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TOPOLOGICAL PROPERTIES OF DEFINABLE SETS

IN ORDERED ABELIAN GROUPS OF BURDEN 2

ALFRED DOLICH AND JOHN GOODRICK

Abstract. We obtain some new results on the topology of unary
definable sets in expansions of densely ordered Abelian groups of
burden 2. In the special case in which the structure has dp-rank
2, we show that the existence of an infinite definable discrete set
precludes the definability of a set which is dense and codense in an
interval, or of a set which is topologically like the Cantor middle-
third set (Theorem 2.9). If it has burden 2 and both an infinite dis-
crete setD and a dense-codense setX are definable, then translates
of X must witness the Independence Property (Theorem 2.26). In
the last section, an explicit example of an ordered Abelian group
of burden 2 is given in which both an infinite discrete set and a
dense-codense set are definable.

1. Introduction

In this note we will study the topological properties of sets definable
in densely ordered Abelian groups satisfying an extra model-theoretic
hypothesis (having “burden 2”) which in some sense limits the combi-
natorial complexity of combinations of instances of formulas (the pre-
cise definition will be recalled below). Typical examples of such groups
are the structures R1 = 〈R;<,+,Q〉, the additive group of real num-
bers endowed with a unary predicate for the set Q of rationals, and
R2 = 〈R;<,+,Z〉, the same group but with a predicate for the inte-
gers. In fact, both of the structures R1 and R2 are of dp-rank 2, which
is equivalent to having burden 2 and being NIP.1

Recall that in an expansion of a divisible ordered Abelian group (or
“OAG”) of dp-rank 1, no infinite discrete subset of the domain can be
definable (see [10]), nor can any dense and codense subset be definable

The first author’s research was partially supported by PSC-CUNY Grant
#63392-00 51. The second author would like to thank the Universidad de los Andes
for granting him paid leave (Semestre de Trabajo Académico Independiente) during
which part of this research was carried out.

1Note that it can be tricky to prove precise upper bounds on the burden or
the dp-rank of a structure. See [5] for a detailed calculation of the dp-rank of the
structures mentioned here.
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2 ALFRED DOLICH AND JOHN GOODRICK

(by a result of Simon [20]). However, the examples R1 and R2 above
show that neither of these results hold for OAGs of dp-rank 2. One
of the new results of this article is that in an expansion of a divisible
OAG of dp-rank 2, there cannot be both a definable infinite discrete
set and a definable dense-codense set (see Theorem 2.9 below).
The goal of this article is to understand the topological properties

of unary definable sets in an expansion of a densely ordered OAG R =
〈R;<,+, . . .〉 with burden at most 2. Suppose that X ⊆ R is definable
in such a structure. The case when X is open may be considered the
“nicest” situation since the topological structure around any point in
X is as simple as possible. An expansion of a densely ordered OAG in
which every infinite definable X ⊆ R has interior is called a viscerally
ordered structure. In our previous work [8], we undertook an extensive
analysis of definable sets in a viscerally ordered structure, giving a
cell decomposition theorem and showing that topological dimension
has many desirable properties, justifying the intuition that this is the
“tamest” possible case.
Suppose now that R is not visceral and that furthermore Th(R)

has finite burden. Let X ⊆ R be definable with empty interior. Since
infinite definable discrete sets in R cannot have accumulation points
(see [5, Corollary 2.13]), it follows easily that X can be partitioned as
X = X0 ∪X1 ∪X2 with each Xi definable so that:

(1) X1 is either empty or dense and codense in an open definable
set U with X1 ⊂ U ;

(2) X2 is either empty or discrete (and possibly finite); and
(3) X3 is either empty or an infinite definable set which is nowhere

dense and has no isolated points.

In case (3), if X3 is non-empty then the topological closure X3 is
what we call a Cantor-like definable set, namely it is a nonempty set
which is closed, nowhere dense, and has no isolated points.
We conjecture that in an expansion of a divisible OAG of dp-rank

2, if there is an infinite definable set satisfying one of the three condi-
tions above (being discrete, being dense-codense in an interval, or being
Cantor-like), then there cannot be any other infinite definable set sat-
isfying either of the other two (giving a basic trichotomy). Though
we cannot quite prove this, in the next section we will show that the
existence of an infinite definable discrete set precludes the definability
of either a dense-codense or an infinite Cantor-like set (Theorem 2.9).
In the case when R has burden 2 and is definably complete, there can
never be a definable Cantor-like set (Theorem 2.5 below). Finally, in
any OAG with burden 2, if there is both an infinite discrete set D
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definable in such a structure and also a definable X which is dense
and codense in some interval, then the Independence Property can be
witnessed by translations of X (Theorem 2.26).
After proving the above general results in Section 2, the final section

(Section 3) is devoted to the study of a concrete example of a divisible
OAG of burden 2 in which both an infinite discrete set and a dense
codense set are definable.
Note that the present work focuses on the topological properties of

definable sets. Given an expansion of a OAG of burden 2 in which an
infinite discrete set D is definable, it turns out that D must have a very
simple “arithmetical” structure, similar to the subsets of Z definable in
Presburger arithmetic. For much more on this topic, see our previous
article [5] or our recent preprint [7], which can be seen as a companion
to the present work.

1.1. Notation and basic definitions. Mostly we will follow stan-
dard notational conventions from model theory (as in [21], for exam-
ple). “Formulas” and “models” are as in first-order logic and overlined
variables (x, a, . . .) denote finite tuples. Unlike some authors, a plain
variable such as x (not x) is always a single variable, and we rarely
work in T eq. Also note that “definable” for us always means “definable
over some set of parameters.”
The abbreviation OAG stands for Ordered Abelian Group, which is

a structure 〈G; +, <〉 consisting of an Abelian group 〈G; +〉 endowed
with a total ordering < which is translation invariant (x < y implies
that x+z < y+z). Some OAGs are discretely ordered and have a least
positive element (such as 〈Z; +, , 〉), but in the present article all OAGs
will be densely ordered. Note that if an OAG is divisible – that is, for
every x ∈ G and every positive integer n, there is a y ∈ G such that
ny = x – then it is densely ordered, but there are examples of OAGs
of finite dp-rank which are densely ordered and not divisible. See, for
instance, [21] or [6] for more examples.
All topological properties of sets mentioned in this article (“open,”

“dense,” and so on) refer to the order topology generated by all open
intervals.
At some points in Section 2 it will be useful to work in the Dedekind

completion R of an OAG R, for which the following notion from [14]
will be useful.

Definition 1.1. Suppose that R = 〈R;<, . . .〉 is a linearly ordered
structure and {Xa : a ∈ Z} is a definable family of subsets Xa of R,
with Z ⊆ Rn definable over ∅ and Xa = {b ∈ R : R |= ϕ(b; a)} for
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some formula ϕ(x; y). Consider the relation ∼ on n-tuples from Z such
that a1 ∼ a2 if and only if

∀y1 ∈ Xa1∃y2 ∈ Xa2 (y1 < y2) ∧ ∀y2 ∈ Xa2∃y1 ∈ Xa1 (y2 < y1) .

The relation ∼ is a definable equivalence relation on Z which we
informally think of as expressing that sup(Xa1) = sup(Xa2) where the
suprema are calculated in the Dedekind completion R ofR, and defined
so that sup(∅) = −∞ and sup(Xa) = +∞ when Xa is unbounded.
Then Z/ ∼, which is a sort in Req, is a called a sort in R. We naturally
identify such a sort with a subset of the Dedekind completion R of R
with the induced ordering.
Thinking of sorts in R as sorts in Req, we can also talk about defin-

able subsets of sorts in R, and of functions to and from such sorts.

