a non-empty set. Also W is finite because of the
condition rank(Γ) + |τ | ≤ rank(Γ0). Then ⟨W,R, {Sx}x∈W ⟩ is an IL−-frame.

Lemma 5.5. Every axiom of L is valid in the frame F = ⟨W,R, {Sx}x∈W ⟩ of
M .

Proof. J2+: By the definition of S, J4 is obviously valid in F . Assume ⟨∆0, σ0⟩S⟨Γ,τ⟩⟨∆1, σ1⟩
and ⟨∆1, σ1⟩S⟨Γ,τ⟩⟨∆2, σ2⟩. Suppose τ ∗ ⟨C⟩ ⊆ σ0, Γ ≺∗

C ∆0 and □∼C ∈ ∆0.
Then τ ∗ ⟨C⟩ ⊆ σ1, Γ ≺∗

C ∆1 and □∼C ∈ ∆1 because ⟨∆0, σ0⟩S⟨Γ,τ⟩⟨∆1, σ1⟩.
Then also τ∗⟨C⟩ ⊆ σ2, Γ ≺∗

C ∆2 and∼C,□∼C ∈ ∆2 because ⟨∆1, σ1⟩S⟨Γ,τ⟩⟨∆2, σ2⟩.
Thus we obtain ⟨∆0, σ0⟩S⟨Γ,τ⟩⟨∆2, σ2⟩. Therefore J2+ is valid in F by Propo-
sition 3.17.

J5: Assume that ⟨Γ, τ⟩R⟨∆, σ⟩ and ⟨∆, σ⟩R⟨Θ, ρ⟩. Suppose τ ∗ ⟨C⟩ ⊆ σ,
Γ ≺∗

C ∆ and □∼C ∈ ∆. Since σ ⊊ ρ, we have τ ∗ ⟨C⟩ ⊆ ρ. Since Γ ≺∗
C ∆ and

∆ ≺ Θ, Γ ≺∗
C Θ by Lemma 4.5. Also we have ∼C,□∼C ∈ Θ because ∆ ≺ Θ.

Therefore we obtain ⟨∆, σ⟩S⟨Γ,τ⟩⟨Θ, ρ⟩. By Proposition 3.18, J5 is valid in F .
At last, we assume L = IL and show that J1 is valid in F . Suppose

⟨Γ, τ⟩R⟨∆, σ⟩, Γ ≺∗
C ∆ and □∼C ∈ ∆. Since C ▷ C ∈ Γ, ∼C ∈ ∆. Thus

we have ⟨∆, σ⟩S⟨Γ,τ⟩⟨∆, σ⟩. By Proposition 3.2, J1 is valid in F .

Lemma 5.6 (Truth Lemma). For any formula C ∈ Φ and any ⟨Γ, τ⟩ ∈ W ,
C ∈ Γ if and only if ⟨Γ, τ⟩ ⊩ C.

Proof. This is proved by induction on the construction of C, and we prove only
for C ≡ (D ▷ E).

(⇒): Assume D ▷ E ∈ Γ. Let ⟨∆, σ⟩ be any element of W such that
⟨Γ, τ⟩R⟨∆, σ⟩ and ⟨∆, σ⟩ ⊩ D. Then by induction hypothesis, D ∈ ∆. We
distinguish the following two cases.
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� If τ ∗ ⟨F ⟩ ⊆ σ, Γ ≺∗
F ∆ and □∼F ∈ ∆ for some F , then by Lemma 4.7,

there exists Θ ∈ KL such that E ∈ Θ, Γ ≺∗
F Θ and ∼F,□∼F ∈ Θ. Let

ρ := τ ∗ ⟨F ⟩.

� If not, by Lemma 4.7, there exists Θ ∈ KL such that E ∈ Θ and Γ ≺ Θ
because Γ ≺⊥ ∆. Let ρ := τ ∗ ⟨⊥⟩.

In either case, we have rank(Θ) + 1 ≤ rank(Γ) and |ρ| = |τ | + 1. Then we
obtain

rank(Θ) + |ρ| = rank(Θ) + 1 + |τ | ≤ rank(Γ) + |τ | ≤ rank(Γ0).

