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LOGICS OF UPSETS OF DE MORGAN LATTICES

ADAM PŘENOSIL

Università degli Studi di Cagliari, Cagliari, Italy

Abstract. We study logics determined by matrices consisting of a De Morgan
lattice with an upward closed set of designated values, such as the logic of non-
falsity preservation in a given finite Boolean algebra and Shramko’s logic of
non-falsity preservation in the four-element subdirectly irreducible De Morgan
lattice. The key tool in the study of these logics is the lattice-theoretic notion
of an n-filter. We study the logics of all (complete, consistent, and classical)
n-filters on De Morgan lattices, which are non-adjunctive generalizations of
the four-valued logic of Belnap and Dunn (of the three-valued logics of Priest
and Kleene, and of classical logic). We then show how to find a finite Hilbert-
style axiomatization of any logic determined by a finite family of prime upsets
of finite De Morgan lattices and a finite Gentzen-style axiomatization of any
logic determined by a finite family of filters on finite De Morgan lattices. As
an application, we axiomatize Shramko’s logic of anything but falsehood.

1. Introduction

Classical propositional logic is the logic of truth preservation in the two-element
Boolean algebra: if all the premises are true (i.e. take the top value t), then so is the
conclusion. Equivalently, it may be defined in terms of preserving non-falsity in the
same Boolean algebra: if the conclusion is false (i.e. takes the bottom value f), then
so is one of the premises. While these two consequence relations coincide for the
two-element Boolean algebra, they come apart when truth values strictly between
t and f come into play. This is amply illustrated already by the next simplest case:
the four-element Boolean algebra. Strict truth and non-falsity in this algebra are
indicated by the solid dots in the following diagrams:
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2 LOGICS OF UPSETS OF DE MORGAN LATTICES

Both x and ¬x may be non-false in this algebra, invalidating the principle of ex-
plosion x,¬x ⊢ y and the disjunctive syllogism x,¬x ∨ y ⊢ y. Moreover, both x
and y may be non-false without x ∧ y being non-false, invalidating the rule of ad-
junction x, y ⊢ x ∧ y. On the other hand, classical logic is recovered by restricting
to the values t and f, thus each inference which is valid in this four-valued logic of
non-falsity must also be valid in classical logic.

The above idea of being as permissive as possible about truth, rather than as
restrictive as possible, was first introduced in the 1940’s by Jaśkowski [12, 13], one
of the earliest pioneers of paraconsistent logic. In his system of discussive logic
(also called discursive logic), Jaśkowski imagines “the theses advanced by several
participants in a discourse [being] combined into a single system” and drawing
logical inferences in a way which allows for different participants to advance con-
flicting theses without falling into triviality. In other words, one might imagine
taking a non-empty finite set of participants, assigning to each atomic proposition
the set of all participants who accept it, and extending this assignment to complex
propositions. The discussive consequence relation would then count a formula ϕ
as a consequence of a set of formulas Γ if whenever each γ ∈ Γ is accepted by
some participant, then so is ϕ. By contrast, the consequence relation of classical
logic counts ϕ as a consequence of Γ if whenever each γ ∈ Γ is accepted by every
participant, then so is ϕ. These two approaches, of course, amount to studying the
preservation of non-falsity and truth on finite Boolean algebras (or some related
family of algebras, depending on the precise signature).1

The same idea of preserving non-falsity rather than truth was advanced more
recently by Shramko [22] in a slightly different context. Instead of the four-element
Boolean algebra, Shramko considered the four-element De Morgan lattice DM1

which forms the algebraic semantics of the logic of Belnap and Dunn [8, 2, 3].
The only difference between the two algebras is in how they interpret negation:
negation has two fixpoints in the four-element De Morgan lattice, which we call n
(for Neither True nor False) and b (for Both True and False). The top and bottom
elements are still denoted t and f. While Belnap–Dunn logic is defined in terms
of preserving truth, which is interpreted in this context by the set {t, b}, recently
Pietz & Riveccio [16] studied the logic defined in terms of preserving exact truth,
which is interpreted in this context as the set {t}. Shramko’s dual proposal is to
consider the logic defined in terms of preserving anything but exact falsehood, i.e.
preserving the set {t, n, b}. The relationship between these last two logics thus
mimics the relationship between the logic of truth and the logic of non-falsity over
the four-element Boolean algebra, only the negation operator differs.

These examples serve to illustrate that while non-classical logicians are largely
concerned with systems which validate the adjunction rule x, y ⊢ x∧y, there may be
natural reasons to relax this rule and consider logics determined by upward closed
sets (upsets) rather than lattice filters. In particular, the present paper will be

1Jaśkowski’s discussive logic, which he calls D2 to indicate that it is a two-valued discussive
system, in fact goes beyond the signature of Boolean algebras. The characteristic connective of
his system is the discussive implication: essentially, ♦x → y in the language of the modal logic S5.

One might also include the discussive conjunction ♦x∧ y. Note that our perspective on discussive
logic is somewhat anachronistic: Jaśkowski in fact viewed his system as a set of theorems rather
than a consequence relation. However, the above consequence relation directly corresponds to his
discussive implication connective via the deduction theorem.
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concerned with logics determined by upsets of De Morgan lattices, thus subsuming
the two four-valued logics of non-falsity discussed above.

The key tool at our disposal is the notion of an n-filter on a distributive lattice,
developed by the present author in [17]. We already observed that the set of non-
zero elements of the four-element Boolean algebra does not form a lattice filter.
It does, however, form the next best thing: a 2-filter. This is an upset F such that

x ∧ y, y ∧ z, z ∧ x ∈ F =⇒ x ∧ y ∧ z ∈ F.

More generally, consider the set Pn of non-zero elements of the finite Boolean lattice
with n atoms Bn. This is an n-filter : an upset F such that for each non-empty
finite X ⊆ F

∧

Y ∈ F for each Y ⊆ X with 1 ≤ |Y | ≤ n =⇒
∧

X ∈ F.

Without loss of generality, we may restrict to |X | = n+ 1 in this definition.
The n-filter Pn is prime in the usual sense: x ∨ y ∈ Pn implies that either

x ∈ Pn or y ∈ Pn. The relationship between n-filters on distributive lattices and
the prime n-filter Pn on Bn is entirely analogous to the relationship between filters
on distributive lattices and the prime filter P1 = {t} on B1.

Theorem. The n-filters on a distributive lattice are precisely the intersections of
prime n-filters. The prime n-filters on a distributive lattice are precisely the homo-
morphic preimages of the prime n-filter Pn ⊆ Bn.

The first task that we undertake is to extend this theorem about n-filters on
distributive lattices to De Morgan lattices. In this setting, the two-element Boolean
algebraB1 is replaced by the four-element subdirectly irreducible De Morgan lattice
DM1 described above. The role of the prime filter {t} on B1 is taken over by the
prime filter {t, b} on DM1. It remains to find the analogue of the n-filter Pn.

The structures Bn := 〈Bn, Pn〉 are what we call the dual powers of the structure
B1 := 〈B1, {t}〉. The same construction applied to DM1 := 〈DM1, {t, b}〉 yields
the finite structures DMn := 〈DMn, Qn〉, where

DMn := (DM1)
n, 〈a1, . . . , an〉 ∈ Qn ⇐⇒ ai ∈ {t, b} for some 1 ≤ i ≤ n.

Note the existential rather than universal quantifier in the definition of Qn. Like-
wise, the dual powers of the three-element substructures P1 and K1 of DM1 with
the universe {t, b, f} and {t, n, f} respctively will be denoted Pn and Kn.

We shall call an upset F of a De Morgan lattice complete if x ∨ ¬x ∈ F and
moreover x ∈ F implies x ∧ (y ∨ ¬y) ∈ F . We call it consistent if it is not total
(x /∈ F for some x) and moreover (x ∧ ¬x) ∨ y ∈ F implies y ∈ F . Finally, we call
it classical if it is both complete and consistent.

The following theorem now extends the above characterization of n-filters on
distributive lattices to De Morgan lattices (see Theorems 2.11 and 2.25).

Theorem. The (complete, consistent, classical) n-filters on a De Morgan lattice
are precisely the intersections of (complete, consistent, classical) prime n-filters.
The (complete, consistent, classical) prime n-filters on a De Morgan lattice are
precisely the homomorphic preimages of the designated set of DMn (Pn, Kn, Bn).

This immediately yields completeness theorems for the non-adjunctive analogues
BDn, LPn, Kn, and CLn of the four-valued logic of Belnap and Dunn, the three-
valued logics of Priest and Kleene and two-valued classical logic, where the rule of
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adjunction x, y ⊢ x ∧ y is replaced by the n-adjunction rule

{
∧

j 6=i

xj | 1 ≤ i ≤ n+ 1} ⊢ x1 ∧ · · · ∧ xn+1.

Here
∧

j 6=i xj is the submeet of x1 ∧· · · ∧xn+1 which omits xi. A more complicated
completeness theorem for the non-adjunctive analogues KOn of the logic of order
of Kleene lattices can also be obtained in this way.

The second problem that we consider is the following: given a finite set of finite
matrices consisting of a De Morgan lattice with a designated upset, how do we
axiomatize the corresponding logic? In other words, how do we axiomatize a finitely
generated extension of the logic BD∞ of all upsets of De Morgan lattices?

We show how to do this in two special cases: if all of the upsets are prime, and
if all of them are filters. The extensions of BD∞ which arise in this way may be
characterized syntactically by means of certain meta-rules, i.e. implications between
valid rules. One of these meta-rules is well known: a logic L is said to enjoy the
proof by cases property (PCP) in case

Γ, ϕ1 ∨ ϕ2 ⊢L ψ if Γ, ϕ1 ⊢L ψ and Γ, ϕ2 ⊢L ψ.

We extend this to what we call the n-proof by cases property (n-PCP). For example,
the 2-PCP states that

Γ, ϕ1 ∨ ϕ2 ∨ ϕ3 ⊢L ψ if Γ, ϕ1 ∨ ϕ2 ⊢L ψ and Γ, ϕ2 ∨ ϕ3 ⊢L ψ and Γ, ϕ3 ∨ ϕ1 ⊢L ψ.

The Exactly True Logic of Pietz & Rivieccio [16] is a natural example of a logic
which enjoys the 2-PCP but not the PCP.

The following theorems now describe the finitely generated extensions of BD∞

in the two special cases considered above (see Theorems 3.4 and 3.3).

Theorem. The following are equivalent for each extension L of BD∞:

(i) L is a finitary extension of BDn with the PCP,
(ii) L is complete with respect to some set of substructures of DMn,
(iii) L is complete with respect to some finite set of finite structures of the form

〈L, F 〉 where L is a De Morgan lattice and F is a prime n-filter of L.

Some such n exists for each finitely generated extension of BD∞ with the PCP.

Theorem. The following are equivalent for each extension L of BD1:

(i) L is a finitary and enjoys the n-PCP,
(ii) L is complete with respect to some set of substructures of (DM1)

n,
(iii) L is complete with respect to some finite set of finite structures of the form

〈L, F 〉 where L is a De Morgan lattice and F is an n-prime upset of L.

Moreover, some such n exists for each finitely generated extension of BD1.

These theorems organize the finitely generated extensions of BD∞ with the PCP
and the finitely generated extensions of BD1 into two hierarchies, where each level
consists of logics which are complete with respect to families of substructures of
the finite structure DMn or (DM1)

n. This gives us a brute force but terminating
algorithm for axiomatizing such extensions: to axiomatize such a logic, it suffices
to find the level at which it lies and then separate it from other logics at this level
by means of finitely many finitary rules.