Definition 1.2. If R = 〈R;<,+, . . . , 〉 is an expansion of an OAG,
then R is definably complete if for every nonempty definable subset
X ⊆ R which has an upper bound, sup(X) ∈ R.

The next observation ([15, Proposition 2.2]) will occasionally be use-
ful.

Fact 1.3. If R is an expansion of a densely ordered OAG which is
definably complete, then R is divisible.

The less commonly used definitions we need are those of burden and
dp-rank. These notions originally go back to Shelah [19], but we will
use the versions as given by Adler [1]. We recall them briefly here.
Below, “T” always denotes some complete theory.

Definition 1.4. An ict-pattern of depth κ is a sequence {ϕi(x; yi) :
i < κ} of formulas and a sequence {ai,j : i < κ, j < ω} of tuples
from some model M |= T such that for every function η : κ→ ω, the
partial type

(1) {ϕi(x; ai,j)
if j=η(i) : i < κ, j < ω}

is consistent, where the exponent “if j = η(i)” means that the formula
is negated if j 6= η(i). If p(x) is a partial type, an ict-pattern as above
is in p(x) if every partial type as in (1) is consistent with p(x).
The partial type p(x) has dp-rank less than κ if there is no ict-pattern

of depth κ in p(x). If the least κ such that the dp-rank of p(x) is less
than κ is a successor cardinal, say κ = λ+, then we say that the dp-rank
of p(x) is λ.
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The dp-rank of the theory T is the dp-rank of the partial type x = x
(in a single free variable x), and T is dp-minimal if its dp-rank is 1.

Definition 1.5. An inp-pattern of depth κ is a sequence {ϕi(x; yi) :
i < κ} of formulas, a sequence {ki : i < κ} of positive integers, and a
sequence {ai,j : i < κ, j < ω} of tuples from some model M |= T such
that:
• For each i < κ, the “i-th row”

{ϕi(x; ai,j) : j < ω}

is ki-inconsistent; and
• For each function η : κ→ ω, the partial type

(2) {ϕi(x; ai,η(i)) : i < κ}

is consistent.
If p(x) is a partial type, an inp-pattern as above is in p(x) if every

partial type as in (2) is consistent with p(x).
The partial type p(x) has burden less than κ if there is no inp-pattern

of depth κ in p(x). If the least κ such that the burden of p(x) is less
than κ is a successor cardinal, say κ = λ+, then we say that the burden
of p(x) is λ.
The burden of the theory T is the burden of the partial type x = x

(in a single free variable x), and T is inp-minimal if its burden is 1.

Fact 1.6. (Adler, [1]) The dp-rank of a theory is less than some car-
dinal κ if and only if T is NIP. In case T is NIP, the dp-rank of T is
equal to the burden of T . In particular, T is dp-minimal if, and only
if, T is both NIP and inp-minimal.

To mention some related work, fields of finite dp-rank have been
recently classified by Johnson, who also showed that any valued field
with finite dp-rank is Henselian [13]. Interesting examples of finite
burden structures which are not finite dp-rank include pseudo real-
closed fields [16]. For more background on these concepts and how
they relate to NIP, see the introduction to our companion article [7] or
the survey [11].

2. Topologoical properties of definable sets in burden-2
OAGs

In this section we will prove the general topological results for OAGs
of burden 2 mentioned in the introduction.
Throughout this section, we will work under the following assump-

tions, unless otherwise stated:
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• R = 〈R;<,+, . . .〉 is an expansion of a densely-ordered OAG
with complete theory T ;

• R is sufficiently saturated (generally just |T |+-saturated will be
enough);

• The burden of R is at most 2.

Note that in this section, we do not generally assume that R is
definably complete (unless we explicitly say so).

Lemma 2.1. Suppose that I ⊆ R is an interval such that I has burden
1. Then if X ⊆ I is definable and nowhere dense, then X is finite.

Proof. This is essentially the same result as Lemma 3.3(1) of [10], ex-
cept that we allow I to be any interval instead of the whole universe
R. The same proof as in [10] goes through, working within I. �

Lemma 2.2. If there is an infinite discrete set definable in R then
there is ǫ > 0 so that (0, ǫ) has burden 1.

Proof. Suppose to the contrary that D ⊆ R is infinite, discrete, and
definable, and that for every ǫ > 0 in R there is an inp-pattern of depth
2 consistent with (0, ǫ).
Now using ω-saturation of R we can select an increasing sequence of

elements {ai : i ∈ ω} ⊆ D and an ǫ > 0 such that for every i we have
(ai − 2ǫ, ai + 2ǫ) ∩D = {ai}. We can now construct an inp-pattern of
depth 3 by attaching translated copies of the inp-pattern within (0, ǫ)
onto each point of ai and adding a third row consisting of pairwise
disjoint intervals, leading to a contradiction.
More precisely, if ϕ0(x, b0,j) and ϕ1(x, b1,j) witness an inp-pattern of

depth 2 consistent with (0, ǫ), then for each ℓ ∈ {0, 1} let ϕ′
ℓ(x, bℓ,j)

be the formula expressing “there is a unique point a ∈ D such that
a < x < a + ǫ, and for this unique point a, the formula ϕℓ(x − a, bℓ,j)
holds.” These will be the first two rows of our inp-pattern, and the third
row will consist of the pairwise disjoint intervals Ii = (ai−ǫ, ai+ǫ). The
inconsistency of each row is easy to check, and if ci,j ∈ (0, ǫ) satisfies

the formula ϕ0(x, b0,i)∧ϕ1(x, b1,j), then for any k ∈ ω the point ak+ci,j
satisfies ϕ′

0(x, b0,i) ∧ ϕ
′
1(x, b1,j) and lies within the interval Ik. �

This lemma has an immediate and useful corollary:

Corollary 2.3. If there is X ⊆ R definable, infinite, and discrete then
there is no definable Cantor-like set in R.

Proof. By the previous Lemma, there is ǫ > 0 such that (0, ǫ) has
burden 1. Suppose for contradiction that there is Y definable and
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Cantor-like. Translating Y as necessary, we may assume that Y ∩
(0, ǫ) 6= ∅; and intersecting Y with a closed subinterval of (0, ǫ), we
may further assume that there is a Cantor-like definable subset of (0, ǫ).
This contradicts Lemma 2.1. �

Using the above Corollary, we can rule out the existence of any
Cantor-like definable set in the case when R additionally satisfies de-
finable completeness. First we prove a simple lemma. Recall that if
X is a subset of an ordered structure, a convex component of X is a
maximal subset of X which is convex.

Lemma 2.4. If X is a Cantor-like subset of R, then R\X has infinitely
many convex components.

Proof. Recall that Cantor-like sets are nonempty by definition, so we
may pick some a ∈ X . Given that X has no isolated points, it is
either the case that (i) for every positive ǫ ∈ R, the interval (a− ǫ, a)
contains a point of X , or (ii) for every positive ǫ ∈ R, the interval
(a, a+ ǫ) contains a point of X . Without loss of generality we assume
that (ii) occurs, and in case of (i) a similar proof will work.
Pick some b0 > a. Since X is nowhere dense, there is some element

c0 of R \X contained in the interval (a, b0). Given the assumption (ii)
above, the convex component C0 of c0 in R \X cannot contain points
arbitrarily close to a, an hence there is a point b1 ∈ R such that a < b1
and b1 is less than every element of C1. Now repeat the argument above
to find c1 ∈ R \X contained in (a, b1), and continuing by induction we
may find an infinite sequence of elements c1 > c2 > . . . of R \X all in
distinct convex components.

