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PATHOLOGICAL EXAMPLES OF STRUCTURES WITH
O-MINIMAL OPEN CORE

ALEXI BLOCK GORMAN, ERIN CAULFIELD, AND PHILIPP HIERONYMI

ABSTRACT. This paper answers several open questions around structures with
o-minimal open core. We construct an expansion of an o-minimal structure R
by a unary predicate such that its open core is a proper o-minimal expansion
of R. We give an example of a structure that has an o-minimal open core and
the exchange property, yet defines a function whose graph is dense. Finally,
we produce an example of a structure that has an o-minimal open core and
definable Skolem functions, but is not o-minimal.

1. INTRODUCTION

Introduced by Miller and Speissegger [5] the notion of an open core has become
a mainstay of the model-theoretic study of ordered structures. However, there are
still many rather basic questions, in particular about structures with o-minimal
open cores, that have remained unanswered. In this paper, we are able to settle
some of the questions raised by Dolich, Miller and Steinhorn [2] [3].

Throughout this paper, R denotes a fixed, but arbitrary expansion of a dense linear
order (R, <) without endpoints. We now recall several definitions from the afore-
mentioned papers. We denote by R° the structure (R, (U)), where U ranges over
the open sets of all arities definable in R, and call this structure the open core
of R.

Given two structures §; and Sy with the same universe S, we say S; and Sy are
interdefinable (short: S; =4 Sz) if S; and Sy define the same sets. For a given
theory T extending the theory of dense linear orders, we say that a theory 7" is an
open core of T if for every M = T there exists M’ | T’ such that M° =4 M'.

Question 1 ([2, p. 1408]). If S C R and (R, S)° is o-minimal, is (R, S)° =4t R°?

We give a negative answer to this question by constructing an expansion of the
real field by a single unary predicate whose open core is o-minimal, but defines an
irrational power function. It is clear from the construction in Section 2 that there
are similar examples of expansions of the real ordered additive group that do not
define an ordered field.

We say R is definably complete (short: R = DC) if every definable unary set has
both a supremum and an infimum in R U {£oo0}. We denote by dclg the definable
closure operator in R, and often drop the subscript R. We say that R has the
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exchange property (short: R |= EP)if b € dcl(SU{a}) forall S C Rand a,b € R
such that a € dcl(S U {b}) \ dcl(S). For a theory T, we say T has the exchange
property (short: T' = EP) if every model of T has the exchange property. We write
R = NIP if its theory does not have the independence property as introduced by
Shelah [6]. We refer the reader to Simon [§] for a modern treatment of NIP and
related model-theoretic tameness notions.

Question 2 ([2| p. 1409]). If R E DC+ EP + NIP and expands an ordered group,
is R o-minimal?

By [2, p. 1374] we know that R has o-minimal open core if R | DC+EP and
expands an ordered group. Thus Question 2 asks whether there is a combinator-
ical model-theoretic tameness condition that can be added to force o-minimality.
Again, we give a negative answer to this question. We construct a counterexample
as follows: Let Q(t) be the field of rational functions in a single variable t. We
consider an expansion R, of the ordered real additive group (R, <,+,0,1) into a
Q(t)-vector space such that for all ¢ € Q(¢) \ Q, the graph of the function z +— cx
is dense in R%. We show that R; = DC+ EP + NIP, but is not o-minimal.

The structure R; has infinite dp-rank. By Simon [7], if R &= DC, expands an or-
dered group and has dp-rank 1, then R is o-minimal. However, we do not know
whether R is o-minimal if R = DC + EC, expands an ordered group and has finite
dp-rank.

In addition to showing that R; = DC+ EP + NIP, we prove that its open core is
interdefinable with its o-minimal reduct (R, <, 4,0, 1). Since the graph of z — cx is
dense for ¢ € Q(t) \ Q, the theory of R; provides a negative answer to the following
question.

Question 3 ([3, p. 705]). Let T be a complete o-minimal extension of the theory of
densely ordered groups. If T is any theory (in any language) having T as an open
core, and some model of T defines a somewhere dense graph, must EP fail for T ?

Our counterexample R; does not expand a field and we don’t know whether Ques-
tion 2 (or Question 3) has a positive answer if we require R (or T') to expand an
ordered field.

We say that R has definable Skolem functions if for every definable set A C
R™x R™ there is a definable function f : R — R™ such that (a, f(a)) € A whenever
a € A and there exists b € R"™ with (a,b) € A. Every o-minimal expansion of an
ordered group with a distinguished positive element has definable Skolem functions,
but all documented examples of non-o-minimal structures with o-minimal core do
not.

Question 4 ([2, p. 1409]). If R has definable Skolem functions and R° is o-

manimal, is R o-minimal?

