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UNIFORMLY LOCALLY O-MINIMAL OPEN CORE

MASATO FUJITA

Abstract. This paper discusses sufficient conditions for a definably complete
densely linearly ordered expansion of an abelian group having the uniformly
locally o-minimal open cores of the first/second kind and strongly locally o-
minimal open core, respectively.

1. Introduction

The open core of a structure is its reduct generated by its definable open sets.
Dolich et al. first introduced the notion of open core and gave a sufficient condition
for the structure having an o-minimal open core in [2]. Fornasiero also investigated
necessary and sufficient conditions for a definably complete expansion of an ordered
field having a locally o-minimal open core in [3].

A uniformly locally o-minimal structure was first introduced in [7] and a system-
atic study was made in [4]. The purpose of this paper is to give sufficient conditions
for structures having uniformly locally o-minimal open cores of the first/second kind
and having strongly locally o-minimal open core, respectively. The following the-
orem is our main theorem. The notations in the theorem are defined in Section
2.

Theorem 1.1. Consider an expansion of a densely linearly ordered abelian group
R = (R,<,+, 0, . . .) with R |= DC.

• If R |= SLUF, the structure R has a strongly locally o-minimal open core.
• If R |= LUF1, the structure R has a uniformly locally o-minimal open core
of the first kind.

• If R |= LUF2, the structure R has a uniformly locally o-minimal open core
of the second kind.

We can prove the theorem basically following the same strategy as the proof
of [2, Theorem A]. We first review the notion of DΣ-families and DΣ-sets used in
the proof of [2, Theorem A] in Section 3. The key lemma is that, for a DΣ-family
{Xr,s}r>0,s>0, the set Xr,s has a nonempty interior for some r > 0 and s > 0
when the DΣ-set X =

⋃
r>0,s>0 Xr,s has a non empty interior. This lemma holds

true both for the o-minimal open core case [2, 3.1] and our case. However, a new
investigation is necessary to demonstrate the lemma in our case. Basic lemmas
including the above lemma are proved in Section 4. We cannot use the same
definition of dimension of DΣ-sets as [2]. We give a new definition of dimension in
Section 3. We finally prove the theorem in Section 5 using this concept.

We introduce the terms and notations used in this paper. The term ‘definable’
means ‘definable in the given structure with parameters’ in this paper. A CBD
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set is a closed, bounded and definable set. A CDD set is a closed, discrete and
definable set. For any set X ⊂ Rm+n definable in a structure R = (R, . . .) and for
any x ∈ Rm, the notation Xx denotes the fiber defined as {y ∈ Rn | (x, y) ∈ X}.
For a linearly ordered structure R = (R,<, . . .), an open interval is a definable set
of the form {x ∈ R | a < x < b} for some a, b ∈ R. It is denoted by (a, b) in
this paper. We define a closed interval in the same manner and it is denoted by
[a, b]. An open box in Rn is the direct product of n open intervals. A closed box
is defined similarly. Let A be a subset of a topological space. The notations int(A)
and A denote the interior and the closure of the set A, respectively. The notation
|S| denotes the cardinality of a set S.

2. Definitions

We review the definitions and the assertions introduced in the previous studies.
A constructible set is a finite boolean combination of open sets. Note that every
constructible definable set is a finite boolean combination of open definable sets by
[1]. The definition of a definably complete structure is found in [8]. The notation
R |= DC means that the structure R is definably complete. A locally o-minimal
structure is defined and investigated in [9]. Readers can find the definitions of
uniformly locally o-minimal structures of the first/second kind in [4]. The open
core of a structure is defined in [2].

We give the definitions used in Theorem 1.1.

Definition 2.1 (Local uniform finiteness). A densely linearly ordered structure
R = (R,<, . . .) satisfies locally uniform finiteness of the second kind – for short,
R |= LUF2 if, for any definable subset X ⊂ Rm+1, a ∈ R and b ∈ Rm, there exist

• a positive integer N ,
• a closed interval I with a ∈ int(I) and
• an open box U ⊂ Rm with b ∈ U

such that |Xx ∩ J | = ∞ or |Xx ∩ J | ≤ N for all x ∈ U and all closed intervals J

with a ∈ int(J) ⊂ I.
An easy induction shows that R |= LUF2 if and only if, for any definable subset

X ⊂ Rm+n and (b, a) ∈ Rm+n, there exist a positive integer N , a closed box B with
a ∈ int(B) and an open box U with b ∈ U such that |Xx∩B′| = ∞ or |Xx∩B′| ≤ N

for all x ∈ U and all closed boxes B′ with a ∈ int(B′) ⊂ B.
The structure R = (R,<, . . .) satisfies locally uniform finiteness of the first kind

– for short, R |= LUF1 if R |= LUF2 and we can take U = Rm in the definition
of LUF2. The structure R = (R,<, . . .) satisfies strongly locally uniform finiteness
– for short, R |= SLUF if R |= LUF1 and we can take I independently of the
definable set X ⊂ Rm+1.

Remark 2.2. A definably complete uniformly locally o-minimal structure of the
second kind satisfies locally uniform finiteness of the second kind by [4, Theorem
4.2].