�

Theorem 2.5. If R is a densely ordered, definably complete OAG with
burden at most 2, then there is no definable Cantor-like set in R.

Proof. Assume otherwise, and let X ⊆ R be a definable Cantor-like
set. By the previous lemma, R \ X consists infinitely many convex
components, each of which is open (as X is closed). By definable
completeness, each convex component of R \X is an interval; we call
these the complementary intervals. All but at most two complementary
intervals are bounded, and if I = (a, b) is a bounded complementary
interval, then we can use the fact that R is divisible (Fact 1.3 above)
to define its midpoint Im = a+b

2
. The collection of all such midpoints

Im is itself definable and comprises and infinite discrete set, yielding a
contradiction to Corollary 2.3. �
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Now we will focus on the case when R has dp-rank 2 (which, recall,
is equivalent to NIP plus having burden 2). In this case, we will show
that if R is divisible and defines an infinite discrete set, then it cannot
also define a set which is dense and codense in some infinite interval.
To this end, we will use the Shelah expansion RSh of the structure

R. This concept, and the facts below, are due to Shelah [18], but we
will follow the notation and presentation of Simon [21].

Definition 2.6. Suppose that R ≺ U and U is |R|+ -saturated. The
Shelah expansion RSh of R is the expansion of R with the following
new predicates: for every partitioned formula ϕ(x; y) and every finite
tuple b ∈ U |y|, define a predicate Sϕ(x;b)(x) on R

|x| such that

RSh |= Sϕ(x;b)(a) ⇔ U |= ϕ(a; b).

The subsets of Rn defined by the new basic predicates Sϕ(x;b) as
above are called externally definable sets. An important example for
our purposes is that if C ⊆ R is convex, then using |R|+-saturation we
may find a, b ∈ U such that (a, b) ∩ R = C, and thus C is externally
definable.
The next fact summarizes the important basic properties of Shelah

expansions.

Fact 2.7. ([18], and see also [21]) Suppose that the complete theory of
R is NIP.

(1) The subsets of Rn which are definable in the Shelah expansion
RSh are independent of the choice of the saturated extension U
in Definition 2.6, and hence we may talk about “the” Shelah
expansion.

(2) The structure RSh admits elimination of quantifiers.
(3) The structure RSh is NIP.
(4) If X ⊆ Rn is type-definable in R, then the dp-rank of X as

calculated in R is equal to the dp-rank of X as calculated in
RSh.

Proof. While complete proofs of (1), (2), and (3) can be found in [21],
we take the opportunity to explain how (4) follows from (2) and (3).
Note that a fact similar to (4) has been claimed by Onshuus and Usvy-
atsov (see [17]) but only in the special case when the theory is dp-
minimal.
Let d1 be the dp-rank of X as calculated in the original structure R,

and let d2 be the dp-rank of X as calculated in the Shelah expansion
RSh (each of which exists since their theories are NIP). On the one
hand, if κ is any cardinal and d1 ≥ κ, then there is an ict-pattern
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of depth κ in X with parameters from some elementary extension of
R, and the same array of formulas is an ict-pattern of depth κ in the
expanded language of RSh. Therefore d1 ≤ d2.
On the other hand, suppose that there is an ict-pattern

(3) {ϕi(x; ai,j) : i < κ, j < ω}

of depth κ consistent with X in some elementary extension R′ of RSh.
By quantifier elimination, we may assume that

ϕi(x; y) = Sψi(x;y;bi)
(x; y)

where bi is a tuple of parameters from the |R|+-saturated model U ≻ R
used to define RSh.
Working inRSh, for anym,n ∈ N, anym-element subset {l1, . . . , lm}

of κ, and any formula θ(x) in X , there are parameters ci,j ∈ R with
1 ≤ i ≤ m and 1 ≤ j ≤ n so that for any η : {1, . . . , m} → {1, . . . , n}
there is dη ∈ θ(R) so that

RSh |= Sψli
(x;y;bli)

(dη; ci,j) if and only if η(i) = j.

But then

U |= ψli(dη, ci,j, bli) if and only if η(i) = j.

Thus by compactness, in U the formulas ψi(x, y, bi) form an ict-pattern
with κ rows consistent with X and hence d1 ≥ d2.

�

The next fact is a slight generalization of a theorem proved by Simon
[20] which we will need for what follows.
The fact below was proved by Simon [20] in the case when the entire

structure is a dp-minimal divisible OAG, but the same proof can be
relativized to convex definable subgroups G to yield:

Fact 2.8. If G ⊆ R is a type-definable convex divisible subgroup of
R, dp-rk(G) = 1, and X ⊆ G is infinite and definable, then X has
nonempty interior.

Proof. Suppose that G is as in the statement (type-definable, convex,
divisible, and with dp-rk 1). By the comment just before Fact 2.7, the
set G is externally definable. By Fact 2.7 (4), working in RSh, the
dp-rank of G is still 1. Now consider the structure G whose universe is
the set G and with the induced definable structure: that is, the basic
predicates in the language for G represent sets of the form Gn∩Z where
Z ⊆ Rn is ∅-definable in the language ofR. The fact that dp-rk(G) = 1
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as calculated in RSh implies that the theory of the structure G is dp-
minimal. Also the set X ⊆ G is definable in G. Now we can apply
Theorem 3.6 of [20] to conclude that X has nonempty interior, as we
wanted. �

Now we state our main result on divisible OAGs of dp-rank 2.

Theorem 2.9. If R is an expansion of a divisible ordered Abelian group
of dp-rank at most 2 and there is an infinite definable discrete set in R
then there is no X definable which is dense and codense in an interval
I of R nor is there a definable Cantor-like set.

Proof. Say X ⊆ R is and R-definable. By Corollary 2.3, we know that
X is not Cantor-like. It only remains to consider the case when X is
dense in some interval I.
First pick ǫ ∈ R as in the conclusion of Lemma 2.2 so that (−ǫ, ǫ)

has dp-rank 1. Now let G be the subset of R defined as

G =
⋂

n∈N

(
−

ǫ

n+ 1
,

ǫ

n+ 1

)

and note that G is a convex subgroup of R. By ω-saturation, G is
infinite. Also, G is definable in RSh, so by Fact 2.7, it has dp-rank 1
as calculated in the Shelah expansion.
Suppose that X is dense and codense in I. Translating and truncat-

ing I as necessary, we may assume that I ⊆ G. But then X ∩ I is an
infinite definable subset of G which has empty interior, contradicting
Fact 2.8.

�

We have considerably more precise results if we also assume that R
is definably complete.

Corollary 2.10. Suppose that R is an expansion of a definably com-
plete divisible OAG of dp-rank at most 2 in which an infinite discrete
set is definable. Then for any definable X ⊆ R, either X is discrete or
X has nonempty interior.