The answer is again negative. We say R satisfies uniform finitness (short: R |=
UF) if for every m,n € N and every A C R™*™ definable in R there exists N € N
such that for every a € R™ theset {b € R" : (a,b) € A} is either infinite or contains
at most N elements. By [2, Theorem A], if R = DC + UF and expands an ordered
group, then R° is o-minimal. Using a construction due to Winkler [9] and following
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a strategy of Kruckman and Ramsey [4], we establish that if R = DC + UF, then
R has an expansion S such that S has definable Skolem functions and satisfies

S° =4q¢ R°. Thus if R also expands an ordered group, then R° is o-minimal and so
is §°.
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Notation. We will use m,n for natural numbers and « for a cardinal. Let £ be
a language and T an L-theory. Let M = T. We follow the usual convention to
denote the universe of M by M. In this situation, £-definable means £-definable
with parameters. Let b be a tuple of elements in M, and let A C M. We write
tp,(b]A) for the L-type of b over A. If N is another model of T and h is an
embedding of a substructure of M containing A into A, then htp(b|A) is the type
containing all formulas of the form ¢(x, h(a)) where p(z,a) € tp(b|A).

2. QUESTION [T

Let R be the real ordered field (R, <, +,-) and let Rex, be the expansion of the
real field by the exponential function exp. Let I C R be a dense dclg,, ,-independent
set. Let 7 € I be such that 7 > 1. Set

J:= |J {lallal", lal + la|"}.
acI\{7}
By [3 2.25] the open core of (Reyp, I)° is interdefinable with Rey,. Since (R, J) is
a reduct of (Rexp, ), we have that (R, .J)° is a reduct of (Rexp, [)°. As the latter
structure is o-minimal, we have that (R, J)° is o-minimal as well. In order to show
that Question [l has a negative answer, it is left to show that (R, .J)° defines a set
not definable in R. Since R only defines raising to rational powers, it suffices to
prove the definability of x — 27 on an unbounded interval.

Lemma 2.1. Let uy,us,u3 € J such that 1 < uy; < ug and uy + uo = uz. Then
there is a € I\ {7} such that u; = |a| and uy = |a|”.

Proof. For a € I\ {7} observe that |a|, |a|” and |a|+ |a|™ are interdefinable in Rexp
over 7. Since u1 + uz = ug, we have uy,uz, us are dclg,,,-dependent. Because I is
dclg,,,-independent, there are a € I'\ {7} and i, j € {1,2,3} such that

ui,uj € {lal, |a]"; |a] + |a["}.

Let £ € {1,2,3} such that £ # i and £ # j. Note u is dclg,,,-dependent over u;
and u;. Thus ug € {|al, |a|, |a| + |a|"}. Since |a| > 0, we obtain from u; + us = us
that

ur,uz € {|al, |a|"}.

Since 1 < uy < ug and 7 > 0, we have that uy = |a| and ug = |a|™. O

Proposition 2.2. The graph of x +— z7 on R> is definable in (R, J)°.
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Proof. By Lemma 2] the structure (R,.J) defines
{(lal,1al™) :la[ > 1, a e T\{r}}.

Since I is dense in R, the closure of this set is the graph of z — 27 on R>;, and
hence definable in (R, J)°. O

We conclude that (R,.J)° is a proper expansion of R.

3. QUESTIONS 2 AND 3

In this section we give negative answers to Questions 2 and 3. Let Q(t) be
the field of rational functions in the variable t. We expand (R, <,+,0, 1) to a Q(¢)-
vector space such that for each non-constant ¢(t) € Q(t) the graph of multiplication
by ¢(t) is dense.

We now construct such a Q(t)-vector space structure on R. Let 1 be the multiplica-
tive identity of Q(¢). We fix a dense basis B of R as a Q-vector space, and a basis
I of Q(t) as a Q-vector space such that 1 € I. We choose a sequence of functions

{fy : I = B}, cono such that
5= |J ()
~ye2Ro0

and for all v € 2%o:

° jf; is injective,

e for all n € 2% with n #~, f,(1) N f, (1) =0,

e for all open intervals Ji, ..., J,, C R open intervals and all pairwise distinct

p1(t),...,pm(t) € I there exists v € 2% such that

f'y(pl(t)) €J1,.. 0, f’y(pm(t)) € Jm.
Since the order topology on the real line has a countable base, it is easy to see that
such a sequence of functions exists. For each v € 2%, f. is defined on the basis I of
Q(t). Therefore, we can extend each f, : I — B to a Q-linear map f, : Q(¢t) — R.
Lemma 3.1. Leta € R. Then there are unique i, ..., %, € 280 and py(t),...,pa(t) €
Q(t) such that

a= [y (p1(t) + -+ fr. (pn(2)).
Proof. Since B is a basis of R as a Q-vector space, there are unique by,...,b, € B
and uq,...,u, € Q such that a = u1b; + - -+ 4+ u,b,. By the above construction,
there are unique 71,...,7, € 2% and ¢1(t),...,q,(t) € I such that b; = f.,(¢;(t))
for i =1,...,n. Then by Q-linearity of the f,,’s

a=uiby +---+u,by,

= urfy (@) + -+ unfy, (gn(t))