Remark 2.3. Consider a locally o-minimal expansion of the group of reals R̃ =
(R, <, 0,+, . . .). The following assertion is [5, Theorem 4.3].

For any definable subset X of Rn+1, there exist a positive element
r ∈ R and a positive integer K such that, for any a ∈ Rn, the
definable set X ∩ ({a}× (−r, r)) has at most K connected compo-
nents.
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By reviewing its proof, it is easy to check that the above r can be taken indepen-

dently of X because R̃ is strongly locally o-minimal by [9, Corollary 3.4]. Therefore,

we have R̃ |= SLUF.

Example 2.4. We give an example of a structure which has a strongly locally o-
minimal open core, but is not a locally o-minimal.

We first consider the language L1 = {0, 1,+,−, <}. We define L1-structures

Q̃ = (Q, 0Q̃, 1Q̃,+Q̃,−Q̃, <Q̃) and R̃ = (R, 0R̃, 1R̃,+R̃,−R̃, <R̃) naturally. It is easy

to demonstrate that both Q̃ and R̃ have quantifier elimination. We can also easy

to demonstrate that Q̃ is an elementary substructure of R̃ using the Tarski-Vaught
test. They are both o-minimal structures.

The structures [̃0, 1)Q and [̃0, 1)R are the restrictions of Q̃ and R̃ to the sets
[0, 1)Q = {x ∈ Q | 0 ≤ x < 1} and [0, 1)R = {x ∈ R | 0 ≤ x < 1} defined in [7,

Definition 2], respectively. The structure [̃0, 1)Q is again an elementary substructure

of [̃0, 1)R. The notation M =
(
[̃0, 1)R, [̃0, 1)Q

)
denotes their dense pair. The

definition of dense pairs is found in [10]. The dense pair M satisfies uniform
finiteness by [10, Corollary 4.5]. The notion of uniform finiteness is introduced
in [2].

We next consider the language L = {0, 1,+,−, <, PZ, PQ}, where PZ and PQ are
unary predicates. We define an L-structure R = (R, 0R, 1R,+R,−R, <R, PR

Z , PR

Q )
as follows:

• R |= PR

Z (x) if and only if x ∈ Z;
• R |= PR

Q (x) if and only if x ∈ Q.

The following claim is proved by the induction on the complexity of the formula
defining the definable set X . We omit the proof.

Claim. Let X be a subset of Rn definable in R. There exist finite subsets
X1, . . .Xk of [0, 1)R definable in the dense pair M and a map ι : Zn → {1, . . . , k}
such that, for any z = (z1, . . . , zn) ∈ Zn, we have

X ∩

(
n∏

i=1

[zi, zi + 1)

)
= z +Xι(z),

where [c, d) = {x ∈ R | c ≤ x < d} and z + Xι(z) = {(x1, . . . , xn) ∈ Rn | (x1 −
z1, . . . , xn − zn) ∈ Xι(z)}.

The structure R is not locally o-minimal because the set Q is definable in R.
We have R |= SLUF by the above claim because M satisfies uniform finiteness.
We also have R |= DC because the universe R is complete. The structure R has a
strongly locally o-minimal open core by Theorem 1.1.

3. DΣ-sets and its dimension

We can apply the same strategy as [2] to our problem. Dolich et al. used the
notion of DΣ-sets in [2]. They play an important role also in this paper.

Definition 3.1 (DΣ-sets). Consider an expansion of a densely linearly ordered
abelian group R = (R,<,+, 0 . . .). A parameterized family of definable sets are
the family of the fibers of a definable set. A parameterized family {Xr,s}r>0,s>0 of
CBD subsets of Rn is called a DΣ-family if Xr,s ⊂ Xr′,s and Xr,s′ ⊂ Xr,s whenever
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r ≤ r′ and s ≤ s′. A definable subset X of Rn is a DΣ-set if X =
⋃

r>0,s>0

Xr,s for

some DΣ-family {Xr,s}r>0,s>0.

The following two lemmas are found in [2, 8].

Lemma 3.2. Consider an expansion of a densely linearly ordered abelian group R
with R |= DC. The following assertions are true:

(1) The projection image of a DΣ-set is DΣ.
(2) Fibers, finite unions and finite intersections of DΣ-sets are DΣ.
(3) Every constructible definable set is DΣ.

Proof. (1) Immediate from [8, Lemma 1.7]. (2) [2, 1.9(1)]. (3) [2, 1.10(1)]. �

Lemma 3.3. Let R = (R,<,+, 0, . . .) be an expansion of a densely linearly ordered
abelian group with R |= DC. A CBD set X ⊂ Rn+1 has a nonempty interior if the
CBD set

{x ∈ Rn | Xx contains a closed interval of length s}

has a nonempty interior for some s > 0.

Proof. [2, 2.8(2)] �

The notion of dimension used for o-minimal open cores in [2] is not appropriate
for our setting. We give a new definition of dimension of a DΣ-set. The dimension
of a set definable in a locally o-minimal structure admitting local definable cell
decomposition is defined in [4, Section 5]. In a definably complete uniformly locally
o-minimal structure of the second kind, the dimension defined below coincides with
the dimension defined in [4, Section 5] by [4, Corollary 5.3].