In the first case, we obtain a finite Hilbert-style axiomatization. In the second
case, we characterize such a logic as the smallest extension of BD∞ which enjoys
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the n-PCP and moreover validates some finite set of finitary rules. This in effect
yields a Gentzen-style axiomatization. It is worth noting that this provides a finite
Gentzen-style axiomatization for some logics which do not have a finite Hilbert-style
axiomatization, such as the logic of the matrix DM1 × B1 (see [19]).

We explicitly describe the first two levels of these two hierarchies. In particular,
we axiomatize Shramko’s logic of anything but falsehood [22] (see Theorem 3.11).

Theorem. The logic determined by the matrix 〈DM1, {t, n, b}〉 is the extension
of BD∞ by the 2-adjunction rule x∧y, y∧z, z∧x ⊢ x∧y∧z, the law of the excluded
middle ∅ ⊢ x ∨ ¬x, and the rule x ∨ y,¬x ∨ y ⊢ (x ∧ ¬x) ∨ y.

Finally, extensions of BD∞ can be classified according to their position in the
Leibniz hierarchy of abstract algebraic logic. We show that classical logic is the only
protoalgebraic extension of BD∞ and that BD∞ has a smallest truth-equational
extension (or two minimal truth-equational extensions if we include the top and
bottom constants in the signature). Classification in the Frege hierarchy proves to
be more complicated.

Before proceeding to fill in the details of the above narrative, let us remark that
the present study can be thought as an extension of the investigation of so-called
super-Belnap logics, initiated by Rivieccio [21] and further pursued in [1, 19]. While
super-Belnap logics in the strict sense of the term are defined as the extensions of
the four-valued logic of Belnap and Dunn, in our notation BD1, part of the appeal of
broadening our perspective to cover all extensions of BD∞ is that doing so restores
some measure of symmetry between paraconsistency and paracompleteness. For
example, in addition to the family of logics axiomatized by increasingly stronger
forms of the principle of explosion

(x1 ∧ ¬x1) ∨ · · · ∨ (xn ∧ ¬xn) ⊢ y,

one might wish to study the family of logics axiomatized by increasingly stronger
forms of the law of the excluded middle

∅ ⊢ (x1 ∨ ¬x1) ∧ · · · ∧ (xn ∧ ¬xn).

But in the presence of adjunction these rules all collapse into ∅ ⊢ x ∨¬x! Relaxing
the rule of adjunction therefore allows us to draw finer distinctions between logical
principles, just like relaxing the principle of explosion does. (However, we do not
pursue this line of thought in the present paper.)

The above idea of shifting one’s perspective on extensions of Belnap–Dunn logic
in order to achieve a greater degree of symmetry among these extensions was first
suggested by Shramko [24]. The present paper can therefore partly be considered
as an elaboration on Shramko’s proposal. Where our paper differs from Shramko’s
is in how exactly we achieve this. Shramko in effect discards the adjunction rule
by considering Fmla-Fmla consequence relations rather than Set-Set ones, i.e.
consequence relations of the form γ ⊢ ϕ rather than Γ ⊢ ϕ. However, one can
also achieve the same goal by considering extensions of BD∞ rather than BD1.
In a way, the logic BD∞ corresponds to the Fmla-Fmla fragment of BD1: we
have Γ ⊢BD∞

ϕ if and only if γ ⊢BD1
ϕ for some γ ∈ Γ. Shramko’s investigation

of the duals of known extensions of BD1 can therefore also be pursued within a
Set-Fmla framework. This has the advantage of allowing us to rely on the well-
developed framework of abstract algebraic logic.
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2. n-filters on De Morgan lattices

We start by reviewing some basic results about n-filters on distributive lattices
proved in [17]. Then we extend these results to (complete, consistent, classical, and
Kalman) n-filters on De Morgan lattices. As an immediate consequence, we obtain
completeness theorems for logics of (complete, consistent, classical, and Kalman)
n-filters on De Morgan lattices.

2.1. n-filters on distributive lattices. The notation [n] := {1, 2, . . . , n} and
X ⊆n Y , meaning that X ⊆ Y and |X | ∈ [n], will be used throughout the paper.
An n-filter on a distributive lattice is defined for n ≥ 1 as an upset F such that for
each non-empty finite set Y ⊆ F (without loss of generality with |Y | = n+ 1)

if
∧

X ∈ F for each X ⊆n Y, then
∧

Y ∈ F.

A 1-filter is a lattice filter in the usual sense of the word. Each m-filter is an n-filter
for m ≤ n, and each upset of a finite distributive lattice is an n-filter for some n.

An upset F of L will be called prime in case x∨ y ∈ F implies x ∈ F or y ∈ F .2

The canonical example of a prime n-filter is the set Pn of non-zero elements of the
finite Boolean lattice over n atoms Bn. This is not an m-filter for any m < n.

The relationship between prime n-filters on distributive lattices and the prime
n-filter Pn extends the relationship between prime filters and the prime filter {t}.

Theorem 2.1 (Prime n-filters on distributive lattices). The prime n-filters on a
distributive lattice are precisely the homomorphic preimages of Pn ⊆ Bn.

In order to understand how the set Pn ⊆ Bn arises in this context, it will be
helpful to review dual products and strict homomorphisms of structures. Through-
out the paper, the structures that we consider are logical matrices : they consist
of an algebra A and a set F ⊆ A, called the designated set of the structure. The
direct product of a family of structures 〈Ai, Fi〉 with i ∈ I is the structure

∏

i∈I

〈Ai, F 〉 :=
〈

∏

i∈I

Ai,
⋂

i∈I

π−1
i [Fi]

〉

,

where πi : A → Ai are the projection maps from A :=
∏

i∈I Ai. The dual product
of the family of structures 〈Ai, Fi〉 with i ∈ I, on the other hand, is the structure

⊗

i∈I

〈Ai, Fi〉 :=
〈

∏

i∈

Ai,
⋃

i∈I

π−1
i [Fi]

〉

.

In particular, observe that Bn := 〈Bn, Pn〉 is the n-th dual power of the structure
B1 := 〈B1, P1〉 = 〈B1, {t}〉. We shall use the notation B⊗n

1 to indicate dual powers.
The correspondence between prime filters on a distributive lattice L and homo-

morphisms into B1 is well known: each prime filter F on L corresponds to a
unique homomorphism h : L → B1 such that F = h−1{t}. Let us phrase this in
terms of structures. A strict homomorphism of structures h : 〈A, F 〉 → 〈B, B〉 is a
homomorphism of algebras h : A → B such that F = h−1[G].

2Observe that the empty set is prime according to this definition. This is because we wish to

characterize prime n-filters as precisely the homomorphic preimages of a certain canonical prime
n-filter. If we restricted to bounded distributive lattices and homomorphisms which preserve the
lattice bounds, then it would be appropriate to further require that a prime upset by non-empty.
This is in effect what we do in the case of Boolean algebras.
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Lemma 2.2 (Homomorphism lemma for B1). Let F be a prime filter on a distribu-
tive lattice L. Then there is a strict homomorphism hF : 〈L, F 〉 → B1, namely

hF (x) := t if x ∈ F, hF (x) := f if x /∈ F.

A family of strict homomorphisms hi : 〈A, Fi〉 → 〈Bi, Gi〉 with i ∈ I may be
packaged into a single strict homomorphism of structures in two different ways:

h∩ : 〈A,
⋂

i∈I

Fi〉 →
∏

i∈I

〈Bi, Gi〉, h∪ : 〈A,
⋃

i∈I

Fi〉 →
⊗

i∈I

〈Bi, Gi〉.

A finite family of prime filters Fi on L for i ∈ [n] thus yields a strict homomorphism
h : 〈L, F 〉 → Bn for F := F1 ∪ · · · ∪ Fn. The characterization of prime n-filters as
the homomorphic preimages of the canonical prime n-filter Pn on Bn is now an
immediate consequence of the following fact. (Note that the analogous claim for
arbitrary n-filters is far from true.)

Fact 2.3. Prime n-filters on a distributive lattice are precisely the unions of families
of at most n prime filters.

The notion of an n-prime filter on a distributive lattice L is dual to that of a
prime n-filter: a filter F is n-prime if its complement is an n-ideal (i.e. an n-filter
in the order dual lattice). For example, a filter F is 2-prime if

x ∨ y ∨ z ∈ F =⇒ x ∨ y ∈ F or y ∨ z ∈ F or z ∨ y ∈ F.

Because the n-prime filters on L are precisely the complements of prime n-filters
on the order dual of L, the characterization of prime n-filters as the homomorphic
preimages of Pn yields a dual characterization of n-prime filters.3

This follows from the De Morgan duality between direct and dual products:

〈A, F 〉 ⊗ 〈B, G〉 = 〈A, F 〉 × 〈B, G〉, where 〈A, F 〉 := 〈A,A \ F 〉.

Theorem 2.4 (n-prime filters on distributive lattices). The n-prime filters on a
distributive lattice are precisely the homomorphic preimages of the n-prime filter
{t} on Bn.

The relationship between n-filters and prime n-filters on distributive lattices
extends the relationship between filters and prime filters.

Theorem 2.5 (n-filters on distributive lattices). The n-filters on a distributive
lattice are precisely the intersections of prime n-filters.

The proof of this theorem relies on understanding how n-filters are generated.
Let U be a subset of a distributive lattice L. Because an arbitrary intersection of
n-filters is an n-filter, there is a smallest n-filter which extends U . We call this the
n-filter generated by U and denote it [U ]n. It suffices to describe U in case U is a
non-empty upset, since [∅]n = ∅ and the n-filter generated by U coincides with the
n-filter generated by its upward closure.

3The reader may be tempted at this point to put the two definitions together and consider m-

prime n-filters. Let us therefore pre-emptively warn the reader that in general it is not appropriate
to define m-prime n-filters as n-filters whose complement is an m-ideal. Rather, m-prime n-filters
should be defined as the m-prime elements of the lattice of n-filters. These definitions coincide if
m = 1 or n = 1, but a 2-filter whose complement is a 2-ideal need not be a 2-prime 2-filter.
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Figure 1. The algebra DM1

f

n b

t

Lemma 2.6 (Generating n-filters). Let U be a non-empty upset of a distributive
lattice L. Then

a ∈ [U ]n ⇐⇒ there is some non-empty finite X ⊆ U such that
∧

X ≤ a

and
∧

Y ∈ U for each non-empty Y ⊆ X with |Y | ≤ n.

The following lemma, where we use the notation [U, x]n := [U ∪ {x}]n, is a
consequence of this description of [U ]n.

Lemma 2.7. [U, x]n ∩ [U, y]n = [U, x ∨ y]n.

The standard argument involving a maximal n-filter not containing some given
element now immediately yields the above characterization of n-filters. In fact,
n-filters may be separated from arbitrary ideals by prime n-filters.

Theorem 2.8 (Prime n-filter separation). Let F be an n-filter on a distributive
lattice which is disjoint from an ideal I. Then F extends to a prime n-filter which
is disjoint from I.

2.2. Prime n-filters on De Morgan lattices as homomorphic preimages.

The above characterization of n-filters and prime n-filters on distributive lattices
extends to De Morgan lattices. These are distributive lattices equipped with an
antitone involution x 7→ ¬x, i.e. a unary operation satisfying the De Morgan laws:

¬¬x = x, ¬(x ∨ y) = ¬x ∧ ¬y, ¬(x ∧ y) = ¬x ∨ ¬y.