= fou (waqr (@) + -+ + fr, (ungn(t)).
Set p; = u;q;(t) fori=1,...,n. O
We now introduce a Q-linear map A : Q(¢) x R — R. Let ¢(t) € Q(¢) and a € R.

By Lemma [B1] there are unique 71, ...,7, € 2% and pi(t),...,p.(t) € Q(¢) such
that

a = fr (p1(8)) + -+ fr, (Pn(2))-
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We define

Ag(t),a) := fru (a(t) - pr(8) + -+ + fr. (a(t) - pn(t)).
By Lemma 311 the function X is well-defined. For ¢(t) € Q(t), we write Ay for
the map taking a € R to A(q(t),a).

Proposition 3.2. The additive group (R, +) with A as scalar multiplication is an
Q(t)-vector space.

Proof. We only verify the following vector spaces axioms: for all @ € R and for all
q1(t), g2(t) € Q(2).
Ay (00 (1) (@) = Agy (1) Mg ) (@)

The other axioms can be checked using similar arguments and we leave this to the
reader.

Let a € R and let ¢1(t), g2(t) € Q(¢t). By Lemma BTl there are unique 71,...,7, €
2% and py(t),...,pn(t) € Q(t) such that

a= fy,(pr(t)) + - + fy, (Pn(t)).
We obtain

Au () Qa9 (@) = Mgy (1) (Ao ) ( Z Fru(pi()))

=iy Q_ Frulaa(t) - pi(1)))

i=1

- Z Syl (t) - (q2(t) - pa(t)))

=00 (O Fru(0i(1)))
1=1
= A1 (1)1 (@)-
O

Let £ be the language of (R, <,4,0,1), and let T be its theory; that is the the-
ory of ordered divisible abelian groups with a distinguished positive element. It is
well-known that 7" has quantifier-elimination and is o-minimal. We will use various
consequences of this fact throughout this section. Most noteworthy: when M | T,
X C M™is L-definable over A and there is b = (by,...,b,) € X such that by,...,b,
are Q-linearly independent over A, then X has interior.

Let Ry = (R, <, 4,0, 1, (Ag(t))q(t)eqqe)) be the expansion of (R, <,+,0,1) by func-
tion symbols for Ay;) where ¢(t) € Q(t). We denote the language of R; by L;.

3.1. Density. Let p = (p1(t),...,pn(t)) € Q(¢)". Let A\, : R — R™ denote the
function from R that maps a to (A, )(a),... Ay, (#)(a)). The main goal of this
subsection is to show the density of the image of A\, when the coordinates of p are
Q-linearly independent.

Lemma 3.3. Let p = (p1(t),....pn(t)) € I be such that p;(t) # p;(t) for i # j.
Then the image of A, is dense in R™.
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Proof. Let Ji,...,J, be open intervals in R. Since p1(¢),...,p,(t) are distinct
elements of I, there exists v € 2%¢ such that

K1) € Ji,oo [(a(t)) € T

For each ¢ € {1,...,n}, we have

Ay (f5 (1)) = f5(pi(t))
by definition of A,, ;). Therefore,

(/\p1(t)(f'y(1))v .. .,)\pn(t)(f»y(].))) e Ji x Jyx ... x Jy.
O

Proposition 3.4. Let ¢ = (q1(t),...,qm(t)) € Q)™ be such that q1(t), ..., qm(t)
are Q-linearly independent. Then the image of A\, is dense in R™.

Proof. Let n € N, let p1(t),...,pn(t) € I be distinct non-constant, and let A =
(Wi 5)i=1,....,m,j=0,...n be an m x (n + 1) matrix with rational entries such that

@1 (t) = w0l +urapi(t) + ...+ ui npn(t)
q2(t) = u2,01 +u21p1(t) + ... + ug npn(t)

Qm(t) = um,Ol + Um,1P1 (t) +...+ um,npn(t)
By definition of A1, Ay, (), -+ Ap, (#), We have for each i € {1,...,m}
)\Qi(t) ({E) = ui70/\1 (117) + uiyl/\pl(t) (I) + ...+ uiyn)\pn(t) (I)
Therefore,

AN p1(0), 00 (1) = M@ (0),enm (1)
Since ¢1(t), ..., qm(t) are Q-linearly independent, the matrix A has rank m. Thus
multiplication by A is a surjective map from R™ to R™. Since matrix multi-
plication is continuous and continuous surjections preserve density, the image of
AN i (1),....pn (1)) 18 dense in R™ by Lemma B3 O

.....