Definition 3.4 (Dimension). Let R = (R,<, . . .) be an expansion of a densely
linearly ordered structure. Consider a DΣ-subset X of Rn and a point x ∈ Rn. The
local dimension dimxX of X at x is defined as follows:

• dimxX = −∞ if there exists an open box B with x ∈ B and B ∩X = ∅.
• Otherwise, dimx X is the supremum of nonnegative integers d such that, for
any open box B with x ∈ B, the image π(B ∩X) has a nonempty interior
for some coordinate projection π : Rn → Rd.

The dimension of X is defined by dimX = sup{dimx X | x ∈ Rn}. The projective
dimension proj. dimX of X is defined as follows:

• proj. dimX = −∞ if X is an empty set.
• Otherwise, proj. dimX is the supremum of nonnegative integers d such that
the image π(X) has a nonempty interior for some coordinate projection
π : Rn → Rd.

The following lemma illustrates that the dimension and the projective dimension
coincides in some open box.

Lemma 3.5. Let R = (R,<, . . .) be an expansion of a densely linearly ordered
structure. Consider a DΣ-subset X of Rn of dimension d. Take a point x ∈ Rn

with dimx X = d. We have dim(X ∩B) = proj. dim(X∩B) = d for any sufficiently
small open box B in Rn with x ∈ B.
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Proof. Since dimx X = d, the projection image π(B ∩ X) has an empty interior
for any coordinate projection π : Rn → Rd+1 when B is a sufficiently small open
box with x ∈ B. In particular, proj. dimB ∩ X ≤ d. It is obvious that d =
dimx X ≤ dimB ∩ X ≤ dimX = d. We have shown that dimB ∩ X = d and
proj. dimB∩X ≤ dimB∩X . The opposite inequality dimB∩X ≤ proj. dimB∩X

is obvious from the definition. �

4. Basic lemmas

We introduce basic lemmas in this section. We first prove two lemmas. We can
prove the lemmas by localizing the arguments in [2, 2.4].

Lemma 4.1. Let R = (R,<,+, 0, . . .) be an expansion of a densely linearly ordered
abelian group with R |= DC,LUF2.

For any definable set X ⊂ Rm+n and a point (b, a) ∈ Rm × Rn, there exist a
positive integer N , a closed box B with a ∈ int(B) and an open box U containing
the point b such that, if Xx ∩B is discrete, we have |Xx ∩B| ≤ N for any x ∈ U .

In addition, we can take U = Rm if R |= LUF1. We can take B independently
of X ⊂ Rm+n if R |= SLUF.

Proof. We first demonstrate the following claim:

Claim. Let X be a definable subset of Rm+n. Assume that the fiber Xx is
CDD for any x ∈ Rm. For any (b, a) ∈ Rm ×Rn, there exists a closed box B with
a ∈ int(B) and an open box U containing the point b such that Xx ∩B is a finite
set for any x ∈ U . In addition, we can take U = Rm if R |= LUF1. We can take B

independently of X ⊂ Rm+n if R |= SLUF.

We prove the claim. Assume the contrary. We can find a point (b, a) ∈ Rm×Rn

such that, for any closed box B with a ∈ int(B) and any open box U with b ∈ U ,
Xx ∩B is infinite for some x ∈ U . Consider the set

Y = {(x, y1, y2) ∈ Rm ×Rn ×Rn | (x, y1) ∈ X, (x, y2) ∈ X,

y1 ≥ y2 in the lexicographic order}.

Since R |= LUF2, there exist a positive integer N , a closed box B with a ∈ int(B)
and an open box V with (b, a) ∈ V = U1 × U2 ⊂ Rm × Rn such that, for any
(x, y1) ∈ V , we have |Y(x,y1)∩B| = ∞ or |Y(x,y1)∩B| ≤ N . Shrinking B if necessary,
we may assume that B is contained in U2. Fix such a closed box B. Take a point
x ∈ U1 such that Xx ∩B is infinite. Such a point x exists by the assumption. Note
that Xx∩B is CBD. We construct a point zk ∈ B with |Y(x,zk)∩B| = k inductively.
Take z1 = lexmin(Xx∩B), then Y(x,z1)∩B = {z1}. The notation lexmin denotes
the lexicographic minimum defined in [8]. Take z2 = lexmin(Xx ∩B \ {z1}), then
Y(x,z2) ∩ B = {z1, z2}. Take z3, z4, . . . in this manner. We have |Y(x,zN+1) ∩ B| =
N + 1, which is a contradiction.

It is obvious that U = Rm if R |= LUF1 and B is common to all X if R |= SLUF.
We have finished the proof of the claim.

We return to the proof of the lemma. Take a bounded closed box C with b ∈
int(C). Set D = {(s, x, y) ∈ R×C ×Rn |

∏n

i=1[yi − s, yi + s]n ∩Xx = {y}}, where
y = (y1, . . . , yn). The following assertions are trivial.

• The fiber D(s,x) is CDD.
•
⋃

s>0 Ds = {(x, y) | y is a discrete point in Xx}.
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Apply the claim to the set D. We can take an open box U with b ∈ U and a closed
box B with a ∈ int(B) such that D(s,x) ∩ B are finite sets for all x ∈ U and all
sufficiently small s > 0. Since R |= LUF2, shrinking B and U if necessary, we have∣∣D(s,x) ∩B

∣∣ ≤ N for some positive integer N , any x ∈ U and any sufficiently small

s > 0. Since D(s,x) ⊂ D(s′,x) for all s > s′ > 0, we have
∣∣⋃

s>0 D(s,x) ∩B
∣∣ ≤ N .