Proof. Suppose that X ⊆ R is definable and has empty interior. By
Theorem 2.9, X is nowhere dense. By Corollary 2.13 of [5], it follows
that X is discrete. �

Corollary 2.11. Suppose that R is a definably complete expansion of
a divisible ordered Abelian group with dp-rank at most 2. If there is
X ⊆ R definable which is dense and codense in some interval then any
model of T = Th(R) has o-minimal open core.
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Proof. We claim that the theory ofR has uniform finiteness: otherwise,
there would exist a formula ϕ(x; y) such that for every n ∈ N, there are
parameters bn such that the set defined by ϕ(x; bn) is finite and of size
at least n. Note that there is a first-order formula θ(y) which expresses
the property “the set defined by ϕ(x; y) is topologically discrete,” and
since any finite set is discrete, θ(bn) holds for each n. Thus every finite
subset of

{∃≥mx ϕ(x; y) : m ∈ N} ∪ {θ(y)}

is satisfiable by some tuple bn, and so by compactness and ω-saturation
there is a tuple b such that ϕ(x; b) defines an infinite discrete set, con-
tradicting Theorem 2.9.
Therefore by [9, Theorem A], R has o-minimal open core. �

We note that Theorem 2.9 no longer holds once the dp-rank of R
exceeds 2: for example, in [5] we have shown that the structure 〈R; +, <
,Q,Z〉 has dp-rank 3.
For the remainder of this section, we return to the general situation

when R is only assumed to have burden 2 (rather than dp-rank 2).
Once again adapting arguments of Simon from [20] allows us to obtain
information on dense-codense definable sets in the case when there is
also an infinite definable discrete set.
We begin with a definition.

Definition 2.12. Let X ⊆ R be definable and f : X → R be a
definable function from X to some sort in the Dedekind completion R
of R (see Definition 1.1 above) with f(x) > 0 for all x ∈ X . We say
that f is bounded away from 0 if whenever I is an interval so that I∩X
is infinite there is ǫ > 0 and a subinterval J ⊆ I with J ∩X infinite so
that f(a) > ǫ for all a ∈ J .
We say “functions on X are bounded away from 0” to mean that all

definable f : X → R with f positive on X are bounded away from 0.

Lemma 2.13. If X ⊆ R has burden 1, then definable functions on X
are bounded away from 0.

Proof. We will adapt the proof of [10, Lemma 3.19]. Suppose that
definable functions on X are not bounded away from 0, as witnessed
by a definable function f : X → R and an interval I such that:
(*) I ∩X is infinite, and for any positive ǫ and every subinterval J

with X ∩ J infinite, there is some a ∈ X ∩ J such that f(a) ≤ ǫ.
By saturation, we may pick a sequence 〈Ji : i ∈ ω〉 of pairwise

disjoint subintervals of I such that for each i the set Ji ∩X is infinite.
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The property (*) transfers to subintervals of I so (*) is true, mutatis
mutandis, of each Ji as well.
Pick ǫ0 > 0 in R arbitrarily. By (*), we can pick an element ai,0 ∈ Ji

for each i such that for each i,

(4) f(ai,0) < ǫ0.

Now we pick positive elements ǫj and ai,j ∈ Ji for each j ∈ ω by
induction, as follows: suppose we have already selected elements

ǫ0 > ǫ1 > . . . > ǫj

and elements ai,j ∈ Ji such that f(ai,j) < ǫj . By saturation, we can
pick ǫj+1 ∈ R such that for every i ∈ ω,

(5) 0 < ǫj+1 < f(ai,j).

Finally, applying the property (*) again, for each i ∈ ω we can pick
an element ai,j+1 ∈ Ji ∩X such that f(ai,j+1) < ǫj+1.
Now we have elements 〈ai,j : (i, j) ∈ ω × ω〉 such that for every

(i, j) ∈ ω × ω,

ǫj+1 < f(ai,j) < ǫj .

From this, we can construct an inp-pattern of depth 2, as follows:
in the first row, we use formulas ϕ0(x; bi) expressing the fact that x ∈
Ji∩X , and {ϕ0(x; bi) : i ∈ ω} is 2-inconsistent since the Ji are pairwise
disjoint. In the second row, we use formulas ϕ1(x; ǫj , ǫj+1) expressing
the property that

ǫj+1 < f(x) < ǫj

and again {ϕ1(x; ǫj , ǫj+1) : j ∈ ω} is 2-inconsistent. Furthermore, for
any (i, j) ∈ ω × ω, the formula

ϕ0(x; bi) ∧ ϕ1(x; ǫj , ǫj+1)

is consistent since it is satisfied by ai,j. Thus we have an inp-pattern
of depth 2 in X , contradicting the assumption that X has burden 1.

�

The next lemma generalizes a key fact from [10] about definable
functions in the dp-minimal case.

Lemma 2.14. If there is an infinite discrete set definable in R, then
functions on R are bounded away from 0.
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Proof. Suppose, to the contrary, that f : R → R is definable, f(x) > 0
for every x ∈ R, and f is not bounded away from 0. Then there is a
nonempty interval I such that for any ǫ > 0 and any subinterval J of
I, there is a ∈ J such that f(a) ≤ ǫ. Therefore, f is not bounded away
from 0 on any subinterval of I. By Lemma 2.13, any subinterval of I
has burden 2. By Lemma 2.2, there is some interval (0, ǫ) of burden
1, and shrinking ǫ as necessary, we may assume that ǫ is less than the
diameter of I. Since burden is translation-invariant, we conclude that
there is a subinterval of I of burden 1, a contradiction.

�

We record an immediate consequence of Lemma 2.14.

Corollary 2.15. Suppose there is an infinite discrete set definable in
R. Suppose that I is an interval and X ⊆ I is definable, dense, and
codense in I. Then functions on X are bounded away from 0.

Proof. If g : X → R is definable and has positive values, pick any
a > 0 and extend g to a definable function f : R → R by the rule that
f(x) = a when x /∈ X . Now apply the previous Lemma to conclude
that f , and hence g, is bounded away from 0. �

Definition 2.16. For a definable set X we write a ∼X,δ b or simply
a ∼δ b for the equivalence relation on R defined by

∀ ǫ ∈ (−δ, δ) [a+ ǫ ∈ X ⇔ b+ ǫ ∈ X ] ,

and a ∼X b (or simply a ∼ b) means that for some δ > 0, we have
a ∼δ b.

First we note the following easy but useful fact:

Lemma 2.17. If X is definable, a, b ∈ R, a ∼X,δ b, and |ǫ| < δ, then
a+ ǫ ∼X,δ−|ǫ| b+ ǫ. In particular, a + ǫ ∼X b+ ǫ.

Lemma 2.18. Let X be definable. Fix any a ∈ X and let X̃ = {b ∈

X : b ∼X a}. Then |X̃/ ∼X̃ | = 1.

Proof. Let b ∈ X̃ , and we will show that b ∼X̃ a. Choose δ > 0 such
that b ∼X,δ a and suppose that ǫ ∈ (−δ, δ). By Lemma 2.17, we have
b+ ǫ ∼X a+ ǫ, so in particular b+ ǫ ∼X a if and only if a+ ǫ ∼X a. In

other words, b+ ǫ ∈ X̃ if and only if a+ ǫ ∈ X̃ , so b ∼X̃,δ a. �

Now we look for type-definable subgroups related to definable subsets
of R. The proof of the next lemma is similar to that of Theorem 3.6
from [20].

Lemma 2.19. Suppose that:
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(1) X ⊆ R is definable;
(2) I is an open interval such that X ∩ I is infinite;
(3) functions on X ∩ I are bounded away from 0;
(4) X ∩ I is not discrete; and
(5) |(X ∩ I)/ ∼ | = 1.

Then for any a ∈ X ∩ I, there is a nonzero type-definable convex
subgroup C of (R,+) such that (X−a)∩C is also a subgroup of (R,+).