It follows ⟨Θ, ρ⟩ ∈ W . By the definition of S, we have ⟨∆, σ⟩S⟨Γ,τ⟩⟨Θ, ρ⟩. Also
by induction hypothesis, ⟨Θ, ρ⟩ ⊩ E. Therefore we conclude ⟨Γ, τ⟩ ⊩ D ▷ E.

(⇐): Assume D ▷ E /∈ Γ. By Lemma 4.6, there exists ∆ ∈ KL such that
D ∈ ∆, Γ ≺∗

E ∆ and □∼E ∈ ∆. Let σ := τ ∗ ⟨E⟩, then it is proved that ⟨∆, σ⟩
is an element of W as above. Then ⟨∆, σ⟩ ⊩ D by induction hypothesis.

Let ⟨Θ, ρ⟩ be any element of W with ⟨∆, σ⟩S⟨Γ,τ⟩⟨Θ, ρ⟩. Since τ ∗ ⟨E⟩ = σ,
Γ ≺∗

E ∆ and □∼E ∈ ∆, we have ∼E ∈ Θ by the definition of S. By induction
hypothesis, ⟨Θ, ρ⟩ ⊮ E. Therefore we conclude ⟨Γ, τ⟩ ⊮ D ▷ E.

Since ⟨Γ0, ϵ⟩ ∈W and A /∈ Γ0, ⟨Γ0, ϵ⟩ ⊮ A by Truth Lemma. Therefore A is
not valid in the frame of M .

As a corollary to Theorems 5.1 and 5.4, we have the decidability of these
logics.

Corollary 5.7. Every logic shown in Figure 1 is decidable.

Since every IL−-frame can be transformed into an IL−
set-frame, we obtain

the following corollary.

Corollary 5.8. Let L be one of twelve logics in Figure 1 and let A be any
formula. Then the following are equivalent:

1. L ⊢ A.

2. A is valid in all (finite) IL−
set-frames in which all axioms of L are valid.

6 Modal incompleteness with respect to IL−-
frames

In this section, we prove the modal incompleteness of eight logics shown in
Figure 2 with respect to IL−-frames. As in Figure 1, no more line segments can
be drawn in the figure.

First, we prove incompleteness of the logics IL−(J2), IL−(J2,J4+), IL
−(J2,J5)

and IL−(J2,J4+,J5).

Proposition 6.1. IL−(J2,J4+,J5) ⊬ J2+.
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IL−(J4)

IL−(J1,J4)

IL−(J4,J5)

IL−(J2)

IL−(J1,J4,J5)

IL−(J2,J5)

IL−(J2,J4+)

IL−(J2,J4+,J5)

Figure 2: Sublogics of IL incomplete with respect to IL−-frames

Proof. Let F = ⟨W,R, {Sx}x∈W ⟩ be the IL−
set-frame defined as follows:

1. W := {x, y0, y1, y2};

2. R := {(x, y0), (x, y1), (x, y2)};

3. y0SxV :⇐⇒ V ⊇ {y1, y2};
y1SxV :⇐⇒ V ⊇ {y2};
y2SxV :⇐⇒ V ⊇ {y0, y1, y2}.

x

y0 y1 y2

By Monotonicity of Sx, F is actually an IL−
set-frame. First, we prove that

J2, J4+ and J5 are valid in F .

� J4+: If ySxV , then V ∩R[x] = V \ {x}. By the definition of Sx, we have
ySx(V \ {x}). Thus ySx(V ∩ R[x]). By Proposition 3.10, J4+ is valid in
F .

� J2: Since IL−(J4+) ⊢ J4, J4 is also valid in F . Suppose ySxV and
∀z ∈ V ∩R[x](zSxUz). Then y2 ∈ V if y is either y0, y1 or y2. Also since
y2 ∈ V ∩R[x], there exists Uy2 ⊆W such that y2SxUy2 . By the definition
of Sx, Uy2 ⊇ {y0, y1, y2}. Thus

∪
z∈V ∩R[x] Uz ⊇ {y0, y1, y2}. Then we have

ySx(
∪

z∈V ∩R[x] Uz) if y is either y0, y1 or y2. Therefore J2 is valid in F
by Proposition 3.16.