The ‘in addition’ parts of the lemma are obvious. �

Lemma 4.2. Let R = (R,<,+, 0, . . .) be an expansion of a densely linearly ordered
abelian group with R |= DC,LUF2.

For any definable set X ⊂ Rm+1 and a point (b, a) ∈ Rm×R, there exist positive
integers N1, N2, an open interval I with a ∈ I and an open box U containing the
point b such that, for any x ∈ U ,

• the open set int(Xx) ∩ I is the union of at most N1 open intervals in I;
• the closed set Xx ∩ I is the union of at most N1 points and N2 closed
intervals in I.

In addition, we can take U = Rm if R |= LUF1. We can take I independently
of X ⊂ Rm+1 if R |= SLUF.

Proof. The assertion on the closure follows the assertion on the interior by consid-
ering Rm+1 \X in place of X . We only prove the latter. We may assume that Xx

is open for any x ∈ Rm without loss of generality. Consider the set

C = {(r, x, y) ∈ R×Rm ×R | r > 0, ∃ε > 0, (y − ε, y + ε) ⊂ Xx ∩ (a− r, a+ r)

y − ε, y + ε ∈ ∂(Xx ∩ (a− r, a+ r))},

where ∂(Xx ∩ (a − r, a + r)) denotes the boundary of the set Xx ∩ (a − r, a + r)
in R. The fiber C(r,x) is discrete. By Lemma 4.1, there exist a positive integer N ,
a positive element s > 0, a closed interval I ′ with a ∈ int(I ′) and an open box U

containing the point b such that |C(r,x) ∩ I ′| ≤ N for all x ∈ U and 0 < r < s. Take
a sufficiently small r > 0 with [a − r, a + r] ⊂ I ′ and set I = (a − r, a + r). The
definable set Xx ∩ I consists of at most N open intervals for any x ∈ U . �

Lemma 4.3 is the key lemma introduced in Section 1. We prove the lemma com-
bining the arguments of [2] and [6]. Lemma 4.4 is another key lemma corresponding
to [4, Theorem 3.3]. They are proved simultaneously.

Lemma 4.3. Let R = (R,<,+, 0, . . .) be an expansion of a densely linearly ordered
abelian group with R |= DC,LUF2. Let {Xr,s ⊂ Rn}r>0,s>0 be a DΣ-family. Set
X =

⋃
r,s Xr,s. One of the following conditions is satisfied:

• The DΣ-set X has an empty interior and it is locally finite when n = 1.
• The CBD set Xr,s has a nonempty interior for some r > 0 and s > 0.

Lemma 4.4. Let R = (R,<,+, 0, . . .) be an expansion of a densely linearly ordered
abelian group with R |= DC,LUF2. Consider a DΣ-subset X of Rn with a nonempty
interior. Let X = X1 ∪X2 be a partition into two DΣ-sets. At least one of X1 and
X2 has a nonempty interior.

Proof. We prove the lemmas by the induction on n. We first consider the case in
which n = 1. We first demonstrate Lemma 4.3. Assume that int(Xr,s) = ∅ for all
r > 0 and s > 0. We have only to show that X is locally finite. Fix an arbitrary
point a ∈ R and r > 0. Set Xr =

⋃
s>0 Xr,s. There exist a closed interval I with

a ∈ int(I), a positive element t ∈ R, positive integers N1 and N2 such that the
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intersection I ∩Xr,s is the union of at most N1 points and N2 closed intervals for
any 0 < s < t by Lemma 4.2. The set I∩Xr,s consists of at most N1 points because
int(Xr,s) = ∅. We have |Xr ∩ I| ≤ N1 because {Xr,s}s>0 is a decreasing sequence.
The set Xr is a CDD set.

We show that X =
⋃

r>0 Xr is a CDD set. Assume the contrary. There exists a
point a ∈ R such that, for any open interval I containing a point a, the definable
set I ∩X is an infinite set. We may assume that {x > a} ∩ I ∩X is an infinite set
for any open interval I containing the point a without loss of generality.

Consider the definable function f : {r ∈ R | r > 0} → {x ∈ R | x > a} defined
by f(r) = inf{x > a | x ∈ Xr}. As in the proof of [6, Theorem 4.3], we can prove
the following assertions:

• The definable function f is a decreasing function and limr→∞ f(r) = a.
• Consider the image Im(f) of the function f . For any b ∈ Im(f), there exists
a point b1 ∈ Im(f) such that b < b1 and the open interval (b, b1) has an
empty intersection with Im(f).

We may assume that the intersection Im(f) ∩ I of the closure of the image with
I consists of finite points and finite closed intervals by Lemma 4.2 shrinking the
open interval I if necessary. We lead to a contradiction assuming that it contains
a closed interval J . Take an arbitrary point b ∈ Im(f) in the interior of the closed
interval J . The open interval (b, b1) has an empty intersection with Im(f) for some
b1 ∈ R. It is a contradiction. We have shown that I ∩ Im(f) is a finite set. It is a
contradiction to the fact that limr→∞ f(r) = a. We have shown that X =

⋃
r>0 Xr

is a CDD set. It is obviously locally finite. We have demonstrated Lemma 4.3 when
n = 1.