Proof. Fix a ∈ X ∩ I and define f : X → R to be the function

f(x) = sup{δ ∈ R : x ∼δ a}.

Note that f(x) > 0 on I. Since functions on X ∩ I are bounded away
from zero, we may pick an ǫ > 0 and an open subinterval J ⊆ I such
that X ∩ J is infinite and f(x) > ǫ for every x ∈ J ∩X .

Claim 2.20. There is a positive element ǫ0 < ǫ such that f(x) > ǫ0 for
every x ∈ (a− ǫ0, a+ ǫ0).

Proof. First, we may assume that f(a) > ǫ (by replacing ǫ by a positive
element less than f(a) if necessary). Pick some b ∈ X ∩ J and some
ǫ′ > 0 such that a ∼ǫ′ b, (b − ǫ′, b + ǫ′) ⊆ J , and ǫ′ ≤ ǫ. Now pick a
positive element ǫ′′ such that 2ǫ′′ < ǫ′ and let z be an arbitrary element
of (−ǫ′′, ǫ′′). Then we have

(6) a+ z ∼ǫ′′ b+ z

since a ∼ǫ′ b and using Lemma 2.17. On the other hand, since b+z ∈ J ,
we also have that f(b+z) > ǫ > ǫ′′ (by our initial choice of the interval
J), and so

(7) b+ z ∼ǫ′ a.

By (6), (7), and transitivity, we conclude that a+z ∼ǫ′′ a. Therefore,
given that f(a) > ǫ > ǫ′′, it follows that for any a+ z ∈ (a− ǫ′′, a+ ǫ′′),
we have f(a+ z) ≥ ǫ′′. Then if 0 < ǫ0 < ǫ′′ and a+ z ∈ (a− ǫ0, a+ ǫ0),
we have f(a+ z) > ǫ0, as desired. �

Pick ǫ0 as in the Claim above and small enough so that (a− ǫ0, a+
ǫ0) ⊆ I. Replace I by the subinterval (a− ǫ0, a+ ǫ0) and note that all
the hypotheses of the Lemma still hold (since (4) and (5) imply that
X ∩ I has no isolated points, hence X ∩ (a− ǫ0, a+ ǫ0) is infinite, and
the rest are trivial).
Define

C =
⋂

n∈N

{x ∈ R : −ǫ0 < nx < ǫ0}
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and note that C is closed under addition by the triangle quality. Thus
C is a convex type-definable subgroup of (R,+). Let H = (X − a)∩C
and suppose that g, h ∈ H . Then g + h ∈ C. Furthermore, since
f(a+g) > ǫ0 (by the conclusion of the Claim above), we have a+g ∼ǫ0

a. Hence by Lemma 2.17 and the fact that |h| < ǫ0, we obtain

a + g + h ∼ a+ h.

But a+h ∈ X since h ∈ X−a, so g+h ∈ X−a. This shows that H is
closed under addition. For closure under negation, if g ∈ (X − a) ∩C,
then it is immediate that −g ∈ C, while a+ g ∼ǫ0 a and |g| < ǫ0 imply
(using Lemma 2.17 again) that

a+ g − g ∼ a− g

⇒ a ∼ a− g,

and therefore a− g ∈ X , hence −g ∈ X − a.
�

Finally we come to our generalization of Theorem 2.9 in the case
when R has burden 2 instead of dp-rank 2. The example in the subse-
quent section demonstrates the necessity of the extra hypothesis that
X/ ∼ is finite.

Theorem 2.21. If R is a divisible OAG of burden ≤ 2 in which an
infinite discrete set is definable, then there cannot be a definable set
X ⊆ R which is dense and codense in some nonempty interval and
such that X/ ∼ is finite.

Proof. Suppose towards a contradiction there is such a set X . Since
X/ ∼ is finite, there is some a ∈ X and some nonempty interval I in
which [a]∼ is dense and codense. Let Z = [a]∼∩I, and by Lemma 2.18,
we have that |Z/ ∼Z | = 1.
Since an infinite discrete set is definable in R, by Corollary 2.15,

functions on Z are bounded away from zero. Fix any a ∈ Z ∩ I, and
we may apply Lemma 2.19 to obtain a nonzero convex subgroup C of
〈R; +〉 such that H := C ∩ (Z − a) is a subgroup. By our assumptions
on Z, H is dense and codense in C. Pick any g ∈ C \H .

Claim 2.22. The set { g
n

: n ∈ N \ {0}} contains representatives of
infinitely many cosets of H .

Proof. On the one hand, if the image of g in R/H has infinite order,
then for any distinct n,m ∈ N \ {0}, we have mg − ng /∈ H , and
hence g

n
− g

m
= mg−ng

nm
/∈ H , so we are done. Otherwise, let k be
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the least positive natural number such that kg ∈ H , and note that if
GCD(k,m) = 1, then mg /∈ H . Thus whenever 1 ≤ i < j,

g

kj
−
g

ki
=

(1− kj−i)g

kj
,

but GCD(1− kj−i, k) = 1, so this difference cannot be in H . �

By the Claim, the convex set C intersects infinitely many cosets of
the group H . Now we can easily build a depth-2 inp-pattern within
any interval J ⊆ C, as follows: for the first row, let

(8) ϕ0(x; ai, bi) := a0,i < x < b0,i

(for i < ω) be any family of formulas which define pairwise disjoint
open subintervals of J ; and for the second row, let

(9) ϕ1(x; cj) := x− cj ∈ X

with the parameters {cj : j ∈ ω} chosen from C which represent
distinct cosets of H (which is possible by the Claim). Since H is a
dense and codense subgroup of C, every coset cj +H is also dense and
codense in C, and hence each pair ϕ0(x; ai, bi)∧ϕ1(x; cj) is consistent.
Thus we have an inp-pattern of depth 2 in any subinterval J of C,
contradicting Lemma 2.2 and finishing the proof. �

Thus we have established that for divisible R we can not simulta-
neously have an infinite definable discrete set and a definable dense
codense set X with X/ ∼ finite. Next we consider the case in which
X ⊆ R is definable and X/ ∼ is infinite. First we need a preliminary
lemma:

Lemma 2.23. If there is an infinite definable discrete set in R, then
there is no definable X ⊆ R such that X divides over some elementary
submodel R0 of R and 0 is an accumulation point of X.

Proof. Otherwise, say there is such a set X = Xa defined over pa-
rameters a. Pick any interval I around 0, and we will construct an
inp-pattern of depth 2 in I as follows: first, since Xa divides, pick a
set of R0-conjugates {Xai : i ∈ ω} of Xa which are k-inconsistent for
some k, and this will be the first row of the inp-pattern. For the second
row, we recursively construct a sequence of points

b0 > c0 > b1 > c1 > . . . > 0

as follows: first, let b0 be any positive element of I. Since 0 is an
accumulation point of X , it is also an accumulation point of each of its
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conjugates Xai, so by saturation we can pick c0 > 0 so that the interval
J0 := (c0, b0) intersects each of the sets Xai . In general, once we have
constructed bi and ci for all i ≤ n, we pick an arbitrary bn+1 ∈ (0, cn),
and then as before the fact that 0 is an accumulation point of each
conjugate of Xa allows us to pick cn+1 ∈ (0, bn+1) so that Jn+1 :=
(cn+1, bn+1) intersects every Xai .
Now the second row in our inp-pattern will consist of the formulas

ϕ1(x; bj , cj) asserting that bj < x < cj , which define pairwise-disjoint
intervals which each intersect every set Xai, as we wanted.
Since this inp-pattern can be constructed within any interval I around

0, by Lemma 2.2 we have a contradiction. �

The next proposition is similar to the well-known fact that in an
NIP theory, global types which do not divide over a small submodel
are invariant over said submodel (see Chapter 5 of [21], or Proposition
2.1 of [12]). However, we require a version of this which assumes only
that the formula we are working with is NIP.