� J5: Since there are no y, z ∈ W such that xRy and yRz, by Proposition
3.19, J5 is trivially valid in F .

It suffices to show that J2+ is not valid in F . Let V0 = {y1} and V1 = {y2},
then y0Sx(V0 ∪ V1). Also let Uy1

= {y2}, then ∀z ∈ V0 ∩ R[x](zSxUz). On
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the other hand, since
∪

z∈V0∩R[x] Uz ∪ V1 = Uy1 ∪ V1 = {y2} ∪ {y2} = {y2},
y0Sx(

∪
z∈V0∩R[x] Uz ∪ V1) does not hold. Therefore J2+ is not valid in F by

Proposition 3.17.

Corollary 6.2. Let L be any logic with IL−(J2) ⊆ L ⊆ IL−(J2,J4+,J5).
Then L is not complete with respect to IL−-frames.

Proof. Let F be any IL−-frame in which all axioms of L are valid. Then J2
is valid in F , and hence J2+ is also valid in F by Proposition 3.15. However,
by Proposition 6.1, L ⊬ J2+. Therefore L is not complete with respect to
IL−-frames.

Secondly, we prove incompleteness of the logics IL−(J4), IL−(J1,J4), IL−(J4,J5)
and IL−(J1,J4,J5).

Proposition 6.3. IL−(J1,J4,J5) ⊬ J4+.

Proof. We define the IL−
set-frame F = ⟨W,R, {Sx}x∈W ⟩ as follows:

1. W := {x, y0, y1, y2};

2. R := {(x, y0), (x, y1)};

3. y0SxV :⇐⇒ V ⊇ {y0} or V ⊇ {y1, y2};
y1SxV :⇐⇒ V ⊇ {y1}.

x

y0 y1 y2

Indeed, F is an IL−
set-frame. We show J1, J4 and J5 are valid in F .

� J1: Since y0Sx{y0} and y1Sx{y1}, J1 is valid by Proposition 3.3.

� J4: Suppose ySxV . Then whatever y is, either y0 ∈ V or y1 ∈ V . Thus
there exists z ∈ V such that xRz. Hence J4 is valid in F by Proposition
3.9.

� J5: As in the proof of Proposition 6.1, J5 is trivially valid in F .

Then we show that J4+ is not valid in F . Let V = {y1, y2}, then y0SxV . On
the other hand, since V ∩R[x] = {y1}, y0Sx(V ∩R[x]) does not hold. Therefore
J4+ is not valid in F by Proposition 3.10.

Corollary 6.4. Let L be any logic with IL−(J4) ⊆ L ⊆ IL−(J1,J4,J5). Then
L is incomplete with respect to IL−-frames.
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7 Modal completeness with respect to IL−set-frames

In this section, we prove eight logics shown in Figure 2 are complete with respect
to IL−

set-frames. As in Section 5, at first we prove the completeness theorem of
logics other than IL−(J2,J5) and IL−(J2,J4+,J5).

Theorem 7.1. Let L be one of the logics IL−(J4), IL−(J1,J4), IL−(J4,J5),
IL−(J1,J4,J5), IL−(J2) and IL−(J2,J4+). Then for any formula A, the
following are equivalent:

1. L ⊢ A.

2. A is valid in all (finite) IL−
set-frames where all axioms of L are valid.

Proof. (1⇒ 2): Obvious.
(2 ⇒ 1): Assume L ⊬ A. Let Φ be any finite adequate set of formulas

containing {∼A}. Let Γ0 ∈ KL be such that ∼A ∈ Γ0.
We define a model M = ⟨W,R, {Sx}x∈W ,⊩⟩ as follows:

1. W = {⟨Γ, B⟩ : Γ ∈ KL and B ∈ Φ▷};

2. ⟨Γ, B⟩R⟨∆, C⟩ :⇐⇒ Γ ≺ ∆;

3. ⟨∆, C⟩S⟨Γ,B⟩V :⇐⇒

(a) ⟨Γ, B⟩R⟨∆, C⟩;
(b) For some ⟨Θ, D⟩ ∈ V , ⟨Γ, B⟩R⟨Θ, D⟩;
(c) The condition CL holds.