3.2. Axiomatization and QE. In this subsection, we will find an axiomatiza-
tion of R; and show that this theory has quantifier elimination. Indeed, we will
prove that the following subtheory of the L;-theory of R, already has quantifier-
elimination.

Definition 3.5. Let T; be the Li-theory extending T by axiom schemata stating
that for every model M = (M, <,4,0,1, (Agt))qtyea)) F Tt
(T1) (M, +,0,(Agt))at)eaqr)) is a Q(t)-vector space.
(T2) If ¢1(t), ..., qm(t) € Q(t) are Q-linearly independent, then the image of the
A(@1 (8),.oam (1)) 18 dense in M™.

By Proposition and Proposition B4 we know that R; = T;. Let M E T;.
We observe that by (T1) the Li-substructures of M are precisely the Q(¢)-linear
subspaces of M containing 1.

Lemma 3.6. Let M |= T} and let A be an L,-substructure of M. Letb e M\ A and
let p1(t),...,pu(t) € Q(t) be Q-linearly independent. Then Ay, (+)(b), ..., Ay, 1) (b)

are Q-linearly independent over A.
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Proof. Since A is a Q(t)-linear subspace of M, we know that A, (b) ¢ A for all
non-zero ¢(t) € Q(t). Let uy,...,u, € Q. Since M is a Q(t)-vector space,
Ul)\pl(t) (b) + -4 un)\pn(t) (b) = )\ulpl(t)+...+unpn(t) (b)
Because p1(t),...,pn(t) € Q(t) are Q-linearly independent and b ¢ A, we get that
ul)\pl(t)(b) + -+ un)\pn(t)(b) cA=u=-=u,=0.
Thus Ay, #)(b), ..., Ap, 1) (b) are Q-linearly independent of A. O

Proposition 3.7. The theory Ty has quantifier elimination.

Proof. Let M, N = T; be such that N is |M|T-saturated. Let A C M be a sub-
structure that embeds into N via the embedding h : A — N. Let b € M\ A.
To prove quantifier elimination of 7%, it is enough to show that the embedding h
extends to an embedding of the £;-substructure generated by A and b.

Consider the tuple (Ay)(b))p)er- We first find ¢ € N such that

(1) htpe ((Apery (0))ierlA) = tpe (A (€))ier|h(A))
By saturation of A it is enough to show that for every
e pairwise distinct py(t),...,pn(t) € I,
e L-formula 1(x,y) and a € AY! such that
ME YAy, Ap, 1y (b)),
there is ¢ € N \ h(A) such that

N 'Z w()‘pl(t) (C), ey )‘pn(t) (C), h(a)).
Because I is a Q-linear basis of Q(t), the sequence (A, (b))ics is Q-linear indepen-
dent over A by Lemma [B:6l Thus the set

{de N" : N = 4(d,h(a))}

has interior. The existence of ¢ now follows from (T2) and saturation of A

Let ¢ € N be such that () holds. Let X’ be the Q-linear subspace of M generated by
(Ap) (D))icr and A. Let Y be the Q-linear subspace of N generated by (Ap;)(c))ier
and h(A). Observe that X is the Q(t)-subspace of M generated by b and A, and ) is
the Q(¢)-subspace of N generated by ¢ and h(A). Hence X and ) are £;-structures
of M and N respectively. Since c satisfies (), there is an £-isomorphism i/ : X — C
extending i and mapping A, (b) to Ay (c) for each p(t) € I. It follows easily that
this A" is Q(t)-linear and hence an L;-isomorphism extending h. O

Corollary 3.8. Let M,N E T;, let A C M be an Li-substructure such that
h: A< N is an Li-embedding. Let b€ M\ A and ¢ € N\ h(A) such that

htpﬁ(()‘p(t) (b))p(t)ellA) = tpﬁ(()‘p(t) (C))p(t)ellh(A))'
Then tp, (b14) = tp., (clh(A)).
Proof. Let X' be the Q-linear subspace of M generated by (X\,)(b))ier and A, and
let Y be the Q-linear subspace of N generated by (A,«)(c))ier and h(A). It is
easy to check that X and ) are L;-substructures of M and N respectively. By our

assumption on b and ¢, the embedding h extends on an £-isomorphism A’ between X
and Y mapping A, (b) to Ay (c) for each p(t) € I. Since h is an L-embedding, it
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follows easily that h’ is an £-isomorphism between X’ to ). Since T} has quantifier
elimination, we get that tp,, (b|A) = tp., (c|h(A)). O