Lemma 4.4 is immediate from Lemma 4.3 when n = 1.
We next consider the case in which n > 1. We first demonstrate Lemma 4.3. We

can prove that Xr =
⋃

s>0 Xr,s has an empty interior if Xr,s have empty interiors
for all s > 0 in the same way as [6, Lemma 3.3]. Now we can get Lemma 4.3 in the
same way as the proof of [6, Lemma 4.1, Lemma 4.2] using Lemma 4.4 for n − 1
instead of [4, Theorem 3.3].

The remaining task is to prove Lemma 4.4 when n > 1. Take DΣ-families
{X i

r,s}r,s with Xi =
⋃

r,s X
i
r,s for i = 1, 2. Set Xr,s = X1

r,s ∪ X2
r,s. It is a CBD

set. We have int(Xr,s) 6= ∅ for some r > 0 and s > 0 by Lemma 4.3 for n

because X =
⋃

r,s Xr,s. If at least one of X1
r,s and X2

r,s has a nonempty interior,
at least one of X1 and X2 has a nonempty interior. Therefore, we may assume
that X1 and X2 are CBD sets. Let B be a closed box contained in X . We have
B = (X1 ∩ B) ∪ (X2 ∩ B). If the lemma is true for B, the lemma is also true for
the original X . Hence, we may assume that X is a closed box.

Let π be the coordinate projection forgetting the last coordinate. For i = 1, 2
and s > 0, we set

Si
s = {x ∈ π(Xi) | the fiber (Xi)x contains a closed interval of length s}

They are CBD sets. Set Ti =
⋃

s>0 S
i
s, which is DΣ. It is obvious that Ti =

{x ∈ π(Xi) | (Xi)x contains an open interval}. Since X is a closed box, we have
π(X) = T1∪T2 by Lemma 4.4 for n = 1. At least one of T1 and T2 has a nonempty
interior by the induction hypothesis. We may assume that int(T1) 6= ∅ without loss
of generality. We have int(S1

s ) for some s > 0 by Lemma 4.3 for n−1. The CBD set
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X1 has a non-empty interior by Lemma 3.3. We have finished the proof of Lemma
4.4. �

We finally demonstrate that a definable map whose graph is DΣ is continuous
on a dense set.

Lemma 4.5. Let R = (R,<,+, 0, . . .) be an expansion of a densely linearly ordered
abelian group with R |= DC,LUF2. Consider a definable map f : U → Rn defined
on an open set U whose graph is a DΣ-set. There exists a nonempty open box V

contained in U such that the restriction of f to V is continuous.

Proof. We can prove the lemma in the same way as [6, Lemma 5.1]. We use Lemma
4.3 instead of [6, Lemma 3.4]. We omit the proof. �

5. Uniformly locally o-minimal open core

We demonstrate Theorem 1.1 in this section. The following lemma claims that
all DΣ-subsets of R are constructible.

Lemma 5.1. Let R = (R,<,+, 0, . . .) be an expansion of a densely linearly ordered
abelian group with R |= DC,LUF2. Consider a definable subset X of R. The
followings are equivalent:

(1) The set X is a DΣ-set.
(2) For any x ∈ R, there exists an open interval I such that x ∈ I and X ∩ I is a

finite union of points and open intervals.
(3) The set X is constructible.

Proof. (1) ⇒ (2): The difference X \ int(X) is DΣ by Lemma 3.2. It is locally finite
by Lemma 4.3. For any x ∈ R, the intersection int(X) ∩ I is a finite union of open
intervals for some open interval I with x ∈ I by Lemma 4.2. We get the assertion
(2).

(2) ⇒ (3): The difference X \ int(X) is locally finite by the assertion (2). It
means that X is constructible.

(3) ⇒ (1): Immediate from Lemma 3.2 (3). �

We next demonstrate that all DΣ-sets satisfy a condition satisfied by the sets
definable in a uniformly locally o-minimal structure of the second kind when R |=
DC,LUF2.

Lemma 5.2. Let R = (R,<,+, 0, . . .) be an expansion of a densely linearly ordered
abelian group with R |= DC,LUF2. Consider a DΣ-subset X of Rm+1. For any
a ∈ R and b ∈ Rm, there exist positive integers N1, N2, an open interval I with
a ∈ I and an open box B with b ∈ B such that Xx ∩ I is the union of at most N1

points and N2 open intervals for any x ∈ B.
Furthermore, we can take B = Rm if R |= LUF1. We can take I independently

of X ⊂ Rm+1 if R |= SLUF.

Proof. The difference Xx \ int(Xx) is discrete and closed by Lemma 5.1 for all
x ∈ Rm. There exist a positive integer N1, an open box B and a closed interval
I1 with a ∈ int(I1) and |(Xx \ int(Xx)) ∩ I1| ≤ N1 for all x ∈ B by Lemma 4.2.
There exist a positive integer N2 and an open interval I2 with a ∈ I2 such that
int(Xx) ∩ I2 consist of at most N2 open intervals for all x ∈ B also by Lemma 4.2.
Set I = int(I1)∩I2, then I satisfies the conditions in the lemma. The ‘furthermore’
part is obvious by Lemma 4.2. �



UNIFORMLY LOCALLY O-MINIMAL OPEN CORE 9

We investigate DΣ-sets of dimension zero.