4. ⟨Γ, B⟩ ⊩ p :⇐⇒ p ∈ Γ.

The condition CL depends on L as follows:

� L ∈ {IL−(J4), IL−(J1,J4)}: If Γ ≺C ∆, then there exists ⟨Λ, G⟩ ∈ V
such that ∼C ∈ Λ.

� L ∈ {IL−(J4,J5), IL−(J1,J4,J5)}: If Γ ≺C ∆ and □∼C ∈ ∆, then
there exists ⟨Λ, G⟩ ∈ V such that ∼C ∈ Λ.

� L = IL−(J2): If Γ ≺C ∆, then there exist ⟨Λ0, G⟩, ⟨Λ1, C⟩ ∈ V such that
∼C ∈ Λ0 and Γ ≺C Λ1.

� L = IL−(J2,J4+): If Γ ≺C ∆, then there exist ⟨Λ0, G⟩, ⟨Λ1, C⟩ ∈ V such
that Γ ≺ Λ0, ∼C ∈ Λ0 and Γ ≺C Λ1.

Since ⊥ ∈ Φ▷, ⟨Γ0,⊥⟩ ∈ W . Therefore W is non-empty. The set W is
finite and the relation R is transitive and conversely well-founded. Moreover,
by Monotonicity of Sx, F = ⟨W,R, {Sx}x∈W ⟩ is an IL−

set-frame.

Lemma 7.2. Every axiom of L is valid in F .
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Proof. If ⟨∆, C⟩S⟨Γ,B⟩V , then for some ⟨Θ, D⟩ ∈ V , ⟨Γ, B⟩R⟨Θ, D⟩. Thus J4 is
valid in F by Proposition 3.9.

We distinguish the following five cases:

� L = IL−(J1,J4): Suppose ⟨Γ, B⟩R⟨∆, C⟩. If Γ ≺C ∆, then ∼C ∈ ∆
because C ▷C ∈ Γ. Hence ⟨∆, C⟩S⟨Γ,B⟩{⟨∆, C⟩}. We conclude that J1 is
valid in F by Proposition 3.3.

� L = IL−(J2): Assume that ⟨∆, C⟩S⟨Γ,B⟩V and for any ⟨∆′, C ′⟩ ∈ V ∩
R[⟨Γ, B⟩], ⟨∆′, C ′⟩S⟨Γ,B⟩U⟨∆′,C′⟩. We distinguish the following two cases:

– If Γ ≺C ∆, then for some ⟨Λ1, C⟩ ∈ V , we have Γ ≺C Λ1. Then
⟨Λ1, C⟩ ∈ V ∩ R[⟨Γ, B⟩]. Since ⟨Λ1, C⟩S⟨Γ,B⟩U⟨Λ1,C⟩ and Γ ≺C Λ1,
there exist ⟨Λ′

0, G⟩, ⟨Λ′
1, C⟩ ∈ U⟨Λ1,C⟩ such that ∼C ∈ Λ′

0 and Γ ≺C

Λ′
1 by the definition of S. Therefore ⟨∆, C⟩S⟨Γ,B⟩U⟨Λ1,C⟩.

– If Γ ⊀C ∆, then for some ⟨Θ, D⟩ ∈ V , ⟨Γ, B⟩R⟨Θ, D⟩, and hence
⟨Θ, D⟩S⟨Γ,B⟩U⟨Θ,D⟩. Then there exists ⟨Θ′, D′⟩ ∈ U⟨Θ,D⟩ such that
⟨Γ, B⟩R⟨Θ′, D′⟩. Therefore, we have ⟨∆, C⟩S⟨Γ,B⟩U⟨Θ,D⟩.