Proposition 3.9. The theory of R: is axiomatized by the theory T} in conjunction

with the axiom scheme that specifies tpﬁ(()‘P(t)(l))p(t)a)'

Proof. Let T} be the theory described in the statement. Since R; = T}, we imme-
diately get that R: = T). It is left to show that T; is complete. Let M and N be
model of T} of size k > Ng. By Corollary B8 14 and 1 satisfy the same £;-type.
Thus there is an L;-isomorphism A mapping the L;-substructure of M generated
by 1 to the L£;-substructure of N generated by 1. By the proof of Proposition
[3.7 this isomorphism h extends to an L-isomorphism between M and N. 1

3.3. Exchange property. In this subsection we establish that every model of T
has the exchange property. We will do so by showing that the definable closure in
such a model is equal to the Q(¢)-linear span.

Lemma 3.10. Let M = T; and let A C M be an Li-substructure. Then A is
definably closed.

Proof. Without loss of generality, we can assume that M is |A|T-saturated. Let
be M\ A. Tt is enough to show that there exists ¢ € M such that b # ¢ and
tpg, (b|A) = tp,,(c|A). By Corollary B.8 it is sufficient to find ¢ € M such that
b # ¢ and

tpﬁ(()‘p(t) (b))p(t)€]|A) = tpﬁ(()‘p(t) (C))p(t)€]|A)'
Let o(x,y) be an L-formula, pi(t),...,pm(t) € I and a € A™ such that
M )Z (P()\pl(t) (b), ey )‘pm(t) (b), a).

By saturation of M, we only need to find ¢ € M such that ¢ # b and M |
©Ap 1) (0), - Ap,. 1) (b),a). By Lemma BT, (A (b))p(t)el is Q-linear indepen-
dent over A. Thus the set

X:={deM™ : MEep(da)}
has interior. By axiom (T2) the intersection
{()\pl(t)(c), ceey /\pm(t)(c)) cceMinX
is dense in X. ]

Corollary 3.11. Let M ET; and let Z C M. Then the Li-definable closure of Z
is the Q(t)-subspace of M generated by Z.

Proof. By Lemma [3.10 the definable closure of Z is the L£;-substructure generated
by Z. However, the latter is just the Q(¢)-subspace of M generated by Z. O

The exchange property for T; follows immediately from Corollary B.I1l and the
classical Steinitz exchange lemma for vector spaces.

Proposition 3.12. The theory T; has the exchange property.
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3.4. Open core. Let M = T;. Then by Axiom (T2) it defines functions from M
to M whose graph is dense. We already know that M has EP by Proposition B12
To give a negative answer to Question 3, it is left to show that every open subset
of M™ definable in M is already definable in the reduct (M, <,+,0,1).

Theorem 3.13. The theory T is an open core of T;.

Proof. Let M = T;. We prove that every open set is L-definable. Without loss of
generality, we can assume that M is Np-saturated. Let C' be a finite subset. Using
Boxall and Hieronymi [I Corollary 3.1], we will show that for every n € N and
every subset of M™ that is L;-definable over C, is also L-definable over C. Let
n € Nand p1(t),...,pn—1(t) € I be distinct and non-constant. We define

D = {(a, )\pl(t)(a), s Apni (1) (a)) :a ¢ deg, (O)}.
From (T2) and saturation of M, it follows easily that D is dense in M™. Thus

Condition (1) of [, Corollary 3.1] is satisfied. Condition (3) of [T, Corollary 3.1]
holds by Corollary B8 Tt is only left to establish Condition (2).

Let b € D and a ¢ dclz, (C) be such that b = (a, Ay, 1)(a), ..., Ap, 1 1)(a)). Let
U C M™ be open and suppose that tp,(b|C) is realized in U. We need to show that
tp(b|C) is realized in U N D. By Lemma we know that the coordinates of b
are Q-linearly independent over dclz, (C). Thus the set of realizations of tp,(b|C')
is open, and so is its intersection with the open set U. Denote this intersection
by V. By (T2) and Ng-saturation of M, we find «’ ¢ dclg, (C) such that v/ =
(& Apiy(@)s - Ap, 1 y(@)). Now b is the desired realization of tp,(b|C) in
UnD. O

By Theorem [B.13] every model of T} has o-minimal open core and thus is definably
complete.