This will involve replacing the prime filter {t} on B1 by the prime filter {t, b} on the
four-element subdirectly irreducible De Morgan lattice DM1 shown in Figure 1, i.e.
replacing the structure B1 := 〈〈B1, {t}〉 by DM1 := 〈DM1, {t, b}〉. The De Morgan
lattice DM1 only differs from the Boolean algebra B1 × B1 in the interpretation
of negation: in DM1 we have ¬n = n and ¬b = b.

Unlike B1, the structure DM1 has proper substructures. Besides the two single-
ton substructures with universes {n} and {b}, it has the two three-element sub-
structures P1 and K1 (for Priest and Kleene) with universes {t, b, f} and {t, n, f}
respectively, and the two-element substructure B1 with the universe {t, f}. The
algebraic reducts of P1 and K1 are Kleene lattices : they satisfy x ∧ ¬x ≤ y ∨ ¬y.

Corresponding to these three substructures, we define three types of upsets on
De Morgan lattices. An upset F of a De Morgan lattice is almost complete if

x ∈ F =⇒ x ∧ (y ∨ ¬y) ∈ F.

It is complete if it is almost complete and non-empty, or equivalently if it is almost
complete and x ∨ ¬x ∈ F for each x. It is almost consistent if

(x ∧ ¬x) ∨ y ∈ F =⇒ y ∈ F.
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It is consistent if it is almost consistent and not total, i.e. x /∈ F for some x. An
(almost) classical upset is both complete and (almost) consistent.4

The homomorphism lemma for B1 now has an analogue for DM1 and its sub-
structures [20, Proposition 3.2].

Lemma 2.9 (Homomorphism lemma for DM1). Let F be a prime filter on a
De Morgan lattice L. Then there is a strict homomorphism hF : 〈L, F 〉 → DM1,
namely

hF (x) := t if x ∈ F,¬x /∈ F, hF (x) := n if x /∈ F,¬x /∈ F,

hF (x) := b if x ∈ F,¬x ∈ F, hF (x) := f if x /∈ F,¬x ∈ F.

If F is a complete (consistent, classical) prime filter, then hF is a strict homo-
morphism into P1 (into K1, into B1).

The dual powers of the structure DM1 will be denoted DMn:

DMn = 〈DMn, Qn〉 := (DM1)
⊗n = 〈DM1, {t, b}〉

⊗n.

Similarly, the dual powers of P1 and K1 will be denoted Pn and Kn. Thus

Bn := (B1)
⊗n, Pn := (P1)

⊗n, Kn := (K1)
⊗n, DMn := (DM1)

⊗n.

Repeating the argument for distributive lattices shows that the prime n-filters on
De Morgan lattices are precisely the homomorphic preimages of the designated set of
DMn. Some more work is needed, however, to obtain an analogous characterization
of complete, consistent, and classical n-filters.

Fact 2.10. The (complete, consistent, classical) prime n-filters on a De Morgan
lattice are precisely the unions of non-empty families of at most n (complete, con-
sistent, classical) prime filters.

Proof. The union of any non-empty family of complete (consistent, classical) upsets
is complete (consistent, classical), since the implications defining these conditions
have at most one premise. Conversely, let F be a non-empty prime n-filter on a
De Morgan lattice L. We know that F is an irredundant union of at most n prime
filters on L, say F = F1 ∪ · · · ∪ Fk for k ≤ n. If F is complete, consider therefore
some ai ∈ Fi. Because the union is non-redundant, there is some ci ∈ Fi with
ci /∈ Fj for j 6= i. Then ai∧ci ∈ Fi. Because F is complete, ai∧ci∧ (b∨¬b) ∈ F . It
follows that ai∧ci∧ (b∨¬b) ∈ Fi and ai∧ (b∨¬b) ∈ Fi. Similarly, if F is consistent
and (x∧¬x)∨y ∈ Fi, then (x∧¬x)∨ (y∧ci) ∈ Fi for the same ci, hence y∧ci ∈ F .
But ci /∈ Fj for j 6= i, hence y ∧ ci ∈ Fi and y ∈ Fi. �

Theorem 2.11 (Complete, consistent, and classical prime n-filters). The (com-
plete, consistent, classical) prime n-filters are precisely the homomorphic preimages
of the designated set of DMn (Pn, Kn, Bn).

One further family of upsets merits our attention. We call an upset F of a
De Morgan lattice a Kalman upset if

((x ∧ ¬x) ∧ z) ∨ u ∈ F =⇒ ((y ∨ ¬y) ∧ z) ∨ u ∈ F,

or equivalently

((x ∧ ¬x) ∨ z) ∧ u ∈ F =⇒ ((y ∨ ¬y) ∨ z) ∧ u ∈ F.

4The asymmetry here arises from the fact that one can always talk about the complete upset
generated by a given set, but not necessarily about the consistent upset generated by a given set.
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In particular, each almost complete upset is Kalman, as is each almost consistent
upset. We use this name to emphasize that these upsets are related to the logic of
order of Kleene lattices, which, adding to the multiplicity of names under which it
has been known, we call Kalman’s logic of order here.5 We now explain the purpose
of this definition.

Lemma 2.12. The smallest congruence θ on a De Morgan lattice L such that L/θ
is a Kleene lattice is the congruence θ such that 〈a, b〉 ∈ θ if and only if

a ∧ f = b ∧ f and ¬f ∨ a = ¬f ∨ b for some f ∈ Fcomp,

where Fcomp is the filter generated by elements of the form x ∨ ¬x.

Fact 2.13. An upset (n-filter) of a De Morgan lattice is Kalman if and only if it
is the homomorphic preimage of an upset (n-filter) of a Kleene lattice.

Proof. Each upset of a Kleene lattice is a Kalman upset, hence so are its homo-
morphic preimages. Conversely, let F be an order-Kleene upset (n-filter) of a
De Morgan lattice L. Let θ be the congruence given by the above lemma and let
π be the projection map π : L → L/θ. If we can show that a ∈ F and 〈a, b〉 ∈ θ
implies b ∈ F , then π[F ] is an upset (n-filter) of the Kleene lattice L/θ and F is its
preimage via π. Thus, suppose that a ∈ F and a ∧ f ≤ b and a ≤ ¬f ∨ b for some
f ∈ Fcomp. Then a = a∧ (¬f ∨b) ∈ F and by the Kalman condition a∧ (f ∨b) ∈ F ,
hence a ∧ (f ∨ b) ≤ (a ∧ f) ∨ b = b ∈ F . �

Classical upsets (n-filters) admit an analogous characterization.

Lemma 2.14. The smallest congruence θ on a De Morgan lattice L such that L/θ
is a Boolean algebra is the congruence θ such that 〈a, b〉 ∈ θ if and only if

(¬f ∨ a) ∧ f = (¬f ∨ b) ∧ f for some f ∈ Fcomp,

where Fcomp is the filter generated by elements of the form x ∨ ¬x.

Fact 2.15. An upset (n-filter) of a De Morgan lattice is classical if and only if it
is the homomorphic preimage of a non-empty upset (n-filter) of a Boolean lattice.

Proof. Each non-empty upset of a Boolean algebra is classical, hence so are its
homomorphic preimages. Conversely, let F be a classical upset (n-filter) of a De
Morgan lattice L. Let θ be the congruence given by the above lemma and let π
be the projection map π : L → L/θ. If we can show that a ∈ F and 〈a, b〉 ∈ θ
implies b ∈ F , then π[F ] is an upset (n-filter) of the Boolean algebra L/θ and F is
its preimage via π. Thus, suppose that a ∈ F and (¬f ∨ a) ∧ f ≤ ¬f ∨ b. Then
¬f ∨a ∈ F because F is an upset and (¬f ∨a)∧f ∈ F because it is complete, hene
¬f ∨ b ∈ F and finally b ∈ F because F is consistent. �

Unlike complete, consistent, and classical prime n-filters, which are described as
the homomorphic preimages of a single prime n-filter, Kalman prime n-filters will
be identified as the homomorphic preimages of a finite family of prime n-filters.

5This logic was called Kalman implication by Makinson [15], the Kalman consequence system
by Dunn [9], and Kleene’s logic of order by Rivieccio [21]. While there is some logic behind calling
filters associated with Kleene lattices Kleene filters, we choose to use Kalman’s name here to avoid

the ambiguity stemming from the fact that Kleene’s name is already attached to several logics in
the vicinity. It was Kalman [14] who, to the best of our knowledge, first axiomatized the variety
of what is now called Kleene lattices by what is in our notation the axiom x ∧ ¬x ≤ y ∨ ¬y. One
could thus very well also call these Kalman lattices.
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Fact 2.16. The Kalman prime n-filters are precisely the unions of at most n
Kalman prime filters.

Proof. Each Kalman prime n-filter is a homorphic image of a prime n-filter on a
Kleene lattice, which is a union of at most n prime filters. Their homomorphic
preimages are the required Kalman prime filters. �

Fact 2.17. Each Kalman prime filter is either complete or consistent.

Proof. For prime filter F on a Kleene lattice L there is a strict homomorphism
h : 〈L, F 〉 → DM1. Because L is Kleene, so is the image of h. Thus we either have
a strict homomorphism h : 〈L, F 〉 → P1 or a strict homomorphism h : 〈L, F 〉 → K1.
In the former case, F is complete. In the latter case, it is consistent. The same
therefore holds for each homomorphic preimage of F . �

Theorem 2.18 (Kalman prime n-filters). The Kalman prime n-filters on a De
Morgan lattice are precisely the homomorphic preimages of the designated sets of
structures of the form Pi ⊗Kj for i+ j = n, where 0 ≤ i ≤ n and 0 ≤ j ≤ n.

Proof. This follows immediately from the previous two facts, taking into account
that the complete (consistent) prime filters are precisely the homomorphic pre-
images of the designated set of P1 (K1). �

The above results may be dualized in exactly the same way as the corresponding
results about distributive lattices. Given an upset F of a De Morgan lattice L, by
its De Morgan dual we mean its complement L \ F as an upset of the order-dual
L∂ of L. By extension, the De Morgan dual of the structure 〈L, F 〉 is the structure
∂〈L, F 〉 := 〈L∂ , L \ F 〉. Notice that ∂∂〈L, F 〉 = 〈L, F 〉.

Fact 2.19. The De Morgan duals of complete (consistent, classical, Kalman) prime
n-filters are precisely the consistent (complete, classical, Kalman) n-prime filters.

The following theorem is now an immediate consequence of the characterization
of prime n-filters, given that each strict homomorphism h : 〈A, F 〉 → 〈B, G〉 can
also be viewed a strict homomorphism h : ∂〈A, F 〉 → ∂〈B, G〉.

Theorem 2.20 (Complete, consistent, and classical n-prime filters). The (com-
plete, consistent, classical) n-prime filters are precisely the homomorphic preimages
of the designated set of (DM1)

n ((P1)
n, (K1)

n, (B1)
n).

Theorem 2.21 (Kalman n-prime filters). The Kalman n-prime filters on a De
Morgan lattice are precisely the homomorphic preimages of the designated sets of
structures of the form (P1)

i × (K1)
j for i+ j = n, where 0 ≤ i, j ≤ n.

2.3. Prime n-filter separation. Having described the prime n-filters of various
kinds as the homomorphic preimage of certain upsets, we now describe arbitrary
n-filters of these kinds as intersections of prime ones.

Let U be an upset of a De Morgan lattice L. Recall that [U ]n denotes the n-
filter generated by U . Let Fcomp be the filter generated by the elements of the
form x ∨ ¬x. We introduce the upsets CompU , ConsU , ClassU , and KalmU for
non-empty U as follows: x ∈ CompU if and only if

a ∧ f ≤ x for some a ∈ U and f ∈ Fcomp,
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x ∈ ConsU if and only if

¬f ∨ x ∈ U for some f ∈ Fcomp,

x ∈ ClassU if and only if

a ∧ f ≤ ¬f ∨ x for some a ∈ U and f ∈ Fcomp,

and x ∈ KalmU if and only if

a ∧ f ≤ x and a ≤ ¬f ∨ x for some a ∈ U and f ∈ Fcomp.