In either case, we obtain ⟨∆, C⟩S⟨Γ,B⟩(
∪

⟨∆′,C′⟩∈V ∩R[⟨Γ,B⟩] U⟨∆′,C′⟩) by
Monotonicity. Thus we conclude that J2 is valid in F by Proposition
3.16.

� L = IL−(J2,J4+): As in the case of IL−(J2), J2 is valid in F .

Suppose ⟨∆, C⟩S⟨Γ,B⟩V . We distinguish the following two cases:

– If Γ ≺C ∆, then there exist ⟨Λ0, G⟩, ⟨Λ1, C⟩ ∈ V such that Γ ≺ Λ0,
∼C ∈ Λ0 and Γ ≺C Λ1. Let V

′ := {⟨Λ0, G⟩, ⟨Λ1, C⟩}.
– If Γ ⊀C ∆, then for some ⟨Θ, D⟩ ∈ V with ⟨Γ, B⟩R⟨Θ, D⟩, let V ′ :=
{⟨Θ, D⟩}.

In either case, we have ⟨∆, C⟩S⟨Γ,B⟩V
′. Also we have V ′ ⊆ V ∩R[⟨Γ, B⟩].

Then ⟨∆, C⟩S⟨Γ,B⟩(V ∩R[⟨Γ, B⟩]) by Monotonicity. Therefore J4+ is valid
in F by Proposition 3.10.

� L = IL−(J4,J5): Suppose ⟨Γ, B⟩R⟨∆, C⟩ and ⟨∆, C⟩R⟨Θ, D⟩. Let V :=
{⟨Θ, D⟩}, then ⟨Θ, D⟩ ∈ V ∩ R[⟨Γ, B⟩]. If Γ ≺C ∆ and □∼C ∈ ∆, then
∼C ∈ Θ because ∆ ≺ Θ. Thus ⟨∆, C⟩S⟨Γ,B⟩V . By Proposition 3.19, J5
is valid in F .

� L = IL−(J1,J4,J5): As in the cases of IL−(J1,J4) and IL−(J4,J5),
the axiom schemata J1, J4 and J5 are valid in F .

Lemma 7.3 (Truth Lemma). For any C ∈ Φ and any ⟨Γ, B⟩ ∈ W , C ∈ Γ if
and only if ⟨Γ, B⟩ ⊩ C.
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Proof. We prove by induction on C, and we only give a proof of the case C ≡
(D ▷ E).

(⇒): Assume D ▷ E ∈ Γ. Let ⟨∆, F ⟩ be any element of W such that
⟨Γ, B⟩R⟨∆, F ⟩ and ⟨∆, F ⟩ ⊩ D. By induction hypothesis, D ∈ ∆. Since L
contains J4, by Lemma 4.8, there exists Θ ∈ KL such that Γ ≺ Θ and E ∈ Θ.

� If Γ ≺F ∆, then by Lemma 4.7, there exists Λ ∈ KL such that E ∈ Λ
and ∼F ∈ Λ. In particular, if L = IL−(J2,J4+), then Γ ≺ Λ holds.
Moreover, if L ∈ {IL−(J2), IL−(J2,J4+)}, then we may assume Γ ≺F Θ
by Lemma 4.9. Let V := {⟨Θ, F ⟩, ⟨Λ, F ⟩}.

� If Γ ⊀F ∆, then let V := {⟨Θ, F ⟩}.

In either case, ⟨∆, F ⟩S⟨Γ,B⟩V . By induction hypothesis, ⟨Θ, F ⟩ ⊩ E and
⟨Λ, F ⟩ ⊩ E. We conclude ⟨Γ, B⟩ ⊩ D ▷ E.

(⇐): Assume D ▷ E /∈ Γ. Then by Lemma 4.6, there exists ∆ ∈ KL such
that D ∈ ∆ and Γ ≺E ∆. Moreover if L contains J5, then □∼E ∈ ∆ also
holds. We have ⟨∆, E⟩ ⊩ D by induction hypothesis. Let V be any subset of
W such that ⟨∆, E⟩S⟨Γ,B⟩V . By the definition of S, there exists ⟨Λ, G⟩ ∈ V
such that ∼E ∈ Λ. Then by induction hypothesis, ⟨Λ, G⟩ ⊮ E. Thus we obtain
⟨Γ, B⟩ ⊮ D ▷ E.