3.5. Neostability results. We will now show that T} is NIP, but not strong. We
use an equivalent definition of the independence property in the theorem below,
namely that in a monster model M of T} there is no formula ¢(x, y) and no element
a € M such that for some indiscernible sequence (b;);<,, of tuples in M vl we have

M E= p(a,b;) if and only if i < w is even.
For a proof that this is equivalent to the classic definition of NIP, see [§].
Theorem 3.14. Every completion of the theory T; has NIP.

Proof. We let M [= T; be a monster model of T;. We suppose for a contradiction
that there is an £;-formula ¢(z,y) along with an element a € M and indiscernible
sequence (b;)i<., of elements in MY/ that witnesses IP, i.e. M = o(a, b;) precisely
if ¢ is even. Let |y| = n and for each i < w we denote the j-coordinate of b; by
bi ;. By quantifier elimination in the language £;, we can assume that the formula
v(a,y) is equal to a boolean combination of formulas of the form

(1) a— Z?:l )‘qj(t) (y;) =0
(2) a— Zj:l )‘qj(t) (y]) >0
where q1,...,qn(t) € Q(t). Since NIP is preserved under boolean combinations,

we can assume that ¢ is of the form (1) or (2). For ease of notation, let f(b;) =
D51 Ag; 1) (big) for each i < w.
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Suppose that ¢ is of form (1). We suppose without loss of generality that a— f(b;) =
0 holds if and only if i < w is odd. Then we have that f(by) = f(bs), but
f(b2) # f(b1). Thus we conclude tp.,(bib2) # tp,,(b2b3), contradicting indis-
cernability.

Now assume that ¢ is of the form (2). Without loss of generality assume that
a— f(b;) > 0 holds if and only if i < w is odd. Then for all i < w, we have a < f(ba;)
and a > f(bgi+1). However, this means that f(by) < f(b2) and f(b2) > f(b3). So
we again obtain tp, (bib2) # tp,, (b2bs), contradicting indiscernability.

O

Thus R; = DC+ EP + NIP, but R; is not o-minimal. This gives a negative answer
to Question 2.

Proposition 3.15. No completion of the theory Ty is strong.

Proof. Fix a family (g;(¢))jen of distinct elements of I. Consider the family of
L;-formulas given by (Ag, 1) (%) € (ak, br))jken such that

° (ak,bk) N (a[,bg) = @, for all ¢ # k € N, and

e the tuples (ay, by )ren form an indiscernible sequence.
In the array that corresponds to varying j € N along the rows and the k£ € N along
the columns, it is easy to see that formulas in the same row are pairwise inconsistent.
However, for every path ()\q'y(k)(t) () € (avy(k), by(k)))ren, every finite subset of these
formulas are consistent by our axiom scheme (T2). So by compactness, every path
through the entire array is consistent. O

4. QUESTION 4

Let T be a theory extending the theory of dense linear orders without endpoints
in an language £. We write T' |= UF if every model of T satisfies UF. The main
goal of this section is to establish the following theorem.

Theorem 4.1. Suppose that T |= DC+UF. Let T' be an open core of T. There
is a theory TSy extending T' such that TSy has definable Skolem functions and T' is
an open core of Ty.

This immediately gives a negative answer to Question 4, as there are many docu-
mented examples of a theory T with 7' = DC + UF and o-mininal open core that
is not o-minimal itself. To prove Theorem [L.1] we follow a strategy of Kruckman
and Ramsey [4] and rely on a construction due to Winkler [9] allowing us to succes-
sively add definable Skolem functions to the language £ of a given theory T while
preserving uniform finiteness. As explained below, this construction preserves the
open definable sets by a result from [I]. We begin by recalling notations and results
from [9].

4.1. Skolem expansions. Let £ be a language and © = {0;(x,y) : t < |L|} be an
enumeration of all £-formulas ¢(x,y) where the variable y has length 1. Define Lgy,
to be LU{fi : t < |L]}, where the arity of f; is the length of the tuple x appearing

in 04(z,y).

The Skolem expansion 7' of T is the Lgj-theory
Ty = TU {Va3y (Bu(e,y) = 0u(w, fu(@)) © ¢ < |£]}.
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We refer to the f;’s as Skolem functions.

From here on we assume that T has quantifier elimination in the language L
and assume that for each L-definable function f there is an L-term t such that
T =Vz f(x) =t(z). Let My = T4, and denote its reduct to £ by M. For A C M
we denote by (A)gk the Lgi-substructure generated by A.

Following [9], we say an Lgk-formula x(z1,...,x,) is a uniform configuration if
it is a conjunction of equalities of the form f;(z;,,...,2;,) = @i, involving Skolem
functions. We need the following result about uniform configurations from [9].