Lemma 5.3. Let R = (R,<,+, 0, . . .) be an expansion of a densely linearly ordered
abelian group with R |= DC,LUF2. A DΣ-set of dimension zero is discrete and
closed. In particular, it is constructible.

Proof. Consider a DΣ subset X of Rn of dimension zero. Let πi be the projections
onto the i-th coordinate for all 1 ≤ i ≤ n. Let x ∈ Rn be an arbitrary point. Take
a sufficiently small open box B with x ∈ B. The projection images πi(X ∩B) have
empty interiors for all i because dimx X ≤ 0. By Lemma 5.1, we may assume that
πi(X ∩B) is empty or a singleton by shrinking B if necessary. It means that X is
discrete and closed. �

The following three lemmas are essential parts of the proof of our main theorem.

Lemma 5.4. Let R = (R,<,+, 0, . . .) be an expansion of a densely linearly ordered
abelian group with R |= DC,LUF2. Consider a DΣ-subset X of Rn+1. Set

I(X) = {x ∈ Rn | the fiber Xx contains an open interval}.

It is a DΣ-set and we have proj. dim(I(X)) < proj. dim(X).

Proof. Let {Xr,s}r>0,s>0 be a DΣ-family with X =
⋃

r>0,s>0Xr,s. Set Yr,s =

{x ∈ Rn | ∃t ∈ R, [t − s, t + s] ⊂ (Xr,s)x}. The set Yr,s is CBD. We show
that I(X) =

⋃
r,s Yr,s. It is obvious that

⋃
r,s Yr,s ⊂ I(X). We demonstrate the

opposite inclusion. Take an arbitrary point x ∈ I(X). We have int(Xx) 6= ∅. We
get int((Xr,s)x) 6= ∅ for some r > 0 and s > 0 by Lemma 4.3. There exist t ∈ R and
s > 0 with [t − s, t+ s] ⊂ (Xr,s)x. It means that x ∈ Yr,s. We have demonstrated
that I(X) =

⋃
r,s Yr,s. In particular, I(X) is a DΣ-set.

We next demonstrate that proj. dim(I(X)) < proj. dim(X). It is obvious when
int(X) 6= ∅ because proj. dim(I(X)) ≤ n and proj. dim(X) = n + 1 by the def-
inition. We consider the case in which int(X) = ∅. Let π : Rn+1 → Rn be
the coordinate projection forgetting the last coordinate. We have proj. dim I(X) ≤
proj. dimπ(X) ≤ proj. dimX because I(X) ⊂ π(X). We lead to a contradiction as-
suming that proj. dimI(X) = proj. dimX . Set d = proj. dimX = proj. dimI(X).
Take a coordinate projection π1 : Rn → Rd with int(π1(I(X))) 6= ∅. The co-
ordinate projection π2 : Rn+1 → Rd is the composition of π1 with π. We have
int(π2(X)) 6= ∅ because π1(I(X)) ⊂ π2(X). The notation π3 : Rn+1 → R de-
notes the coordinate projection onto the last coordinate. The coordinate projection
Π = (π2, π3) : R

n+1 → Rd+1 is given by Π(x) = (π2(x), π3(x)). Consider the set
T = {x ∈ Rd | Π(X)x contains an open interval}. We have π1(I(X)) ⊂ T . In fact,
take x ∈ I(X) and open interval J ⊂ Xx. The set π1(x)×J is contained in Π(X)x.
It means that π1(x) ∈ T . We get int(T ) 6= ∅ because π1(I(X)) has a nonempty
interior. Set Tr,s = {x ∈ Rd | ∃t ∈ R, [t− s, t+ s] ⊂ (Π(Xr,s))x}. The set T is DΣ

and T =
⋃

r,s Tr,s as demonstrated previously. We have int(Tr,s) 6= ∅ for some r > 0

and s > 0 by Lemma 4.3. We get int(Π(Xr,s)) 6= ∅ by Lemma 3.3 and we obtain
int(Π(X)) 6= ∅. It is a contradiction to the assumption that proj. dimX = d. �

Lemma 5.5. Let R = (R,<, . . .) be an expansion of a densely linearly ordered
abelian group with R |= DC,LUF2. Let X be a DΣ-subset of R

n of proj. dim(X) =
d. Take a coordinate projection π : X → Rd such that π(X) has a nonempty
interior. Then, there exists a DΣ-subset Z of Rd such that Z has an empty interior
and the fiber X ∩ π−1(x) is locally finite for any x ∈ Rd \ Z.
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Proof. For all 1 ≤ i ≤ n−d, we can take coordinate projections πi : R
n−i+1 → Rn−i

with π = πn−d ◦ · · · ◦ π1. We may assume that πi are the coordinate projections
forgetting the last coordinate without loss of generality. Set Πi = πi ◦ · · · ◦ π1

and Φi = πn−d ◦ · · · ◦ πi+1. Consider the sets Ti = {x ∈ Rn−i | π−1
i (x) ∩

Πi−1(X) contains an open interval}. The sets Ti are DΣ and we have proj. dim(Ti) <
proj. dimΠi−1(X) = proj. dimX = d by Lemma 5.4. Set Ui = Φi(Ti) ⊂ Rd for all
1 ≤ i ≤ n − d. The projection images Ui are DΣ-sets by Lemma 3.2(1). We get

int(Ui) = ∅ because proj. dim(Ti) < d. Set Z =
⋃n−d

i=1 Ui. It also has an empty
interior by Lemma 4.4.