Proposition 2.24. Suppose ϕ(x; y) is an NIP formula in a theory T ,
N ≺ M are models of T such that M is |N |+- saturated, and p(x) is
a complete ϕ(x; y)-M-type2 which does not divide over N . Then p(x)
is N-invariant.

Proof. The same proof as in [12] goes through. Namely, suppose that
a0, a1 ∈ M and tp(a0/N) = tp(a1/N), and assume towards a con-
tradiction that ϕ(x; a0) ∧ ¬ϕ(x; a1) ∈ p(x). As N is a model, there
is some b such that both a0, b and a1, b can be extended to infinite
N -indiscernible sequences (see Facts 1.11 and 1.12 (ii) of [2]), and by
saturation we may assume b ∈ M . If ϕ(x; b) ∈ p, then for the N -
indiscernible sequence {a′i : i ∈ ω} extending a1, b, we have ¬ϕ(x; a′0)∧
ϕ(x; a′1) ∈ p(x); and if to the contrary ¬ϕ(x; b) ∈ p, then let {a′i :
i ∈ ω} be the N -indiscernible sequence extending a0, b, and we have
ϕ(x; a′0) ∧ ¬ϕ(x; a′1) ∈ p(x). In either case,

(10) ¬ [ϕ(x; a′0) ↔ ϕ(x; a′1)] ∈ p(x).

Since p(x) does not divide over N , the partial type

{¬
[
ϕ(x; a′2i) ↔ ¬ϕ(x; a′2i+1)

]
: i < ω}

must be consistent. As any Boolean combination of NIP formulas is
NIP, ¬ [ϕ(x; y1) ↔ ¬ϕ(x; y2)] is NIP, but we have just shown that this
formula has infinite alternation rank, which is a contradiction. �

2That is, a maximal consistent collection of boolean combinations of instances
ϕ(x; b) of ϕ(x; y) with b from M .
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Proposition 2.25. Suppose that there is an infinite discrete set defin-
able in R, X ⊆ R is definable, and the formula ϕ(x; y) expressing that
x ∈ X − y is NIP. Then X/ ∼ is finite.

Proof. Suppose that X is definable over the ω-saturated model R0.
Let R1 be an |R0|+-saturated elementary extension of R0. If X/ ∼
is infinite, then it has unboundedly many equivalence classes (since ∼
is a definable equivalence relation) and thus we can find a, b ∈ X(R1)
such that tp(a/R0) = tp(b/R0) and a is not in the same ∼-class as b.
This means that for every ǫ > 0, there is some g ∈ (−ǫ, ǫ) such that

¬ [a+ g ∈ X ↔ b+ g ∈ X ] ,

thus
g ∈ (X − a)∆(X − b),

and so 0 is an accumulation point of the set Z := (X − a)∆(X − b).
By Lemma 2.23, Z does not divide over R0. By ω-saturation, Z does
not fork over R0 (see, for instance, Proposition 5.14 of [21]). Therefore
Z has an extension to a complete ϕ(x; y)-type p(x) over R1 which
does not fork over R0. But the fact that a ≡R0

b implies that Z is
not R0-invariant, and hence p(x) cannot be R0-invariant either, so by
Proposition 2.24, we conclude that ϕ(x; y) cannot be NIP.

�

Putting this all together, we obtain:

Theorem 2.26. Suppose that R is a divisible OAG of burden 2 in
which an infinite discrete set is definable and also there is a definable
X ⊆ R which is dense and codense in some nonempty interval. Then
the formula ϕ(x; y) expressing that x ∈ X − y has the independence
property.

Proof. By Theorem 2.21, X/ ∼ is infinite. Hence by Proposition 2.25,
we conclude that ϕ(x; y) has the independence property. �

Question 2.27. Are there divisible OAGs of burden 2 (or dp-rank 2) in
which both a Cantor-like set C and a set X which is dense and codense
on an infinite interval are definable?

3. A theory with burden 2 with both an infinite definable
discrete set and a dense-codense set

In this section, we construct an example of a complete theory T with
the following properties:

• T expands the theory divisible ordered Abelian groups;
• T is definably complete;
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• T has burden 2; and
• if M |= T then there are both an infinite definable discrete
subset of M and a definable dense and codense subset of M .

This establishes that the hypotheses of Theorem 2.26 can in fact
be satisfied. In order to accomplish this we need to develop some
background facts that slightly generalize some of the work in [3].
Recall that in [3] the authors show that given a theory T in a lan-

guage L which eliminates ∃∞ and a distinguished unary predicate S
from L if we expand L to L(P ) by adding a new unary predicate P
then the L(P )-theory

TS = T ∪ {∀x [P (x) → S(x)]}

has a model companion TG with multiple desirable properties.
Here we point out the the results from [3, section 2] all hold if we

slightly weaken the assumption that T eliminates ∃∞ to the assumption
that T eliminates ∃∞ relative to S.

Definition 3.1. For a theory T and a distinguished unary predicate
S we say that T eliminates ∃∞ relative to S if for any formula ϕ(x, y)
so that T |= ∀x [ϕ(x, y) → S(x)] there is n ∈ N so that if M |= T and
a ∈ M |y| and |ϕ(M, a)| > n then ϕ(M, a) is infinite.

We now provide the slight modifications to the result from [3, Section
2] that we will need to construct and analyze our theory. All the proofs
are mutatis mutandis from those in the original paper of Chatzidakis
and Pillay. We include the specific analogous result from [3] with each
statement. From now on we assume that T eliminates ∃∞ relative to
S. We also assume that T eliminates quantifiers.

Definition 3.2. [3, Definitions 2.1] Let M be a saturated model of T ,
C a small subset of M , a = (a1, . . . , an) a tuple of elements of M , and
ϕ(x) a formula defined with parameters in C.

(1) We define the algebraic dimension of a over C, a-dim(a/C), to
be the maximal length of a sequence j(i) of positive integers
≤ n such that:

aj(1) /∈ acl(C), aj(i) /∈ acl(C, aj(1), . . . , aj(i−1)).

(2) We set

a-dim(ϕ(x)) = sup{a-dim(a/C)|M |= ϕ(a)}.

Fact 3.3. [3, Lemma 2.2] Let M |= T , ϕ(x1, . . . , xn, y) an L-formula
so that

T |= ∀x1, . . . , xn(ϕ(x, y) →
∧

1≤i≤n

S(xi))
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and d an integer. Then the set {b | a-dim(ϕ(x, b)) = d} is definable.

Fact 3.4. [3, Lemma 2.3] LetM be a saturated model of T and ϕ(x1, . . . , xn, y)
an L-formula so that

T |= ∀x1, . . . , xn(ϕ(x, y) →
∧

1≤i≤n

S(xi)).

Then the set Σ(ϕ) of tuples b so that there is a ∈ M satisfying ϕ(x, b)
and a ∩ acl(b) = ∅ is definable.