Since ⟨Γ0,⊥⟩ ∈W and A /∈ Γ0, it follows from Truth Lemma that ⟨Γ0,⊥⟩ ⊮
A. Thus A is not valid in the frame of M .

At last, we prove the completeness of the logics IL−(J2,J5) and IL−(J2,J4+,J5)
with respect to IL−

set-frames.

Theorem 7.4. Let L be one of IL−(J2,J5) and IL−(J2,J4+,J5). Then for
any formula A, the following are equivalent:

1. L ⊢ A.

2. A is valid in all (finite) IL−
set-frames where all axioms of L are valid.

Proof. (1⇒ 2): Straightforward.
(2 ⇒ 1): Suppose L ⊬ A. Let Φ be any finite adequate set containing ∼A.

Let Γ0 ∈ KL be such that ∼A ∈ Γ0. For each Γ ∈ KL, rank(Γ) is defined as in
the proof of Theorem 5.4. Let k := max{rank(Γ) : Γ ∈ KL}.

We define the model M := ⟨W,R, {Sx}x∈W ,⊩⟩ as follows:

1. W = {⟨Γ, τ⟩ : Γ ∈ KL and τ is a finite sequence of elements of Φ▷ with
rank(Γ) + |τ | ≤ k};

2. ⟨Γ, τ⟩R⟨∆, σ⟩ :⇐⇒ Γ ≺ ∆ and τ ⊊ σ;

3. ⟨∆, σ⟩S⟨Γ,τ⟩V :⇐⇒

(a) ⟨Γ, τ⟩R⟨∆, σ⟩;
(b) For some ⟨Θ, ρ⟩ ∈ V , ⟨Γ, τ⟩R⟨Θ, ρ⟩;
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(c) If τ ∗ ⟨C⟩ ⊆ σ, Γ ≺∗
C ∆ and □∼C ∈ ∆, then the condition CL holds.

4. ⟨Γ, τ⟩ ⊩ p :⇐⇒ p ∈ Γ.

The condition CL depends on L as follows:

� IL−(J2,J5): There exist ⟨Λ1, ρ1⟩, ⟨Λ2, ρ2⟩ ∈ V such that τ ∗ ⟨C⟩ ⊆ ρ2,
∼C ∈ Λ1, Γ ≺∗

C Λ2 and □∼C ∈ Λ2.

� IL−(J2,J4+,J5): There exist ⟨Λ1, ρ1⟩, ⟨Λ2, ρ2⟩ ∈ V such that τ ∗ ⟨C⟩ ⊆
ρ1, τ ∗ ⟨C⟩ ⊆ ρ2, Γ ≺ Λ1, ∼C ∈ Λ1, Γ ≺∗

C Λ2 and □∼C ∈ Λ2.

Let ϵ be the empty sequence. Then rank(Γ0)+|ϵ| ≤ k, and hence ⟨Γ0, ϵ⟩ ∈W .
Therefore W is a non-empty set. Then ⟨W,R, {Sx}x∈W ⟩ is a finite IL−

set-frame.

Lemma 7.5. Every axiom of L is valid in the frame F = ⟨W,R, {Sx}x∈W ⟩ of
M .

Proof. J2: It is easy to show that J4 is valid in F (see Proposition 3.9). Suppose
⟨∆, σ⟩S⟨Γ,τ⟩V and for any ⟨∆′, σ′⟩ ∈ V ∩R[⟨Γ, τ⟩], ⟨∆′, σ′⟩S⟨Γ,τ⟩U⟨∆′,σ′⟩.