The fiber X ∩ π−1(x) is locally finite for any x ∈ Rd \ Z. In fact, let y ∈ Rn be
an arbitrary point with x = π(y). Set y0 = y and yi = Πi(y) for 1 ≤ i ≤ n − d.
We have yn−d = x by the definition. We construct an open box Bi in Rn−d−i

for 0 ≤ i ≤ n − d such that yi ∈ Bi and ({x} × Bi) ∩ Πi(X) consists of at most
one point in decreasing order. When i = n − d, the open box Bn−d = R0. When
({x}×Bi)∩Πi(X) = ∅, set Bi−1 = Bi ×R. We have ({x}×Bi−1)∩Πi−1(X) = ∅.
When ({x}×Bi)∩Πi(X) 6= ∅, the fiber Πi−1(X)∩π−1

i (yi) is locally finite by Lemma
5.1. Therefore, there exists an open box Bi−1 in Rn−d+1−i such that πi(Bi−1) = Bi,
yi−1 ∈ Bi−1 and ({x} × Bi−1) ∩ Πi−1(X) consists of at most one point. We have
constructed the open boxes Bi in Rn−d−i for all 0 ≤ i ≤ n − d. The existence of
B0 implies that X ∩ π−1(x) is locally finite. �

Lemma 5.6. Let R = (R,<, . . .) be a densely linearly ordered structure. Let X be
a definable subset of Rn of dimension d < n. Consider the set

G(X) = {x ∈ X | there exist a coordinate projection π : Rn → Rd

and an open box B with x ∈ B such that X ∩B is the graph

of a continuous map defined on π(B)}.

It is definable and constructible. Furthermore, we have dim(X \ G(X)) < d if the
following conditions are all satisfied:

• R = (R,<,+, 0, . . .) is an expansion of a densely linearly ordered abelian
group with R |= DC,LUF2.;

• X is a DΣ set;
• Any DΣ set of dimension smaller than d is constructible.

Proof. It is obvious that the set G(X) is definable. We show that G(X) is con-
structible. Fix an arbitrary coordinate projection π : Rn → Rd. Consider the set
G(X)π of points x ∈ Rn such that X ∩B is the graph of a continuous map defined
on π(B) for some open box B containing the point x. The set G(X)π is locally
closed because G(X)π is locally the graph of a continuous map. Therefore, it is con-
structible. The set G(X) is also constructible because we have G(X) =

⋃
π G(X)π.

The differenceX\G(X) is DΣ by Lemma 3.2. We next demonstrate that dim(X\
G(X)) < d under the given conditions. When d = 0, X = G(X) by Lemma 5.3.
The lemma is obvious.

Consider the case in which d > 0. Note that we always have G(X)∩U = G(X∩U)
for any definable open subset U of Rn by the definition of G(X). We also have
U ∩ (X \ G(X)) = (X ∩ U) \ G(X ∩ U). We use this fact without mentioning. Set
Y = X \G(X). We lead to a contradiction assuming that dim(Y ) = d. Take a point
y ∈ Rn with dimy Y = d. We can take a coordinate projection π : Rn → Rd such
that we have π(Y ∩U) has a nonempty interior for any open box U containing y. We
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fix a sufficiently small open box B in Rn with y ∈ B. Note that dimy X = d because
d = dimy Y ≤ dimy X ≤ dimX = d. We can prove by an easy induction that there
exists a positive integer N1 with |X∩B∩π−1(x)| ≤ N1 or |X∩B∩π−1(x)| = ∞ for
all x ∈ π(X∩B) using Lemma 5.2. We omit the proof. We also have dim(X∩B) =
dim(Y ∩ B) = proj. dim(X ∩ B) = proj. dim(Y ∩ B) = d by Lemma 3.5. We may
assume that

• |X ∩ π−1(x)| ≤ N1 or |X ∩ π−1(x)| = ∞ for all x ∈ π(X) and
• d = dim(X) = dim(Y ) = proj. dim(X) = proj. dim(Y )

considering X ∩B instead of X . We can take a DΣ-subset Z of Rd such that Z has
an empty interior and π−1(x)∩X is locally finite for any x ∈ Rd \Z by Lemma 5.5.
Since dim(Z) < d, Z is a constructible set by the assumption. Therefore, the sets
π(Y ) \ Z is a DΣ-set by Lemma 3.2(3). The set π(Y ) \ Z has a nonempty interior
by Lemma 4.4. We may further assume that

• π(Y ) has a nonempty interior and
• |X ∩ π−1(x)| ≤ N1 for all x ∈ π(X)

consideringX∩π−1(B′) instead ofX , whereB′ is an open box contained in π(Y )\Z.
We can reduce to the case in which there exists a positive integer N with |Y ∩

π−1(x)| = N for all x ∈ π(Y ). We need the following claim:

Claim. There exists a positive integer N with N ≤ N1 such that the set
E = {x ∈ Rd | |π−1(x) ∩ Y | = N} is DΣ and int(E) 6= ∅.