Fact 4.2 ([9 p. 448]). Let x(x) be a uniform configuration. Then there exists an
L-formula x'(x) such that for all A =T, and a € Al the following are equivalent:

o A X(a).
o The result of altering the Skolem structure of A precisely so that A = x(a)
is again a model of T'.

In the case of Fact L2 we say that x'(x) codes the eligibility of the configu-
ration y(x).

Lemma 4.3. Let t1(x),...,ty(x) be Lgk-terms such that for every i < n there is
an Lsk-function symbol f; with

tl(l') = fi(:v, tl (,T), e ,ti_l(l')).

Then there is an L-formula ¢(x,y) and a uniform configuration x(x,y) such that

Ty = VWy((w(ﬂc,y) Ax(z,y)) < (/\y = fi(a?,yl,---,yzel)))-

Proof. Let J C {1,...,n} be the set of all i such that f; € Lgx \ L. Let x(z,y),

where y = (y1,...,yn), be the uniform configuration given by
/\ fi(xayla cee 7yi—1) =Y
ied

and let ¢(x,y) be the L-formula given by
N filyvie) =i
ie{l,...,n}\J
It is easy check this pair of formulas has the desired property. O

One of the main results in [9] is that if 7' |= UF, then the Skolem expansion has a
model companion. Indeed, more is true:

Fact 4.4 ([9, Theorem 2, Corollary 3]). Let T |= UF. Then the Skolem expansion
Ty has a model companion Tgy that satisfies UF .

From here on we assume that T |= UF. We have the following axiomatization of
the model companion of the Skolem expansion.

Fact 4.5 ([9l p. 447]). The theory Tsk is axiomatized as the expansion of Ty by
the set @ of all sentences of the form Vay .. Vxpip(x), where x = (x1,...,xy,) and

(i) Y(x) = 3%xpt1 ... 2pp(@) A X (%) = FTpta, .- anp() A x(@),
(ii) p(x) is a quantifier free L-formula,
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(iii) x(x) is a uniform configuration,
(iv) X' (x) codes the eligibility of the configuration x(z).

Let Mgk be an |£|T -saturated model of Tk with underlying set M, and denote its
reduct to £ by M. We need following easy corollary of the axiomatization of Tgy.

Fact 4.6. Let 7 be the set of partial L-elementary maps v : X — Y between Mgy
and itself such that

e ( is a partial Lgk-isomorphisms and
o X = <X>Sk and Y = <Y>Sk-

Then Z is a back-and-forth system.

Proof. Let « : X — Y in Z. Let a € M \ X. By symmetry, it is enough to
find @’ € M such that there exists ¢/ € T extending ¢ such that t(a) = a’. By
saturation of Mgy, we just need to find ' € M such that for all Lgi(X)-terms

t(z) = (t1(x),. .., ta(z))
tpe(a, t(a")|]Y) = ttp,(a, t(a)| X).

Without loss of generality, we can assume that there is ¢ € X" such that for every
i €{1,...,n} there is a function symbol f; € Lg) with

tl(x) = fZ(I, tl (I), SN ,ti,1($), C).

Let o(2,y1,.-.,Yn,2) be the L-formula and x(z,y1,...,Yn, z) be the uniform con-
figuration given by Lemma 3l Let the L-formula x'(z,y1,...,Yn,2) code the
eligibility of x(z,y1,...,Yyn, z). For ease of notation, set y := (y1,...,yn)-

Consider an £-formula ¢ (x,y, z) and ¢ € X1¢l such that ¢ (z,y, ¢) € tps(a, t(a)|X).
Extending ¢, we can assume that ¢ = ¢/. By saturation of Mgy it suffices to find
a’ € M such that Mgy = (', t(a’), t(c)). Since M = v(a,t(a),c) A p(a,t(a),c) A
X'(a,t(a),c) and a € X, we have that

M| F¥ay d(z,y,¢) A p(x,y.¢) A X (2,9, 0).
Since ¢ is L-elementary,

M= 32y (2,9, 1(c)) Ap(,y,1(c)) AX (2,9, 1(c))).

Thus from the axiomatization of Tskx we know that there is (a/,a}, ..., al) € M
such that

ME Y ay, ... a,, ) ANo(d,ay,. .. a,,u(c) Ax(d, al,... al,u(c)).
t;

By our choice of ¢ and x, we have that a; = t;(a’) for each i. Thus M |
P(d’, t(a’), c). O

We now collect the following easy corollary of Fact

Fact 4.7. Let a,a’ € M™ and let 0 : M — M be an Lgk-automorphism fizing C
such that o(a) = a’ and for all Lgx-terms t(x) = (t1(z),. .., tn(x))

tp.(t(a)|C) = tp,(t(a)|C).
Then tpg,, (a|C) = tp,, (a'|C).
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4.2. No new definable open sets in Ts. Let Mgy be an |Lgy|T-saturated model
of Tgk with underlying set M, and denote its reduct to £ by M. Fix a subset C C M
of cardinality at most |Lgk].