� If τ ∗⟨C⟩ ⊆ σ, Γ ≺∗
C ∆ and □∼C ∈ ∆, then there exists ⟨Λ2, ρ2⟩ ∈ V such

that τ ∗⟨C⟩ ⊆ ρ2, Γ ≺∗
C Λ2 and □∼C ∈ Λ2. Since ⟨Λ2, ρ2⟩ ∈ V ∩R[⟨Γ, τ⟩],

we have ⟨Λ2, ρ2⟩S⟨Γ,τ⟩U⟨Λ2,ρ2⟩. Since τ ∗ ⟨C⟩ ⊆ ρ2, Γ ≺∗
C Λ2 and □∼C ∈

Λ2, by the definition of S, the set U⟨Λ2,ρ2⟩ satisfies the condition CL. Thus
we obtain ⟨∆, σ⟩S⟨Γ,τ⟩U⟨Λ2,ρ2⟩.

� If not, then let ⟨Θ, ρ⟩ ∈ V be such that ⟨Γ, τ⟩R⟨Θ, ρ⟩. We have ⟨Θ, ρ⟩S⟨Γ,τ⟩U⟨Θ,ρ⟩
because ⟨Θ, ρ⟩ ∈ V ∩R[⟨Γ, τ⟩]. In particular, ⟨∆, σ⟩S⟨Γ,τ⟩U⟨Θ,ρ⟩.

In either case, by Monotonicity, ⟨∆, σ⟩S⟨Γ,τ⟩(
∪

⟨∆′,σ′⟩∈V ∩R[⟨Γ,τ⟩] U⟨∆′,σ′⟩).
Therefore J2 is valid in F by Proposition 3.16.

J5: Suppose ⟨Γ, τ⟩R⟨∆, σ⟩ and ⟨∆, σ⟩R⟨Θ, ρ⟩. If there exists C such that
τ ∗ ⟨C⟩ ⊆ σ, Γ ≺∗

C ∆ and □∼C ∈ ∆, then τ ∗ ⟨C⟩ ⊆ ρ because σ ⊊ ρ. Since
Γ ≺∗

C ∆ and ∆ ≺ Θ, we have Γ ≺∗
C Θ by Lemma 4.5. Also ∼C,□∼C ∈ Θ

because ∆ ≺ Θ. Therefore we obtain ⟨∆, σ⟩S⟨Γ,τ⟩{⟨Θ, ρ⟩}. By Proposition
3.19, J5 is valid in F .

At last, when L = IL−(J2,J4+,J5), we prove that J4+ is valid in F .
Suppose ⟨∆, σ⟩S⟨Γ,τ⟩V . Then there exists ⟨Θ, ρ⟩ ∈ V such that ⟨Γ, τ⟩R⟨Θ, ρ⟩,
and hence ⟨Θ, ρ⟩ ∈ V ∩ R[⟨Γ, τ⟩]. If τ ∗ ⟨C⟩ ⊆ σ, Γ ≺∗

C ∆ and □∼C ∈ ∆
for some C, then there exist ⟨Λ1, ρ1⟩, ⟨Λ2, ρ2⟩ ∈ V such that τ ∗ ⟨C⟩ ⊆ ρ1,
τ ∗ ⟨C⟩ ⊆ ρ2, Γ ≺ Λ1, ∼C ∈ Λ1, Γ ≺∗

C Λ2 and □∼C ∈ Λ2. In particular,
⟨Λ1, ρ1⟩, ⟨Λ2, ρ2⟩ ∈ V ∩ R[⟨Γ, τ⟩]. Thus we obtain ⟨∆, σ⟩S⟨Γ,τ⟩(V ∩ R[⟨Γ, τ⟩]).
By Proposition 3.10, J4+ is valid in F .

Lemma 7.6 (Truth Lemma). For any formula C ∈ Φ and any ⟨Γ, τ⟩ ∈ W ,
C ∈ Γ if and only if ⟨Γ, τ⟩ ⊩ C.
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Proof. We prove the lemma by induction on the construction of C, and we give
a proof only for C ≡ (D ▷ E).

(⇒): Assume D ▷ E ∈ Γ. Let ⟨∆, σ⟩ be any element of W such that
⟨Γ, τ⟩R⟨∆, σ⟩ and ⟨∆, σ⟩ ⊩ D. Then by induction hypothesis, D ∈ ∆. We
distinguish the following two cases.