We begin to prove the claim. For all 1 ≤ i ≤ N1, consider the sets Ci = {x ∈
Rd | |π−1(x) ∩ Y | = i} and Di = {x ∈ Rd | |π−1(x) ∩ Y | ≥ i}. The set Di is DΣ.
In fact, Di is the projection image of the DΣ-set {(x1, . . . , xi) ∈ (Rn)i | π(x1) =
· · · = π(xi), xj 6= xk for all j 6= k, xj ∈ Y for all j}. We demonstrate the claim
by the induction on N1. When N1 = 1, we have nothing to prove. We have N = 1
and E = π(Y ). When N1 > 1, the set CN1

= DN1
is DΣ. If int(CN1

) 6= ∅, set
N = N1 and E = CN1

. Otherwise, we have dimCN1
< d. The definable set CN1

is
constructible by the assumption. By the induction hypothesis, we can get N < N1

such that E = {x ∈ Rd | |π−1(x)∩ (Y \ (CN1
×Rn−d))| = N} is DΣ and int(E) 6= ∅.

It is obvious that E = {x ∈ Rd | |π−1(x) ∩ Y | = N}. We have proven the claim.

Let E be the DΣ-set in the claim and take an open box B′′ contained in E. Set
X ′ = X ∩ π−1(B′′). We may assume that |Y ∩ π−1(x)| = N for all x ∈ π(X) and
π(X) is an open box by considering X ′ in place of X . Applying the same argument
to the new X , we can reduce to the following case:

• We have π(Y ) = π(X) = V for some open box V in Rd;
• There exist positive integers N and N ′ such that |Y ∩ π−1(x)| = N and
|X ∩ π−1(x)| = N ′ for any x ∈ V .

We demonstrate that the closure of G(X) has an empty intersection with Y . Let
y be a point in the intersection. Let {y1, . . . , yM} be the fiber G(X) ∩ π−1(π(y)),
where M = N ′ −N . We have y 6= yi for all 1 ≤ i ≤ M and yi 6= yj for i 6= j. Since
G(X) is locally the graph of a continuous function, there are y′1, . . . , y

′

M ∈ G(X)
such that π(y′1) = · · · = π(y′M ) and y′i are sufficiently closed to yi for 1 ≤ i ≤ M .
Since y is a point of the closure, there exists y′ ∈ G(X) sufficiently close to y with
π(y′) = π(y′1). The fiber G(X)∩π−1(π(y′)) contains the (M +1) points y′1, . . . , yM
and y′. Contradiction to the fact that |G(X) ∩ π−1(π(y′))| = M .
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Set

Yi = {x ∈ Rn | x is the i-th minimum in Y ∩π−1(π(x)) in the lexicographic order}

for all 1 ≤ i ≤ N . Consider the DΣ-set Z = {(x1, . . . , xN ) ∈ (Rn)N | π(x1) = · · · =
π(xN ), x1 < x2 < · · · < xN in the lexicographic order, xi ∈ X for all 1 ≤ i ≤ N}.
The definable set Yi is the projection image of the DΣ-set Z, and it is also DΣ by
Lemma 3.2(1). The projection image π(Yi) is an open box because π(Yi) = π(Y ) =
V . Consequently, Yi is simultaneously a DΣ-set and the graph of a definable map
defined on an open box for any 1 ≤ i ≤ N . Applying Lemma 4.5 iteratively to
Yi, we can find a nonempty open box W such that Yi ∩ π−1(W ) are the graphs of
definable continuous maps defined on W for all 1 ≤ i ≤ N . Since the closure of

G(X) has an empty intersection with Y , we have B̃ ∩ Y = B̃ ∩ X for any point

y ∈ Y and any sufficiently small open box B̃ containing the point y. We have
Y ∩ π−1(W ) ⊂ G(X). Contradiction to the definition of Y . �

We finally get the following theorem.

Theorem 5.7. Let R = (R,<,+, 0, . . .) be an expansion of a densely linearly
ordered abelian group with R |= DC,LUF2. Any DΣ-set is constructible. In partic-
ular, any set definable in the open core of R is constructible.

Proof. LetX be a DΣ-subset of R
n of dimension d. We show thatX is constructible

by the induction on d. When d = 0, it is clear from Lemma 5.3. When d > 0,
consider the constructible set G(X) defined in Lemma 5.6. The difference X \G(X)
is a DΣ-set of dimension smaller than d by Lemma 5.6. It is constructible by the
induction hypothesis. Consequently, X is also constructible.

It is obvious that any set definable in the open core of R is constructible because
the projection image of a constructible set is again constructible by the assertion
we have just proven and Lemma 3.2(1). �

Proof of Theorem 1.1. Theorem 1.1 is now obvious by Lemma 3.2(3), Lemma 5.2
and Theorem 5.7. �
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