Theorem 4.8. Let C' = (C)sk. Then every open set definable over C' in Mgy is
definable in M.

Proof. By [I, Therorem 2.2] it is enough to show that for every a € M™ for which
the set of realisations of tp,(a|C) is dense in an open set, the set of realisations
of tp,,, (a|C) is dense in the set of realizations of tp,(a|C). Let U € M™ be an
open definable set such that the set of realizations of tp,(a|C) intersected with U
is dense in U. It is left to show that there is a’ € U such that o' |= tp,, (a|C). By
Fact 70 and saturation of Mgy, it is enough to find for

e cvery tuple t = (t1,...,tm) : M™ — M™ of Lgk(C)-terms and

e every L(C)-definable set X C M" ™ with (a,t(a)) € X
an «' € U such that (a/,t(a’)) € X. Fix ¢t and X. After increasing m, we can
assume that there is ¢ € C* such that X is £(c)-definable and for every i < m

tl(I) = fz(x, tl(x), NN ,tifl(I), C)
where f; is a function symbol in Lgk. Let o(x,y1,...,Yn,c) be the L-formula
and x(x,y1,...,Yn,c) be the uniform configuration given by Lemma Set
y=(Yy1,--.,Yn). Let the L-formula x’'(x,y, c) code the eligibility of x(z,y, ¢).

We now prove the existence of a’. Let dy be a realization of tp,(a|C) in U. Let
dy,...,dm € M™ be such that (do,ds,...,dn) € X and
ME (e AX)(do,dy, ... dm,c).

Since there are infinitely many realizations of tp,(a|C) in U, there are infinitely
many e € M™ ™™ such that e € X NU and M [= (¢ A X')(e,¢). Thus by Fact L5

there is e = (ep, €1, ..., €m) € M™™ such that
(eg,€1...,em) € XNU and Mgy E x(eo,e1...,€m,c).
Thus (eq,...,en) = t(eg) and we can set a’ = eg. O

Corollary 4.9. Let T' be an open core of T. Then T’ is an open core of Tgsy.

Proof. Let £’ be the language of T’. Without loss of generality, we can assume
that £ N Lgx = 0. Let L£* be the union of £ and Lgk. Let Mgy = Tsk. Since T is
an open core of T', we can expand Mgy to a model M* of the L*-theory T" U Tgy.
Let X C M™ be an open set given by

X:={aeM" : Mgk ¢(a,c)},

where ¢ is an Lgi-formula with parameters ¢ € M™. Let A be an elementary
extension of M* that is |£|T-saturated. Set Y := {a € N™ : N |= ¢(a,c)}. Since
X is open, so is Y. By Theorem g there is an £'-formula ¢ (z,y) such that there
isde M*with Y = {ae N* : N E¢(a,d)}. Since M* <X N, there is d' € M*
such that X = {a € M"™ : M* E(a,d')}. Thus X is L'-definable. O

Proof of Theorem[{-1] We are now able to complete the proof of Theorem [T using
the same argument as in [4, Corollary 4.9]. Suppose T' = DC+ UF and let T" be
an open core of T. Set T, be the Morleyization of T in a language Ly. For every
n > 0, we will now construct a language £,, and an £,-theory T;, such that
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(1) T, has quantifier-elimination,
(2) T, k= UF, and
(3) T’ is an open core of T,.

Let n > 0, and suppose we already constructed a language £, and an L,-theory
T,, with the properties (1)-(3). Let ® be the set of L£,-formulas ¢(z,y) such that
ly| = 1 and

Ty f=V23ly p(2,y),
For each ¢(z,y) € ® we introduce a new function symbol f, of arity |z|. Let L be

the union of the £, and {f, : ¢ € ®}. Let T be the union of T, with the set of
all £-sentence of the form

Vavy(fo(z) = y) < o(z,y),
where ¢ € ®. Since T is an expansion of T}, by definitions, it is easy to check that T

satisfies (1)-(3). Now consider the model companion (T)gj of the Skolem expansion
(T)+. Let Tj,4+1 be the Morleyization of (T')sk in an expanded language £,,41. We
know T,,+1 E UF by Fact 4l By Corollary 0] the theory 7" is an open core of
T

Now set Ty := ;e Tn. From the construction, it follows immediately that 7" is
an open core of 7§y and that 7§y has definable Skolem functions. O
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