We define Cons ∅ := ∅, Kalm ∅ := ∅, Comp ∅ := Fcomp and Class ∅ := ConsFcomp.
Observe that ClassU = ConsCompU . On the other hand, it need not be the

case that KalmU = CompU ∩ConsU (consider the designated set of P1 ⊗K1).

Lemma 2.22. Cons[U ]n is an n-filter. [CompU ]n is complete.

Proof. Consider x1, . . . , xn+1 such that that
∧

j 6=i xj ∈ Cons [U ]n for i ∈ [n + 1].

Then for each i ∈ [n + 1] there is f ∈ Fcomp such that ¬f ∨
∧

j 6=i xj ∈ [U ]n. We

may choose the same f in each case. Thus
∧

j 6=i(¬f ∨ xj) ∈ [U ]n for each i, hence

¬f ∨
∧

i∈I xi =
∧

i∈I(¬f ∨ xi) ∈ [U ]n and
∧

i∈I xi ∈ Cons [U ]n.
If a ∈ [CompU ]n, then there is a non-empty finite set X ⊆ CompU such that

∧

X ≤ a and
∧

Y ∈ CompU for each Y ⊆n X . Then a ∧ f ∈ [CompU ]n is
witnessed by the set Z := {x ∧ f | x ∈ X and f ∈ Fcomp} ⊆ CompU . �

Theorem 2.23 (Generating n-filters on De Morgan lattices). Let U be a non-empty
upset of a De Morgan lattice. Then:

(i) the complete upset generated by U is CompU ,
(ii) the almost consistent upset generated by U is ConsU ,
(iii) the almost classical upset generated by U is ClassU ,
(iv) the Kalman upset generated by U is KalmU ,
(v) the complete n-filter generated by U is [CompU ]n,
(vi) the almost consistent n-filter generated by U is Cons [U ]n,
(vii) the almost classical n-filter generated by U is [ClassU ]n,
(viii) the Kalman n-filter generated by U is [KalmU ]n.

Proof. Cases (i) and (ii) are obvious. Cases (iii) and (vii) follow from the fact
that almost classical upsets (n-filters) are precisely the homomorphic preimages of
non-empty upsets (n-filters) of Boolean algebras and the description of the smallest
congruence θ on L such that L/θ is a Boolean algebra (Lemma 2.14). It suffices
to observe that if h : A → B is a surjective homomorphism of De Morgan lattices
and U is an upset of B, then [h−1[U ]]n = h−1[[U ]n]. Similarly, cases (iv) and (viii)
follow from the fact that Kalman upsets (n-filters) are precisely the homomorphic
preimages of upsets (n-filters) of Kleene lattices and the description of the smallest
congruence θ on L such that L/θ is a Kleene lattice (Lemma 2.12). Finally, cases
(v) and (vi) follow from the above lemma. �

Theorem 2.24 (Prime separation for n-filters on De Morgan lattices). Let F be
a (complete, consistent, classical, Kalman) n-filter on a De Morgan lattice which
is disjoint from a non-empty ideal I. Then F extends to a complete (consistent,
classical, Kalman) prime n-filter which is disjoint from I.
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Proof. The claim for general n-filters is a special case of the corresponding theorem
for distributive lattices. For complete n-filters, let G be the maximal complete
n-filter disjoint from I which extends F . If x, y /∈ G, then [Comp(G, x)]n and
[Comp(G, y)]n intersect I, hence there i ∈ [Comp(G, x)]n ∩ [Comp(G, y)]n for some
i ∈ I. That is, i ∈ [(CompG), x∧f ]n and i ∈ [(CompG), y∧f ]n for some f ∈ Fcomp.
But then i ∈ [(CompG), (x ∨ y) ∧ f}]n by Lemma 2.7, so the complete n-filter
generated by G ∪ {x ∨ y} intersects I at i. Thus x ∨ y /∈ G.

For consistent n-filters, let G be the maximal consistent n-filter disjoint from I
which extends F . If x, y /∈ G, then Cons [G, x]n and Cons [G, y]n intersect I. Then
i ∈ Cons[G, x]n ∩ Cons[G, y]n = Cons([G, x]n ∩ [G, y]n) = Cons[G, x ∨ y]n for some
i ∈ I by the previous lemma. The consistent n-filter generated by G∪ {x∨ y} thus
intersects I at i, and x ∨ y /∈ G.

In the Kalman case (the classical case) there is a surjective homomorphism
h : L → K onto a Kleene lattice (Boolean algebra) K such that F = h−1[G] for
some n-filter G of K. The downset J ⊆ K generated by h[I] is an ideal on K

which is disjoint from G: if x ∈ J ∩ G, then x ≤ h(i) for some i ∈ I, so h(i) ∈ G
and i ∈ F = h−1[G], contradicting F ∩ I = ∅. It follows that G extends to a
prime n-filter on K disjoint from J , and its preimage with respect to h is a Kalman
(classical) prime n-filter on L disjoint from I. �

Theorem 2.25 (n-filters on De Morgan lattices). The (complete, consistent, clas-
sical, Kalman) n-filters on a De Morgan lattice are precisely the intersections of
non-empty families of (complete, consistent, classical, Kalman) prime n-filters.

2.4. Consequence in logics of upsets. The above representation of various
types on n-filters on De Morgan lattices as the intersections of homomorphic pre-
images of some canonical n-filters immediately yields completeness theorems for
non-adjunctive generalizations of Belnap–Dunn logic, Kleene’s strong three-valued
logic, Priest’s Logic of Paradox, Kalman’s logic of order, and classical logic. Like-
wise, the above results describing the generation of n-filters of various types imme-
diately yield theorems relating the consequence relations of these logics.

We shall assume in the following that the reader is familiar with the basic notions
of abstract algebraic logic: the notion of a (finitary) logic, a (reduced) model of a
logic, an extension of a logic, and a (Hilbert-style) axiomatization of a logic. If not,
the reader may consult the textbook [10] for the relevant definitions.

The logics considered here will all be axiomatized relative to the base logic BD∞,
defined as the logic determined by all structures of the form 〈A, F 〉 where A is a
De Morgan lattice and F is an upset of L. A finite Hilbert-style axiomatization for
this logic was found by Shramko [23]. More precisely, Shramko was concerned with
axiomatizing the Fmla-Fmla fragment of Belnap–Dunn logic, but this is equivalent
to axiomatizing BD∞ in view of Theorem 2.28. The choice of BD∞ as a base logic
is appropriate given that extensions of BD∞ are precisely the logics complete with
respect with respect to some class of structures of the above form.

Let LP∞ be the extension of BD∞ by the rules

∅ ⊢ x ∨ ¬x, x ⊢ x ∧ (y ∨ ¬y),

K∞ be the extension of BD∞ by the rule

(x ∧ ¬x) ∨ y ⊢ y,
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CL∞ be the extension of BD∞ by all three of above rules, andKO∞ be the extension
of BD∞ by the rule

((x ∧ ¬x) ∧ z) ∨ u ⊢ ((y ∨ ¬y) ∧ z) ∨ u,

or equivalently by the rule

((x ∧ ¬x) ∨ z) ∧ u ⊢ ((y ∨ ¬y) ∨ z) ∧ u.

Furthermore, let BDn (LPn, Kn, KOn, CLn) be the extension of BD∞ (LP∞, K∞,
KO∞, CL∞) by the n-adjunction rule

{
∧

j 6=i

xj | i ∈ [n+ 1]} ⊢ x1 ∧ · · · ∧ xn+1,

where
∧

j 6=i xj is the submeet of x1 ∧ · · · ∧ xn+1 omitting xi.

Theorem 2.26 (Completeness for logics of n-filters). BDn (LPn, Kn, CLn) is
complete with respect to the structure DMn (Pn, Kn, Bn). KOn is complete with
respect to the family of structures of the form Pi ⊗Kj for i+ j = n (0 ≤ i, j ≤ n).

Proof. Each reduced model of BD∞ has the form 〈A, F 〉 where A is a De Morgan
lattice and F is an upset of A (because each reduced model of a logic generated
by structures of the form 〈A, F 〉 for A in some variety K has the form 〈B, G〉 for
some B ∈ K). Thus BDn is complete with respect to the class of all structures
the form 〈A, F 〉 where A is a De Morgan lattice and F is an upset which validates
n-adjunction, i.e. an n-filter on A. But then F is an intersection of a family of
prime n-filters Fi, and each of these is a homomorphic preimage of Qn ⊆ DMn.
Thus 〈A, F 〉 embeds into some product of strict homomorphic preimages of the
structure DMn. It follows that each De Morgan lattice with an n-filter is a model
of the logic determined by DMn. Conversely, DMn is a De Morgan lattice with an
n-filter. An analogous argument applies in the other cases. �

Note that KO∞ < LP∞∩K∞ and KOn < LPn∩Kn for each n ≥ 2 even though
KO1 = LP1∩K1. For example, the rule x, y∧¬y ⊢ x∧(z∨¬z) holds in LP∞∩K∞,
hence in LPn ∩Kn for each n, but it fails in KO2 because it fails in P1 ⊗K1.

We say that L is complete as a finitary logic with respect to some class of
structures K if each finitary rule Γ ⊢ ϕ is valid in L if and only if in holds in each
structure in K. Note that a logic can be finitary and complete as a finitary logic with
respect to K without being complete with respect to K.6 We shall see momentarily
that this is in fact the case for the logics covered by the following theorem.

Theorem 2.27 (Completeness for logics of upsets). BD∞ (LP∞, K∞, KO∞,
CL∞) is complete as a finitary logic with respect to the family of structures DMn

(Pn, Kn, Pi ⊗Kj, Bn).

Proof. BD∞ is complete as a finitary logic with respect to the class of all finitely
generated (i.e. finite) De Morgan lattices equipped with an upset. But each such
upset is an n-filter for some n. Thus BD∞ is the intersection of the logics BDn.
An analogous argument applies in the other cases. �

We can describe consequence in BD∞, KO∞, and CL∞ in terms of equational
validity in De Morgan lattices, Kleene lattices, and Boolean algebras.

6This is analogous to the distinction between a quasivariety generated by a class of algebras K

as a quasivariety and a quasivariety being generated by K as a prevariety.
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Theorem 2.28 (Consequence in BDn, BD∞ and KOn, KO∞). Let Γ ⊢ ϕ be a
logical rule in the signature of De Morgan lattices. Then:

(i) γ ⊢BD∞
ϕ if and only if γ ≤ ϕ holds in all De Morgan lattices.

(ii) Γ ⊢BD∞
ϕ if and only if γ ⊢BD∞

ϕ for some γ ∈ Γ.
(iii) Γ ⊢BDn

ϕ if and only if there is some non-empty finite set of terms Φ such
that Γ ⊢BD∞

∧

∆ for each ∆ ⊆n Φ and
∧

Φ ⊢BD∞
ϕ.

The same equivalence relates Kleene lattices, KO∞, and KOn.

Proof. The proof is identical to the proof of the analogous fact for distributive
lattices, see [17, Fact 4.5]. �

For Boolean algebras, the statement of the fact needs to be modified slightly,
since CL∞ is the logic of non-empty upsets.