Fact 3.5. [3, Theorem 2.4] The theory TS has a model companion TG,
whose axiomatization is obtained by expressing in a first order way the
following properties of a model (M,P ):

(1) M |= T .
(2) For every L-formula ϕ(x1, . . . , xn, z) so that

T |= ∀x1, . . . , xn(ϕ(x, z) →
∧

1≤i≤n

S(xi)),

for every subset I of {1, . . . , n},

∀z

[
∃xϕ(x, z) ∧ (x ∩ aclT (z) = ∅) ∧

∧

1≤i<j≤n

xi 6= xj

]

→

[
∃xϕ(x, z) ∧

∧

i∈I

(xi ∈ P ) ∧
∧

i/∈I

(xi /∈ P )

]

where aclT is the algebraic closure operator for T .

Fact 3.6. [3, Proposition 2.5] Let (M, P ) and (N , Q) be models of TG,
and let A be a common subset of M and N . Then

(M, P ) ≡A (N , Q) ⇔ (aclT (A), P∩aclT (A)) ≃A (aclT (A), Q∩aclT (A)).

Fact 3.7. [3, Corallaries 2.6]

(1) The completions of TG are obtained by describing P ∩ aclT (∅).
(2) If a, b are tuples from M |= TG and A ⊆ M , then tp(a/A) =

tp(b/A) if and only if there is an A-isomorphism of L(P ) struc-
tures from aclT (A, a) to aclT (A, b) which carries a to b.

(3) Let a ∈ M |= TG, A ⊆ M . Then a is algebraic over A if and
only if a ∈ aclT (A). Thus algebraic closures in the sense of T
and TG coincide.

(4) Modulo TG, every formula ϕ(x) is equivalent to a disjunction of
formulas of the form ∃yψ(x, y), where ψ is quantifier-free, and
for every (a, b) satisfying ψ, b ∈ aclT (a).
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Given this general background information we now proceed to ana-
lyze the specific theory T with which we plan to work.
Let T be the theory of the structure 〈R; +, <,Z〉 formulated in the

language L = {+, <, 0, 1, ⌊ ⌋, S, λ}λ∈Q where S is interpreted as the
interval (0, 1), the λ are simply multiplication by λ ∈ Q and ⌊x⌋ =
max{y ∈ Z : y ≤ x}. Note we do not include a separate predicate
for Z as the set of integers is defined by the quantifier free formula
⌊x⌋ = x. Also notice that as T is linearly ordered acl = dcl in models
of T . By results from the appendix of [15] the L-theory T eliminates
quantifiers and is universally axiomatizable. We record some additional
facts about T which we will use repeatedly without further mention.

Fact 3.8. (1) If M |= T and f : Mn → M is definable then f
is given piecewise by terms; more precisely, if f is definable
with parameters c, then there are c-definable sets X1, . . . , Xk

partitioning Mn and terms t1(x, y), . . . , tk(x, y) so that f(x) =
ti(x, c) on Xi.

(2) T has dp-rank 2.
(3) If M |= T and X ⊆M is definable then X is either discrete or

has interior.
(4) If M |= T and X ⊆ (0, 1) is definable then X is a finite union

of points and intervals, so T eliminates ∃∞ relative to S and
the induced structure on (0, 1) is o-minimal.

(5) If M |= T , X ⊆ M is definable and discrete and f : M → M
is definable then f [X ] is discrete.

(6) If M |= T , U ⊆ M is an open interval and f : U → M is
definable then there is an open subinterval V ⊆ U so that f is
equal to a linear function of the form x 7→ λx+ a on V .

Proof. For (1), it is well known that this follows from the fact that
T is universally axiomatizable and model complete. For completeness
we outline a proof. Fix M and f . Assume that f is definable with
parameters c. Let a ∈ M . Consider the closure of ac under all terms,
〈ac〉. As T is universal 〈ac〉 |= T . As T is model complete 〈ac〉 � M.
In particular f(a) ∈ 〈ac〉 so that f(a) = t(a, c) for some term t. The
result then follows by compactness.
See the note after the proof of Theorem 3.1 in [5] for (2). As T

is clearly definably complete (3) follows from Corollary 2.10. (4) is a
special case of [5, Lemma 3.3(1)]. (5) follows from [5, Corollary 2.17].
(6) follows from [5, Lemma 3.2(2)] and (1). �
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As T eliminates ∃∞ relative to S we can form the theory TG. For
convenience we fix a completion T ∗

G of TG by specifying that if M |= TG
then P (M) ∩ dcl(∅) = ∅ (see Fact 3.7(1)).

Lemma 3.9. T ∗
G has quantifier elimination and is definably complete.

Proof. That T ∗
G has quantifier elimination follows from Fact 3.7 (4)

together with the facts that aclT = dclT , definable functions are given
piecewise by terms (by Fact 3.8 (1)), and a use of compactness.
To establish that T ∗

G is definably complete we work in the structure
R = 〈R; +, <, 0, 1, ⌊ ⌋, S, λ〉λ∈Q. It suffices to show that there is G ⊆
R \ dcl(∅) so that

〈R; +, <, 0, 1, ⌊ ⌋, S, G, λ〉λ∈Q

is a model of T ∗
G.

We construct G ⊆ R and its complement G = R \G simultaneously
by induction. Let c = |R|.
By an instance of axiom (2) in Fact 3.5 we mean a triple C =

(ϕ(x, y), c, I) so that:

(1) ϕ(x1, . . . , xn, y) is an L-formula;
(2) c ∈ R|y| and in some extension M of R there is a ∈ M |x|

satisfying ϕ(x, c) with a ∩ acl(c) = ∅ and all coordinates of a
distinct; and

(3) I ⊆ {1, . . . , n}.

We say for a set G′ ⊆ R a tuple a ∈ R|x| satisfies C relative to G′ if
R |= ϕ(a, c) and ai ∈ G′ if and only if i ∈ I.
List all instances of axiom (2) as Cα = (ϕα(x, y), cα, Iα) for α ∈ c.
We construct G as

⋃
α∈cGα and G =

⋃
a∈cGα so that:

(1) |Gα| < c and |Gα| < c for all α < c;
(2) Gα ⊆ Gβ and Gα ⊆ Gβ for α < β;
(3) G0 = ∅ and G0 = dcl(∅);
(4) Gα ∩Gα = ∅ for all α < c; and
(5) there is cβ ∈ Gα ∪Gα satisfying condition Cβ relative to Gα for

all β < α.

If we can construct such a G then it is immediate that

〈R; +, <, 0, 1, ⌊ ⌋, S, G, λ〉λ∈Q |= T ∗
G.

Constructing G0 and G0 is immediate. Also if α is a limit ordinal
and we have constructed Gβ and Gβ for all β < α then we simply let
Gα =

⋃
β<αGα and Gα =

⋃
β<αGβ .