� If τ ∗⟨F ⟩ ⊆ σ, Γ ≺∗
F ∆ and □∼F ∈ ∆, then there exists Λ1 ∈ KL such that

E,∼F ∈ Λ1 by Lemma 4.7. Moreover, if L = IL−(J2,J4+,J5), Γ ≺ Λ1

also holds. By Lemma 4.9, there exists Λ2 ∈ KL such that Γ ≺∗
F Λ2

and E,□∼F ∈ Λ2. Let ρ1 :=

{
ϵ if L = IL−(J2,J5),

τ ∗ ⟨F ⟩ if L = IL−(J2,J4+,J5)
and

let ρ2 := τ ∗ ⟨F ⟩. Then it is easy to see that ⟨Λ1, ρ1⟩, ⟨Λ2, ρ2⟩ ∈ W .
Let V := {⟨Λ1, ρ1⟩, ⟨Λ2, ρ2⟩}, then ⟨∆, σ⟩S⟨Γ,τ⟩V by the definition of S.
By induction hypothesis, ⟨Λ1, ρ1⟩ ⊩ E and ⟨Λ2, ρ2⟩ ⊩ E. We conclude
⟨Γ, τ⟩ ⊩ D ▷ E.

� If not, then there exists Θ ∈ KL such that Γ ≺ Θ and E ∈ Θ by Lemma
4.8. Let ρ := τ ∗ ⟨E⟩, then ⟨Θ, ρ⟩ ∈W . By induction hypothesis, ⟨Θ, ρ⟩ ⊩
E. Let V := {⟨Θ, ρ⟩}, then ⟨∆, σ⟩S⟨Γ,τ⟩V . We conclude ⟨Γ, τ⟩ ⊩ D ▷ E.

(⇐): Assume D ▷ E /∈ Γ. By Lemma 4.6, there exists ∆ ∈ KL such that
D ∈ ∆, Γ ≺∗

E ∆ and □∼E ∈ ∆. Let σ := τ ∗ ⟨E⟩, then ⟨∆, σ⟩ ∈ W . We have
⟨∆, σ⟩ ⊩ D by induction hypothesis.

Let V be any subset of W with ⟨∆, σ⟩S⟨Γ,τ⟩V . Since τ ∗ ⟨E⟩ = σ, Γ ≺∗
E ∆

and □∼E ∈ ∆, there exists ⟨Λ1, ρ1⟩ ∈ V such that ∼E ∈ Λ1 by the definition
of S. By induction hypothesis, ⟨Λ1, ρ1⟩ ⊮ E. Therefore we conclude ⟨Γ, τ⟩ ⊮
D ▷ E.

Since ⟨Γ0, ϵ⟩ ∈ W and A /∈ Γ0, we obtain ⟨Γ0, ϵ⟩ ⊮ A by Truth Lemma.
Therefore A is not valid in the frame of M .

Corollary 7.7. Every logic shown in Figure 2 is decidable.

8 Concluding Remarks

In the previous sections, we investigated the twenty natural sublogics of IL
shown in Figures 1 and 2. We proved that twelve of them are complete with
respect to IL−-frames, but the remaining eight are not. Finally, in Section 7,
we proved that these eight logics are also complete with respect to IL−

set-frames.
Consequently, all these twenty logics are also complete with respect to IL−

set-
frames. In this situation, one of the referees proposed the following interesting
problem.

Problem 8.1. Does there exist an extension of IL− incomplete with respect to
IL−

set-frames?
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We introduced these twenty logics to investigate IL−-frames in detail. As a
result of our research in the present paper, it can be said that our understanding
of the fine structure of IL has improved in terms of semantical and syntactical
aspects. Our framework would be useful for finer investigations of some known
results of IL and its extensions. In addition, investigating whether these newly
introduced logics satisfy natural logical properties is an interesting subject in
itself. Along these lines, a research following the present paper is proceeding by
the authors (see [7]).
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