Theorem 2.29 (Consequence in CLn and CL∞). Let Γ ⊢ ϕ be a logical rule in the
signature of Boolean algebras. Then:

(i) ∅ ⊢CL∞
ϕ if and only if t ≤ ϕ holds in all Boolean algebras.

(ii) γ ⊢CL∞
ϕ if and only if γ ≤ ϕ holds in all Boolean algebras.

(iii) Γ ⊢CL∞
ϕ for Γ non-empty if and only if γ ⊢CL∞

ϕ for some γ ∈ Γ.
(iv) Γ ⊢CLn

ϕ if and only if there is some non-empty finite set of terms Φ such
that Γ ⊢CL∞

∧

∆ for each ∆ ⊆n Φ and
∧

Φ ⊢CL∞
ϕ.

Proof. This is (a special case of) Theorem 4.6 of [17]. �

We can then relate consequence in LPn, Kn, KOn, and CLn to consequence
in BDn, and likewise for the corresponding logics of upsets. For this purpose, it
will be convenient to introduce the abbreviation

α(ψ1, . . . , ψk) := (ψ1 ∨ ¬ψ1) ∧ · · · ∧ (ψk ∨ ¬ψk).

The following theorems are direct consequences of the corresponding theorems con-
cerning the generation of n-filters and upsets of the appropriate types. We only
prove the first one explicitly.

Theorem 2.30 (Consequence in LPn and LP∞). Γ ⊢LPn
ϕ if and only if

α(ψ1, . . . , ψk), {γ ∧ α(ψ1, . . . , ψk) | γ ∈ Γ} ⊢BDn
ϕ for some ψ1, . . . , ψk.

The same equivalence relates LP∞ and BD∞.

Proof. The right-to-left direction is trivial. Conversely, suppose that Γ ⊢LPn
ϕ.

Let FDML(Var) be the free De Morgan lattice generated by the set of variables Var
and let π : Fm(Var) → FDML(Var) be the unique homomorphism which restricts to
the identity on Var. Observe that Γ ⊢BDn

ϕ if and only if π(ϕ) ∈ [π[Γ]]n.
If Γ ⊢LPn

ϕ, then π(ϕ) is in the complete n-filter F on FDML(Var) generated by
π[Γ]. That is, π(ϕ) ∈ [Compπ[Γ]]n. Because the map π is surjective, this yields
formulas ψ1, . . . , ψk such that π(ϕ) ∈ [{π(γ ∧ α(ψ1, . . . , ψk)) | γ ∈ Γ}]n, hence
{γ ∧ α(ψ1, . . . , ψk) | γ ∈ Γ} ⊢BDn

ϕ. �

Theorem 2.31 (Consequence in Kn and K∞). Γ ⊢Kn
ϕ if and only if

Γ ⊢BDn
¬α(ψ1, . . . , ψk) ∨ ϕ for some ψ1, . . . , ψk.

The same equivalence relates K∞ and BD∞.
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Theorem 2.32 (Consequence in KO∞). Γ ⊢KO∞
ϕ if and only if

α(ψ1, . . . , ψk) ∧ γ ⊢BD∞
ϕ and γ ⊢BD∞

¬α(ψ1, . . . , ψk) ∨ ϕ

for some γ ∈ Γ and some ψ1, . . . , ψk.

Theorem 2.33 (Consequence in CLn). Γ ⊢CLn
ϕ if and only if

α(ψ1, . . . , ψk), {γ ∧ α(ψ1, . . . , ψk) | γ ∈ Γ} ⊢BDn
¬α(ψ1, . . . , ψk) ∨ ϕ

for some ψ1, . . . , ψk. The same equivalence relates CL∞ and BD∞.

The logic CL∞ is not complete with respect to the family of structures Bn. As
observed in [17], all of the structures Bn satisfy the following logical rule, which
fails in the Boolean algebra (B1)

ω with every non-zero element designated:

{(xi ∧ ¬xj) ∨ y | i, j ∈ ω and i < j} ⊢ y.

Thanks to the connection between CLn and BDn, we obtain an infinitary rule which
is valid in BDn for each n but not in BD∞, or indeed in CL∞. Because BDn ≤ LPn

and LP∞ ≤ CL∞, and likewise for the other logics considered above, we can infer
that LP∞ is not complete with respect to the structures Pn, K∞ is not complete
with respect to the strutures Kn, and KO∞ is not complete with respect to the
structures Pi ⊗ Kj. In other words, it is indeed necessary to distinguish between
completeness simpliciter and completeness as a finitary logic in Theorem 2.27.

Finally, let us remark that the results about logics proved in this section are
in fact corollaries of results about what we called filter classes in [17]. If we ab-
stract away from limitations imposed by the cardinality of the set of variables and
allow for a proper class of variables, a class of structures arises as the class of all
models of a logic if and only if it is a logical class of structures: a class closed
under substructures, products of structures, strict homomorphic images, and strict
homomorphic preimages. A filter class, on the other hand, is only required to be
closed under the first three constructions.

Since our representation of various types of n-filters as intersections of homo-
morphic preimages of a certain given n-filter or family of n-filters does not involve
taking strict homomorphic images, we in fact showed that e.g. the class of all n-
filters on De Morgan lattices is generated as a filter class by the structure DMn.
Syntactically, moving from logical classes to filter classes corresponds to allowing
the use of equalities in the premises of logical rules, i.e. allowing for rules of the
form E,Γ ⊢ ϕ where E is a set of equations, Γ is a set of formulas, and ϕ is a
formula. For example, the rule

x ≈ ¬x, y ≈ ¬y, z ≈ ¬z, x ∧ y, x ∧ z ⊢ x ∧ y ∧ z

holds in a structure 〈L, F 〉 in case for each x, y, z ∈ L

x = ¬x & y = ¬y & z = ¬z & x ∧ y ∈ F & x ∧ z ∈ F =⇒ x ∧ y ∧ z ∈ F.

In particular, it holds in the structureK2, therefore by the analogue of Theorem 2.26
it must hold in every consistent 2-filter on a De Morgan lattice.

The relationships established in this section between logical rules valid in BD∞,
logical rules valid in its various extensions and equations valid in De Morgan lattices
(or in some cases Kleene lattices or Boolean algebras) then extend to analogous
relationships involving rules of this more general type and quasi-equations, replacing
the rule Γ ⊢ ϕ by E,Γ ⊢ ϕ, the rule γ ⊢ ϕ by E, γ ⊢ ϕ, and the inequality γ ≤ ϕ
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by the implication E =⇒ γ ≤ ϕ, in a manner entirely analogous to [17, Fact 4.5].
We refer the interested reader to [17] for more details.

3. Finitely generated extensions of BD∞

In the previous section, we obtained completeness theorems for some prominent
logics of upsets of De Morgan lattices. In this section, we shall be concerned with
the general problem of axiomatizing logics determined by a finite family of upsets of
finite De Morgan lattices. We show that such an axiomatization can be found in an
entirely mechanical matter in two special cases, namely if all of the upsets are filters
or if they are all prime, with the caveat that in the former case the axiomatization
involves a certain meta-rule (i.e. it is a Gentzen-style axiomatization).

3.1. Two hierarchies of finitely generated extensions. The algorithm for
axiomatizing such logics rests of the following simple observation. Given a finite
family of prime upsets Fi of finite De Morgan lattices Ai for i ∈ I, there is some n
such that each Fi is a prime n-filter (because if an upset fails to be an n-filter, it must
contain at least n+1 pairwise incomparable elements). Dually, given a finite family
of filters Fi of finite De Morgan lattices Ai for i ∈ I, there is some n such that each
Fi is an n-prime filter. But each prime n-filter is a homomorphic preimage of the
designated set of DMn, and each n-prime filter is a homomorphic preimage of the
designated set of (DM1)

n, i.e. there is a strict homomorphism h : 〈Ai, Fi〉 → DMn

or h : 〈Ai, Fi〉 → (DM1)
n. The structure 〈Ai, Fi〉 thus determines the same logic

as the substructure of DMn or (DM1)
n given by the image of h.

The logics determined by a finite family of prime upsets of finite De Morgan
lattices are therefore precisely the logics determined by some family of substructures
of the finite structure DMn for some n. Similarly, the logics determined by a finite
family of n-prime filters on finite De Morgan lattices are precisely those determined
by some family of substructures of the finite structure (DM1)

n for some n.
To obtain a satisfactory theorem, it remains to find a syntactic description of

the finitely generated logics determined by prime upsets and by n-prime filters. An
extension L of BD∞ will be said to enjoy the proof by cases property (PCP) in case

Γ, ϕ1 ∨ ϕ2 ⊢L ψ if Γ, ϕ1 ⊢L ψ and Γ, ϕ2 ⊢L ψ.

The converse implication always holds, since ϕ1 ⊢L ϕ1∨ϕ2 and ϕ2 ⊢L ϕ1∨ϕ2. The
proof by cases property was studied in detail (and at a greater level of abstraction)
by Czelakowski [6, Section 2.5] and Cintula & Noguera [4]. More generally, we say
that L has the n-proof by cases property (n-PCP) in case

Γ, ϕ1 ∨ · · · ∨ ϕn+1 ⊢L ψ if Γ,
∨

j 6=i

ϕj ⊢L ψ for each i ∈ [n+ 1].

For n = 1 this property reduces to the PCP.7

Fact 3.1. Let L be a finitary extension of BD∞. Then L enjoys the PCP if and
only if it is complete with respect to some class of structures of the form 〈L, F 〉
where L is a De Morgan lattice and F is a prime upset of L.

7The n-PCP looks superficially similar to the PCP, but it is important to keep in mind that
the PCP is an intrinsic property of a logic, while the n-PCP is depends on our choice of the
disjunction connective. That is, if a logic has a disjunction connective which obeys the PCP, it is
unique up to logical equivalence (interderivability), but this is not true for the n-PCP.
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Proof. The right-to-left implication is straightforward. Conversely, suppose that
L has the PCP. If a rule fails in L, then it fails in some structure of the form
〈Fm(Var), T 〉, where T is a theory of L. By the finitarity of L, each L-theory is
an intersection of completely meet irreducible L-theories, therefore the rule fails in
some structure of the form 〈Fm(Var), U〉 where U is a completely meet irreducible
L-theory. For each such U there is some ψ such that ϕ /∈ U if and only if U,ϕ ⊢ ψ.
By the PCP, ϕ1∨ϕ2 ∈ U now implies that ϕ1 ∈ U or ϕ2 ∈ U . Then there is a strict
surjective homomorphism from 〈Fm(Var), U〉 onto a structure 〈L, F 〉 such that L
is a De Morgan lattice. But then 〈L, F 〉 is a model of L, F is a prime upset on L,
and the rule in question fails in 〈L, F 〉. �

Fact 3.2. Let L be a finitary extension of BD1. Then L enjoys the n-PCP if and
only if it is complete with respect to some set of structures of the form 〈L, F 〉 where
L is a De Morgan lattice and F is an n-prime filter of L.

Proof. The proof is entirely analogous. �

We have therefore established the following theorems. Note that in the Boolean
case each substructure of Bn has the form Bm and each substructure of (B1)

n has
the form (B1)

m for some m ≤ n, but this is far from true for DMn and (DM1)
n.

Theorem 3.3 (Finitely generated extensions of BD1). The following are equivalent
for each extension L of BD1:

(i) L is a finitary and enjoys the n-PCP,
(ii) L is complete with respect to some set of substructures of (DM1)

n,
(iii) L is complete with respect to some finite set of finite structures of the form

〈L, F 〉 where L is a De Morgan lattice and F is an n-prime upset of L.

Moreover, some such n exists for each finitely generated extension of BD1.

Theorem 3.4 (Finitely generated extensions of BD∞ with the PCP). The follow-
ing are equivalent for each extension L of BD∞:

(i) L is a finitary extension of BDn with the PCP,
(ii) L is complete with respect to some set of substructures of DMn,
(iii) L is complete with respect to some finite set of finite structures of the form

〈L, F 〉 where L is a De Morgan lattice and F is a prime n-filter of L.

Some such n exists for each finitely generated extension of BD∞ with the PCP.

It may well turn out that finitarity is not required here. However, proving this
would require a finer analysis of the lattice of extensions of BD∞.

These theorems organize the finitely generated extensions of BD1 and the finitely
generated extensions of BD∞ with the PCP into two hierarchies. We now explain
how to extract a finite axiomatization for these logics.

Consider a logic L determined by a finite set of finite structures K which lies at
the n-th level of one of these hierarchies. Then L is complete with respect to some
set of substructures of a given finite structure, either DMn or (DM1)

n. If such
a substructure 〈A, F 〉 is a model of L, there is a finitary semantic construction
witnessing this (the Leibniz reduct of 〈A, F 〉 is a strict homomorphic image of a
substructure of some finite product of structures in K, per [7]). If, on the other
hand, 〈A, F 〉 is not a model of L, then there is a finitary rule (ρ) which holds
in L but not in 〈A, F 〉. Applying this alternative to each of the finitely many
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substructures 〈A, F 〉 will yield a finite set of finitary rules. The logic L is then the
smallest logic at the given level of the hierarchy which satisfies these rules.

The logic L is thus the smallest extension of BD∞ which enjoys the n-PCP
and validates a certain finite set of finitary rules, or the smallest extension of BDn

which enjoys the PCP and validates a certain finite set of finitary rules. This is
essentially a Gentzen-style axiomatization of L. In the latter case, it can further
be transformed into a Hilbert-style axiomatization.

Given a finitary rule Γ ⊢ ϕ, we define its disjunctive variant as the rule

{γ ∨ x | γ ∈ Γ} ⊢ ϕ ∨ x, where x does not occur in Γ ⊢ ϕ.

The following argument was already used by Font [11] and Shramko [23].

Fact 3.5. The smallest extension of BD∞ with the PCP which validates a set of
finitary rules R is the extension of BD∞ by the disjunctive variants of the rules R.

Proof. Since L has the PCP, the disjunctive variant of each rule in R also holds
in L. Conversely, let L be the logic axiomatized by the disjunctive variants of
the rules in R. By induction over the complexity of proof, we can show that if
Γ ⊢ ϕ is valid in L, then so is its disjunctive variant. Now suppose that Γ, ϕ1 ⊢L ψ
and Γ, ϕ2 ⊢L ψ. Then {γ ∨ ϕ2 | γ ∈ Γ}, ϕ1 ∨ ϕ2 ⊢L ψ ∨ ϕ2 ⊢L ϕ2 ∨ ψ and
{γ ∨ ψ | γ ∈ Γ}, ϕ2 ∨ ψ ⊢L ψ ∨ ψ ⊢L ψ. But γ ⊢L γ ∨ ϕ2 and γ ⊢L γ ∨ ψ, therefore
Γ, ϕ1 ∨ ϕ2 ⊢L ϕ2 ∨ ψ and Γ, ϕ2 ∨ ψ ⊢L ψ. It follows that Γ, ϕ1 ∨ ϕ2 ⊢L ψ. �

We therefore obtain a constructive proof of the following theorem.

Theorem 3.6 (Finite basis theorem for finitely generated logics of prime upsets).
Each finitely generated extension of BD∞ with the PCP is has a finite Hilbert-style
axiomatization.

Theorem 3.7 (Finite basis theorem for finitely generated logics of filters). Each
finitely generated extension L of BD1 with the n-PCP is the smallest among exten-
sions of BD1 with the n-PCP which validate a certain finite set of finitary rules.

In the other case, what we obtain is a Gentzen-style axiomatization. Given a
set of finitary rules R, consider the sequent system over sequents of the form Γ ⊲ ϕ
where Γ is a set of formulas and ϕ is a formula with the following rules and axioms:

• axioms for all substitution instances of some rule in R,
• the Identity axiom: ϕ ⊲ ϕ for each ϕ,
• the Weakening rule: from Γ ⊲ ϕ infer Γ,∆ ⊲ ϕ,
• the finitary Cut rule: from Γ ⊲ ϕ and ϕ,∆ ⊲ ψ infer Γ,∆ ⊲ ψ,
• the n-PCP rule:

from Γ,
∨

j 6=1

ϕj ⊲ ψ and . . . and Γ,
∨

j 6=n+1

ϕj ⊲ ψ infer Γ, ϕ1 ∨ · · · ∨ ϕn+1 ⊲ ψ.

Let us call this sequent system the n-PCP sequent calculus with the axioms R.

Fact 3.8. Let L be the smallest extension of BD∞ with n-PCP which validates a
set of finitary rules R. Then Γ ⊢L ϕ if and only if Γ ⊲ ϕ is provable in the n-PCP
sequent calculus with the axioms R.

Proof. It suffices to observe that the sequents provable in this calculus form a logic
with the n-PCP which validates each rule in R, and conversely if the premises of a
rule of this calculus are valid in L, then so it the conclusion. �
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3.2. Finitary extensions of BD1 with the 2-PCP. We now explicitly describe
the first two levels in the hierarchy of finitely generated extensions of Belnap–Dunn
logic BD := BD1, i.e. finitary extensions of BD with the 2-PCP, or equivalently
logics determined by the some family of substructures of DM1.

There are two three-valued substructures which determine the strong Kleene
logic K := K1 and the Logic of Paradox LP := LP1, one two-valued substructure
which determines classical logic CL := CL1, and two singleton substructures which
determine the trivial logic T RIV and the almost trivial logic T RIV−. In the
trivial logic Γ ⊢ ϕ holds always, while in the almost trivial logic Γ ⊢ ϕ holds if
and only if Γ is non-empty. Intersecting this logic with any logic with theorems will
result in a theoremless version of the logic. For example, CL∩T RIV− is the almost
classical logic, where Γ ⊢ ϕ holds if and only if Γ is non-empty and the rule holds
classically. The first level of the hierarchy therefore consists of the intersections of
the logics determined by these substructures, namely:

BD,LP ∩ K,K,LP , CL,LP ∩ T RIV−, CL ∩ T RIV−, T RIV−, T RIV .

The logic KO := LP ∩K is known under various names, as discussed in footnote 5.
(Expanding the signature of our logic by the constants t and f would have the

effect of removing the singleton structures from the list of substructures of DM1,
or equivalently removing the almost trivial logic T RIV− and its intersections with
LP and CL from the above list of logics.)

The next level of the hierarchy consists of the finitary extensions of BD with
the 2-PCP, or equivalently of logics determined by some family of substructures
of (DM1)

2. As luck would have it, all of these logics were already considered in [18]
and their relative positions in the lattice of extensions of BD are known. In the
following, we shall therefore make free use of facts established in [18].

In addition to the logics already contained in the first level, the second level of
the hierarchy contains the Exactly True Logic ET L of Pietz & Rivieccio [16], which
extends BD by the disjunctive syllogism x,¬x ∨ y ⊢ y. This logic is complete with
respect to the structure M4. It also contains the logic ECQω, which extends BD by
the infinite set of rules

(x1 ∧ ¬x1) ∨ · · · ∨ (xn ∧ ¬xn) ⊢ y,

and the logic K−, which extends BD by the infinite set of rules

(x1 ∧ ¬x1) ∨ · · · ∨ (xn ∧ ¬xn) ∨ y,¬y ∨ z ⊢ z.

The logic ECQω is complete with respect to the structure DM1 × B1 and the logic
K− is complete with respect to the structure M8 shown in Figure 2. (The logic K−

is denoted in this way because it is a lower cover of K in the lattice of extensions
of BD, while the notation ECQω stands for ex contradictione quodlibet.) We note
that all 14 extensions of LP ∩K− are represented at this leve ofo the hierarchy, i.e.
each extension of LP ∩ K− has the 2-PCP.

Theorem 3.9 (Finitary extensions of BD1 with the 2-PCP). The finitary exten-
sions of BD which enjoy the 2-PCP are precisely the logics shown in Figure 3.

Proof. Each such logic is determined by some set of substructures of (DM1)
2. Be-

cause the structure (DM1)
2 itself determines the logic BD, it suffices to consider

its proper substructures. We first determine these up to isomorphism. Each sub-
structure of (DM1)

2 is isomorphic to either a binary product of B1, K1, P1, DM1 or
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Figure 2. Proper substructures of (DM1)
2

DM1 P1 K1 B1 A1

M9 M8 M7 M4

N9 N8 N7

to one of the structures in Figure 2. The solid dots indicate the designated elements.
In each structure the De Morgan involution is the reflection across the horizontal
axis of symmetry. (The duality theory of Cornish & Fowler [5] for De Morgan
algebras is helpful in determining these substructures.)

Secondly, we observe that some of these structures are logically equivalent. Let
A ≤HSS B abbreviate the claim that the structure A is a strict homomorphic image
of a substructure of B. In particular, A ≤HSS B implies that the logic determined
by A extends the logic determined by B.

The structure K1 is a strict homomorphic image of N7, so N7 and K1 are logically
equivalent. In addition, DM1 ≤HSS N8 ≤HSS N9 ≤HSS (DM1)

2, so N8 and N9 deter-
mine the logic BD. We therefore do not need to consider the structures N7–N9.
Moreover, K1 ≤HSS M7 ≤HSS K1 × K1 and M4 ≤HSS M9 ≤HSS M4 ×M4, so M7 and
K1 are logically equivalent, as are M9 and M4. We therefore only need to consider
M4, M8, and the binary products of B1, K1, P1, DM1.

Thirdly, we identify the logics determined by these structures. This was already
done in [18]: in addition to the logics determined by substructures of DM1, we
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Figure 3. Extensions of BD with the 2-PCP

BD

LP ∩ ECQω ∩ ET L
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−
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KO ∪ ECQω

K
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CL

T RIV

LP ∩ T RIV
−

(LP ∩ T RIV
−
) ∪ ECQω

CL ∩ T RIV
−

T RIV
−

obtain the logics ET L (for M4), K− (for M8), ECQω (for B1 × DM1, as well as for
K1 × DM1), LP ∪ ECQω (for B1 × P1), KO ∪ ECQω (for K1 × P1). The structure
P1 × DM1 determines BD. Figure 2 now shows all intersections of these logics, as
determined in [18]. �

It is worth noting that the lattice of all extensions of BD with the 2-PCP is
distributive. We do not know whether this is a coincidence or part of a pattern.

Several of the logics in Figure 3 are not finitely axiomatizable by a Hilbert-style
calculus. Nonetheless, as described above, they are all complete with respect to
a finite sequent calculus. For example, to obtain a sequent calculus for ECQω it
suffices to add the sequent axiom schema (x1 ∧¬x1)∨ (x2 ∧¬x2) ⊲ y to the 2-PCP
sequent calculus for BD, because ECQω is the smallest extension of BD with the 2-
PCP which validates this rule. Replacing this axiom by x∧¬x ⊲ y yields a sequent
calculus for ECQω ∩ ET L, and replacing it by (x1 ∧ ¬x1) ∨ y,¬y ∨ z ⊲ z yields a
sequent calculus for K−.

3.3. Finitary extensions of BD∞ with the PCP. Similarly, we can describe the
finitely generated extensions of BD∞ with the PCP. The first level of this hierarchy
of finitely generated extensions of BD∞ with the PCP, consisting of the finitary
extensions of BD1 with the PCP, was already described in the previous subsection.
The second level consists of logics the finitary extensions of BD2 with the PCP, or
equivalently logics determined by some family of substructures of DM2.
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Figure 4. Some of the substructures of DM2

Q9 Q8 Q7 Q4

Theorem 3.10 (Finitary extensions of BD2 with the PCP). The lattice of finitary
extensions of BD2 with the PCP is isomorphic to the lattice of downsets of the poset
shown in in Figure 5.

Proof. We again start by determining these substructures up to logical equivalence.
The structure DM2 itself determines the logic BD2. The substructures (or sets of
substructures) where the designated elements form a filter will yield one of the
logics BD, KO, K, LP , CL, T RIV−, or T RIV . These logics are generated by
DM1, {P1,K1}, K1, P1, B1, and A1.

We therefore only need to describe the proper substructures of DM2 where the
designated elements do not form a filter. These come in two types: the binary
dual products of the structures B1, K1, P1, DM1, and the four substructures of the
structure Q9 shown in of Figure 4.

Secondly, we determine the HSS-order on these substructures, where M ≤HSS N
abbreviates the claim that M is a strict homomorphic image of a substructure of N.
This yields the diagram in Figure 5. More precisely, at this point we only need to
check that if M lies below N in this diagram, then M ≤HSS N.

Thirdly, we show that for each structure M there is a rule (ρ), which we call a
separating rule for M, such that (ρ) fails in M but it holds in every structure in
Figure 5 which does not lie above M. Thus two distinct families of structures from
Figure 5 which are downward closed in the given order determine distinct logics,
since they can be distinguished by one of the separating rules. To axiomatize the
logic of such a downward closed family of substructures of DM2 relative to BD2, it
therefore suffices to throw in the disjunctive variant of the separating rule for each
of the (minimal) structures in Figure 5 which lie outside of this family.

The separating rules for the structures in Figure 5 are listed in Table 1. Verifying
that these are indeed separating rules is a time-consuming but mechanical affair.
Readers who wish to do this on their own may find the following two observations
helpful: if Γ ⊢ ϕ fails in M and ∆ ⊢ ϕ fails in N, then Γ,∆ ⊢ ϕ fails in M⊗ N. On
the other hand, if Γ ⊢ ϕ holds in M and no γ ∈ Γ can be designated in N, then
Γ ⊢ ϕ holds in M⊗ N. �

We do not know whether the fact that the lattice of extensions of BD2 with the
PCP turns out to be distributive is a coincidence or not.
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Figure 5. The HSS-order on the substructures of DM2

B1

B1 ⊗ B1K1 P1

B1 ⊗K1 B1 ⊗ P1

DM1

B1 ⊗ DM1

K1 ⊗ P1

K1 ⊗K1 P1 ⊗ P1

K1 ⊗ DM1 P1 ⊗ DM1

DM1 ⊗ DM1

Q4

Q7

Q8

Q9

A1

Our list of separating rules provides us with a finite Hilbert-style axiomatization
of each extension of BD2 with the PCP. Consider for example the logic determined
by the structure 〈DM1, {t, n, b}〉 (labelled Q4 in Figure 4). The logic determined by
this structure is the logic of “anything but falsehood” introduced by Shramko [22]
as the dual of the logic of “exact truth” introduced by Pietz & Rivieccio [16]. More
precisely, Shramko considers the Fmla-Set consequence relation of this structure
and axiomatizes it in his paper, while we wish to study its Set-Fmla consequence
relation. (Shramko’s axiomatization is essentially dual to the axiomatization of the
Set-Fmla fragment of Exactly True Logic. However, such a duality cannot be
applied to obtain a Set-Fmla axiomatization.)

Theorem 3.11 (Completeness for Shramko’s logic of anything but falsehood). The
logic of the structure 〈DM1, {t, n, b}〉 is the extension of BD∞ by the 2-adjunction
rule, the law of the excluded middle ∅ ⊢ x∨¬x, and the rule x∨y,¬x∨y ⊢ (x∧¬x)∨y.

Proof. The minimal structures in the poset in Figure 5 which do not lie below Q4

are A1 and B1 ⊗ B1. Their separating rules are ∅ ⊢ x ∨ ¬x and x,¬x ⊢ x ∧ ¬x.
Consequently, the logic of Q4 is the smallest extension of CL2 with the PCP which
validates these two rules. But the disjunctive variants of these rules are precisely
∅ ⊢ x ∨ ¬x and x ∨ y,¬x ∨ y ⊢ (x ∧ ¬x) ∨ y. �

4. Metalogical properties of logics of upsets of De Morgan lattices

In this final section, we make a few rudimentary observations concerning the
classification of logics of upsets of De Morgan lattices within the Leibniz and Frege
hierarchies of abstract algebraic logic (see the textbook [10] for an introduction to
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Table 1. Separating rules for substructures of DM2

B1 : x ⊢ y

A1 : ∅ ⊢ x ∨ ¬x

K1 : x ⊢ y ∨ ¬y

P1 : x ∧ ¬x ⊢ y

DM1 : x ∧ ¬x ⊢ y ∨ ¬y

Q4 : x ∧ ¬x, y ∧ ¬y ⊢ (x ∨ ¬x) ∧ (y ∨ ¬y)

Q7 : x, y ⊢ ¬x ∨ ¬y ∨ (x ∧ y)

Q8 : x ∧ ¬x, y ⊢ (x ∧ y) ∨ ¬y

Q9 : x ∧ ¬x ∧ z, y ∧ ¬y ⊢ (x ∨ ¬x ∨ z) ∧ (y ∨ ¬y ∨ ¬z)

B1 ⊗ B1 : x,¬x ⊢ x ∧ ¬x

B1 ⊗ P1 : x ∧ ¬x, y,¬y ⊢ y ∧ ¬y

B1 ⊗K1 : x,¬x, y ∨ ¬y ⊢ x ∧ (¬x ∨ y ∨ ¬y)

B1 ⊗ DM1 : x ∧ y, x ∨ ¬x, y ∧ ¬y ⊢ (x ∨ ¬x) ∧ y ∧ ¬y

K1 ⊗K1 : x ∧ z, y ∧ ¬z ⊢ (x ∧ y) ∨ ¬(x ∧ y)

K1 ⊗ P1 : x,¬x ∧ y ∧ ¬y ⊢ x ∧ (y ∨ ¬y)

K1 ⊗ DM1 : x ∧ z, y ∧ ¬y ∧ ¬z ⊢ (x ∨ ¬x) ∧ (y ∨ ¬y)

P1 ⊗ P1 : x ∧ y, x ∧ ¬x, y ∧ ¬y ⊢ x ∧ ¬x ∧ y ∧ ¬y

P1 ⊗ DM1 : x ∧ ¬x ∧ y, y ∧ ¬y ∧ z ∧ ¬z ⊢ (x ∨ ¬x) ∧ z

DM1 ⊗ DM1 : x ∧ ¬x ∧ z ∧ ¬z, y ∧ ¬y ∧ z ∧ ¬z ⊢ (x ∨ ¬x) ∧ (y ∨ ¬y)

these hierarchies). This will partly extend the existing classification of super-Belnap
logics, i.e. extensions of BD1 [1, 17].

Two prominent classes in the Leibniz hierarchy are the classes of protoalgebraic
and truth-equational logics. A logic L is protoalgebraic if it has a protoimplication
set, i.e. a set of formulas in two variables ∆(x, y) such that

∅ ⊢L δ(x, x) for each δ(x, y) ∈ ∆(x, y), x,∆(x, y) ⊢L y.

Theorem 4.1 (Protoalgebraic extensions of BD∞). The only protoalgebraic exten-
sion of BD∞ other than the trivial and almost trivial logic is classical logic CL1.

Proof. Let L be a protoalgebraic extension of BD∞ other than the trivial or almost
trivial logic. Then L ≤ CL1 and L has a protoimplication set ∆(x, y). Up to logical
equivalence (interderivability), BD∞ and its extensions only have finitely many
formulas. Thus there is, up to logical equivalence in BD∞, a logically strongest set
of formulas ∆(x, y) such that x,∆(x, y) ⊢CL1

y, namely

∆(x, y) := {(¬x ∨ y) ∧ (¬x ∨ x) ∧ (¬y ∨ y)}.
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On the other hand, if L has a theorem, then one such theorem must be ¬x ∨ x.
Thus

x, (¬x ∨ y) ∧ (¬x ∨ x) ∧ (¬y ∨ y) ⊢L y, ∅ ⊢L ¬x ∨ x.

Substituting x∧y for y yields x, (¬x∨x)∧(¬x∨y)∧(¬x∨¬y∨x)∧(¬x∨¬y∨y) ⊢L x∧y,
therefore

x,¬x ∨ (x ∧ y) ⊢L x ∧ y.

Substituting ¬x∨ x for x in this rule yields ¬x∨ x, (x∧¬x)∨ (x∧ y)∨ (¬x∧ y) ⊢L

(¬x ∨ x) ∧ y, hence (x ∧ ¬x) ∨ ((¬x ∨ x) ∧ y) ⊢L (¬x ∨ x) ∧ y. Further substituting
¬y ∨ y for y yields (x ∧ ¬x) ∨ ((¬x ∨ x) ∧ (¬y ∨ y)) ⊢L (¬x ∨ x) ∧ (¬y ∨ y). But
∅ ⊢L (x ∧ ¬x) ∨ ((x ∨ ¬x) ∧ (y ∨ ¬y)). This is because, taking t(x, y) to be the
right-hand side of this rule, the inequality ¬t(x, y) ≤ t(x, y) holds in all De Morgan
lattices, hence t(x, y) = ¬t(x, y) ∨ t(x, y) in all De Morgan lattices. But we know
that ∅ ⊢L ¬x ∨ x, in particular ∅ ⊢L ¬t(x, y) ∨ t(x, y). We thus obtain the rule

∅ ⊢L (¬x ∨ x) ∧ (¬y ∨ y).

It follows that ∅ ⊢L ¬x ∨ (x ∧ (y ∨ ¬y)). Combining this with the substitution
instance x,¬x ∨ (x ∧ (¬y ∨ y) ⊢L x ∧ (¬y ∨ y) of the rule x,¬x ∨ (x ∧ y) ⊢L (x ∧ y)
yields x ⊢L x ∧ (¬y ∨ y), hence y ⊢L ¬x ∨ (x ∧ y). Combining this again with the
rule x,¬x ∨ (x ∧ y) ⊢L x ∧ y yields the adjunction rule x, y ⊢L x ∧ y. Thus L is an
extension of BD1. But it was proved in [1] that, with the two stated exceptions,
the only protoalgebraic extension of BD1 is CL1. (The simplest proof of this relies
on the observation that, with the two exceptions, if L � CL1, then L ≤ K1 or
L ≤ LP1 ∨ ECQω , but neither of these two logics is protoalgebraic.) �

The above theorem remains valid if we expand BD∞ by a constant t representing
the top element and restrict to non-empty upsets. (In that case, we only need to
further justify that ∅ ⊢L x ∨ ¬x. This involves showing that if ∅ ⊢L ∆(x, x) but
∅ 0L x ∨ ¬x, then ∆(x, y) must be equivalent in BD∞ to t. But x, t 0L y.)

The definition of a truth-equational logic involves the Leibniz congruence of a
structure 〈A, F 〉, denoted ΩAF , which is the largest congruence θ on A compatible
with F in the sense that a ∈ F and 〈a, b〉 ∈ θ implies b ∈ F . A logic L is called
truth-equational if there is a set of equations in one variable E(x) such that for each
model 〈A, F 〉 of L we have

a ∈ F ⇐⇒ 〈δ(a), ǫ(a)〉 ∈ ΩAF for each equation δ(x) ≈ ǫ(x) ∈ E(x).

That is, “truth” in models of L (the set F ) is defined in terms of “equations” (pairs
of elements identified by the Leibniz congruence of F ).

Lemma 4.2 (Leibniz relations of upsets of De Morgan lattices). Let F be an upset
of a De Morgan lattice L. Then 〈a, b〉 ∈ ΩAF if and only if for each c, d ∈ L:

(a ∧ c) ∨ d ∈ F ⇐⇒ (b ∧ c) ∨ d ∈ F,

(¬a ∧ c) ∨ d ∈ F ⇐⇒ (¬b ∧ c) ∨ d ∈ F.

Proof. These conditions must be satisfied by each congruence compatible with F .
Conversely, these conditions define a congruence which is compatible with F . �

If a logic L is truth-equational with a set of defining equations E(x), then the
same holds for every extension of L. In particular, excluding the trivial and almost
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trivial logic, if an extension of BD∞ is truth-equational with a set of defining equa-
tions E(x), then so is classical logic. This constrains the possible sets of equations
E(x). Indeed, the reader can verify that the only possible set of equations, up to
equivalence in all De Morgan lattices, is E(x) := {x ∨ ¬x ≈ x}. If we include the
constant for the top element in our signature, this allows for the further equation
x ≈ 1. Logics truth-equational with respect to this defining equation are precisely
the extensions of the Exactly True logic determined by 〈DM1, {t}〉.

Theorem 4.3 (Truth-equational extensions of BD∞). An extension L of BD∞ is
truth-equational with defining equation x ∨ ¬x ≈ x if and only if it validates the
rules ∅ ⊢ x ∨ ¬x and x, ((x ∨ ¬x) ∧ y) ∨ z ⊢ (x ∧ y) ∨ z.

Proof. If L is truth-equational with the given defining equation and 〈A, F 〉 is a
model of L, then a ∨ ¬a ∈ F for each a ∈ A, since (a ∨ ¬a) ∨ ¬(a ∨ ¬a) = a ∨ ¬a.
Moreover, if a ∈ F , then 〈a ∨ ¬a, a〉 ∈ ΩAF , hence ((a ∨ ¬a) ∧ b) ∨ c ∈ F implies
(a∧ b)∨ c ∈ F . The two given rules are thus valid. Conversely, if the second rule is
valid, then a ∈ F implies 〈a∨¬a, a〉 ∈ ΩAF for each a ∈ A, since the converse rule
(x∧ y)∨ z ⊢ ((x∨¬x)∧ y)∨ z holds in each extension of BD∞. On the other hand,
if 〈a ∨ ¬a, a〉 ∈ ΩAF and the first rule is valid, then a ∨ ¬a ∈ F , hence a ∈ F . �

Other prominent classes of logics in the Leibniz hierarchy, such as equivalential
or algebraizable logics, are stronger than protoalgebraicity, therefore this concludes
our classification of extensions of BD∞ in the Leibniz hierarchy.

The basic class in the Frege hierarchy is the class of selfextensional logics. A logic
L is called selfextensional if the interderivability relation ϕ ⊣⊢L ψ is a congruence
on the algebra of formulas. That is, ϕ ⊣⊢L ψ implies χ(ϕ) ⊣⊢L χ(ψ), where χ(ϕ)
is the result of uniformly substituting ϕ for one of the variables of χ. Equivalently,
interderivability on L coincides with equational validity in some class of algebras. In
our case, an extension L of BD∞ (other than the trivial and almost trivial logic) is
selfextensional if and only if interderivability in L coincides with equational validity
in De Morgan lattices, or in Kleene lattices, or in Boolean lattices, since these are
the only non-trivial varieties of De Morgan lattices.

In particular, one can observe that all logics in the three intervals [BD∞,BD1],
[KO∞,KO1], and [CL∞, CL1] are selfextensional, since they share the same inter-
derivability relation. However, unlike protoalgebraic and truth-equational exten-
sions, the selfextensional extensions of BD∞ seem difficult to pin down precisely.
We content ourselves with observing that not every such extension falls under one
of the three obvious cases mentioned above.

Fact 4.4. The extension of BD∞ by the rule x ∧ ¬x ⊢ y ∨ ¬y is selfextensional.

Proof. In this extension L, we can show that Γ ⊢L ϕ if and only if for some
γ ∈ Γ either γ ⊢BD∞

ϕ or there are α and β such that γ ⊢BD∞
α ∧ ¬α and

β ∨ ¬β ⊢BD∞
ϕ. (It suffices to check that this equivalence indeed defines a logic.)

Thus if ϕ ⊣⊢L ψ, then ϕ ⊣⊢BD∞
ψ, since otherwise without loss of generality

ϕ ⊢BD∞
α ∧ ¬α and β ∨ ¬β ⊢L ψ and either ψ ⊢BD∞

ϕ or there are α′ and β′

such that ψ ⊢BD∞
α′ ∧ ¬α′ and β′ ∨ ¬β′ ⊢BD∞

ψ. In either case we have formulas
γ and δ such that γ ∨ ¬γ ⊢BD∞

δ ∧ ¬δ. But then the inequalities γ ≤ δ ≤ γ and
¬γ ≤ δ ≤ ¬γ hold in all De Morgan lattices, which is impossible: the equality
γ ≈ ¬γ cannot be satisfied in the two-element Boolean algebra. �
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Finally, we identify some splittings of the lattice of extensions of BD∞, with the
aim of providing constraints on logics where conjunction and disjunction satisfy
certain minimal conditions.

Fact 4.5. Let L ≥ BD∞. Then L ≤ BD1 or x ∧ ¬x ⊢L y ∨ ¬y, but not both.

Proof. The rule x∧¬x ⊢ y∨¬y fails in BD1, so the two disjuncts cannot both hold.
If x∧¬x 0L y∨¬y, then this rule fails in some model of L of the form 〈A, F 〉 where
A is a De Morgan lattice and F is an upset of A. Restricting to the appropriate
substructure of this model, we may take A to be 2-generated. It follows that the
model 〈A, F 〉 of L is a strict homomorphic image of some model 〈FDML(x, y), G〉 of
L, where FDML(x, y) is the free De Morgan lattice generated by {x, y} and G is an
upset of this algebra such that x ∧ ¬x ∈ G but y ∨ ¬y /∈ G. Restricting again to
the substructure generated by x ∧ ¬x and y ∨ ¬y, we obtain a model 〈B, H〉 of L
generated by x∧¬x ∈ H and y∨¬y /∈ H . For each b ∈ B we have either x∧¬x ≤ b
or b ≤ y ∨ ¬y, therefore the upset H is uniquely determined by x ∧ ¬x ∈ H and
y∨¬y /∈ H (see Figure 5 of [19]). The structure DM1 is then a strict homomorphic
image of 〈B, H〉. Therefore DM1 is a model of L and L ≤ BD1. �

Fact 4.6. Let L ≥ BD∞. Then L ≤ T RIV− or ∅ ⊢L x ∨ ¬x, but not both.

Proof. The rule ∅ ⊢L x∨¬x fails in T RIV−, so the two disjuncts cannot both hold.
If ∅ 0L x∨¬x, then the two-element Boolean chain with no designated elements is
a model of L, in which case L ≤ T RIV−. �

Fact 4.7. Let L ≥ BD∞. Then L ≤ K1 or x ⊢L y ∨ ¬y, but not both.

Proof. The rule x ⊢ y ∨ ¬y fails in K1, so the two disjuncts cannot both hold. �

Fact 4.8. Let L ≥ BD∞. Then L ≤ LP1 or x ∧ ¬x ⊢L y, but not both. If
x 0L y ∨ ¬y, then K1 is a model of L, so L ≤ K1.

Proof. The rule x ∧ ¬x ⊢ y fails in LP1, so the two disjuncts cannot both hold. If
x ∧ ¬x 0L y, then P1 is a model of L, so L ≤ LP1. �

Let us say that an extension L of BD∞ satisfies the weak proof by cases property
(weak PCP) if

ϕ1 ∨ ϕ2 ⊢L ψ if ϕ1 ⊢L ψ and ϕ2 ⊢L ψ.

It satisfies the weak conjunction property (weak CP) if

ϕ ⊢L ψ1 ∧ ψ2 if ϕ ⊢L ψ1 and ϕ ⊢L ψ2.

Theorem 4.9 (Extensions of BD∞ with the weak CP and PCP). An extension of
BD∞ satisfies both the weak CP and the weak PCP if and only if it lies in one of
the disjoint intervals [BD∞,BD1], [KO∞,KO1], [K∞,K1], [LP∞ ∩T RIV−,LP1],
[CL∞, CL1], or {T RIV−, T RIV}.

Proof. Let L be an extension of BD∞. If L � BD1, then x ∧ ¬x ⊢L y ∨ ¬y, so
((x∧¬x)∧ z)∨ u ⊢L ((y ∨¬y)∧ z)∨ u and KO∞ ≤ L. Suppose therefore that L is
an extension of KO∞. If L � KO1 = LP1 ∩ K1, then either L � LP1 or L � K1.
In the former case, x ∧ ¬x ⊢L y, so (x ∧ x) ∨ y ⊢L y and K∞ ≤ L. In the latter
case, x ⊢L y ∨ ¬y, so LP∞ ∩ T RIV− ≤ L. If K∞ ≤ L � K1, then x ⊢L y ∨ ¬y,
so CL∞ ≤ L. Likewise, if LP∞ ∩ T RIV− ≤ L � LP1, then x ∧ ¬x ⊢L y, so
CL∞ ≤ L. �
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Theorem 4.10 (Selfextensional extensions of BD∞ with the weak CP or PCP).
An extension of BD∞ which satisfies either the weak CP or the weak PCP is
selfextensional if and only if it lies in one of the disjoint intervals [BD∞,BD1],
[KO∞,KO1], [CL∞ ∩ T RIV−, CL1], or {T RIV−, T RIV}.

Proof. The Fmla–Fmla fragment of a logic with the weak CP which validates
the rule x ∧ y ⊢ x is uniquely determined by its interderivability relation, since it
validates ϕ ⊢ ψ if and only if it validates ϕ ⊣⊢ ϕ ∧ ψ. The same holds for logics
with the weak PCP which validate the rule x ⊢ x∨y. The interderivability relation
in a selfextensional extension L of BD∞ coincides with equational validity in some
variety of De Morgan lattices, i.e. in De Morgan lattices, Kleene lattices, Boolean
algebras, or in the trivial variety. Equivalently, interderivability in L coincides with
interderivability in BD∞, KO∞, CL∞, or T RIV−. Because these four logics also
satisfy the weak CP (or the weak PCP), the Fmla–Fmla fragment of L coincides
with the Fmla–Fmla fragment of one of these four logics. If L � BD1, then
x∧¬x ⊢L y∨¬y, hence L must extend the Fmla–Fmla fragment of KO∞. Given
that KO∞ is axiomatized by its Fmla–Fmla fragment, this simply means that
KO∞ ≤ L. If L � KO1, then either L � K1 or L � LP1, hence either x ⊢L y ∨ ¬y
or x ∧ ¬x ⊢L y. In either case this means that L must extend the Fmla–Fmla
fragment of CL∞ ∩ T RIV−, which again simply means that CL∞ ∩ T RIV− ≤ L.
Finally, if L � CL1, then T RIV− ≤ L, hence L = T RIV− or L = T RIV . �
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