Thus suppose we have a successor ordinal α + 1 and we have con-
structed Gβ and Gβ for all β ≤ α. We need to extend the construction
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to satisfy Cα = (ϕα(x, y), cα, Iα). Let Xα ⊆ (0, 1)n be the subset of Rn

defined by ϕα(x, cα). By Fact 3.8 (2) the structure induced by R on
(0, 1) is o-minimal. Hence without loss of generality we may assume
that Xα is an o-minimal cell. After potentially permuting the variables
of the defining formula forXα we may without loss of generality assume
that

Xα = {(z1, . . . , zl, y1, . . . , ym) : z ∈ U and yi = gi(z) for all 1 ≤ i ≤ m}

where U ⊆ Rl is a definable open o-minimal cell and the gi are definable
continuous functions on U which are never equal on U . After refining
U if necessary we may also assume that if a1, . . . , al−1 ∈ π(U) (where
π is projection on the first l − 1 coordinates) then gi : U(a1,...,al−1) → R

is monotone for all 1 ≤ i ≤ m (where U(a1,...,al−1) is the fiber in U over
(a1, . . . , al−1)). Furthermore we may also assume that for any 1 ≤ i ≤
m if for some (a1, . . . , al−1) ∈ π(U) the function gi : U(a1,...,al−1) → R

is increasing then the same is true for all (b1, . . . bl−1) ∈ π(U) and the
same holds for “decreasing” or “constant” in place of “increasing”.
To build Gα+1 and Gα+1 it suffices to find a1, . . . , al, b1, . . . , bm ∈ Xα

so that ai /∈ Gβ ∪ Gβ and bj /∈ Gβ ∪ Gβ for all 1 ≤ i ≤ l, 1 ≤ j ≤ m,
and β ≤ α. We show this by induction on l, the dimension of U . If
l = 0 then U is a point, but then there can not be a in an extension of
R with a ∈ Xα and a∩acl(c) = ∅. Hence there can be no such instance
of axiom (2). Thus we may assume that l > 0 we have our result for all
values less that l. Suppose that for some function gj with 1 ≤ j ≤ m it
is the case that gj : U(a1,...,al−1) → R is constant (for simplicity suppose
that this holds for the functions g1, . . . , gr with 0 ≤ r ≤ m). Thus for
1 ≤ i ≤ r the function gi may be thought of as a function from π(U) to
R. By induction we may find a1, . . . al−1 ∈ π(U) so that ai /∈ Gβ∪Gβ for
any 1 ≤ i ≤ l−1 and β ≤ α and also so that gi(a1, . . . , al−1) /∈ Gβ∪Gβ

for all 1 ≤ i ≤ r and all β ≤ α. If there are no constant functions gi
then we can also easily pick a1, . . . , al−1 ∈ π(U) so that no ai ∈ Gβ∪Gβ

for any β ≤ α. Each function gi with r < i is monotone increasing or
decreasing on U(a1,...,al−1), in particular there are less than c elements

al of Ua1,...,al−1
so that gi(a1, . . . , al) ∈ Gβ ∪ Gβ for any β ≤ α. Also

that are less that c element al of U(a1,...,al−1) so that al ∈ Gβ ∪ Gβ

for some β ≤ α. Thus simply due to cardinality considerations there
must be al ∈ U(a1,...,al−1) so that al /∈ Gβ ∪ Gβ for any β ≤ α and

gi(a1 . . . , al) /∈ Gβ ∪ Gβ for all 1 ≤ i ≤ m and β ≤ α. Let c be the
n-tuple (a1, . . . , al, g1(a), . . . , gm(a)). Set Gα+1 = Gα∪{ci : i ∈ Iα} and
Gα+1 = Gα ∪ {ci : i ∈ {1, . . . , n} \ Iα}.

�
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Axiom scheme (2) for TG from Fact 3.5 implies that if M |= T ∗
G then

P (M) must be dense and codense in (0, 1). Thus to establish that T ∗
G

is our desired example we must show that T ∗
G is of burden 2. Ideally

we would simply like to reference [4, Theorem 7.3] but as T does not
satisfy exchange for algebraic closure it is not clear that this result is
applicable, so we provide an ad hoc proof. We need some preliminary
lemmas and observations. The following is an immediate consquence
of the axiomatization for TG given in Fact 3.5.

Fact 3.10. Let M |= TG and let U ⊆M be an open interval. Further-
more suppose that fi : U → (0, 1) for 1 ≤ i ≤ n and gj : U → (0, 1) for
1 ≤ j ≤ m are definable functions which are continuous, non-constant,
and monotone. If there is V ⊆ U an open interval so that fi(x) 6= gj(x)
for all x ∈ V and all i, j then there is x ∈ V so that fi(x) ∈ P (M) for
all i and gj(x) /∈ P (M) for all j.

Lemma 3.11. Let M |= T ∗
G and f : M → (0, 1) be definable. Then

there are only finitely many a ∈ (0, 1) so that f−1(a) has nonempty
interior.

Proof. Let

X = {b ∈M : f is constant in a neighborhood of b}.

Either X is empty in which case we are done or it is a nonempty open
set and hence a union of open intervals by definable completeness. Also
by definable completeness if I is any one of these intervals f is constant
on I. Let X0 be the set of midpoints of these intervals. X0 is definable
and discrete. Thus f [X0] is discrete and as f [X0] ⊆ (0, 1) it must be
finite. This establishes the lemma.

�

Lemma 3.12. Let M |= T ∗
G and let X ⊆M be definable. X is a finite

union of sets definable by formulas of the form:

ψ(x) ∧
∧

i∈I

P (ti(x)) ∧
∧

j∈J

¬P (sj(x))

where ψ(x) is an L-formula possibly with parameters, I and J are finite
sets, and the ti’s and sj’s are terms possibly with parameters so that:

(1) ψ(M) is either discrete or open;
(2) if M |= ψ(a) then ti1(a) 6= ti2(a) for i1 6= i2, sj1(a) 6= sj2(a) for

j2 6= j2 and ti(a) 6= sj(a) for all i, j;
(3) if M |= ψ(a) then ti(a) ∈ (0, 1) and sj(a) ∈ (0, 1) for all i, j;

and
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(4) if I is an open interval with I ⊆ ψ(M) then no ti and no sj is
constant on I.

Proof. By quantifier elimination for TG we reduce to the case where X
is defined by a formula of the form:

ψ0(x) ∧
∧

i∈I0

P (t0i (x)) ∧
∧

j∈J0

¬P (s0j(x))

where ψ0 is an L-formula, I0 and J0 are finite sets, and the t0i ’s and
s0j ’s are terms. The proof is a straightforward induction on |I0 + J0|
and proceeds by repeatedly partitioning the set defined by ψ0(x) into
smaller L-definable subsets where (1) follows as any definable set in
M either is discrete or has interior, (2) is immediate, (3) is immediate
as P (M) ⊆ (0, 1), and (4) follows by Lemma 3.11 and the fact that T
eliminates ∃∞ relative to (0, 1).

�

Lemma 3.13. If M |= T ∗
G and X ⊆ M is definable and discrete then

X is definable in M ↾ L.

Proof. Without loss of generality we may assume that X is defined by
a formula ϕ(x) of the form given in Lemma 3.12, say

ϕ(x) = ψ(x) ∧
∧

i∈I

P (ti(x)) ∧
∧

j∈J

¬P (sj(x)).

If ψ(M) has interior we can find an open interval U ⊆ ψ(M) so that
each ti and sj is equal to a linear term of the form λx + a on U . By
assumption none of the si and ti are equal on U and none of them are
constant. Thus by Fact 3.10 it must be the case that ϕ(M) is dense in
U and thus this case is impossible.
If ψ(M) is discrete the image of ψ(M) under any of the ti or sj must

be discrete. As these images are subsets of (0, 1) they must be finite.
It follows that X is definable in M ↾ L.

�

Although we only need the following lemma in the specific case of
models of T we provide a statement and proof in much greater gener-
ality.

Lemma 3.14. Suppose that N is an expansion of a densely ordered
group of finite burden n. If X ⊆ N is definable, infinite, and discrete,
then the burden of X is less than or equal to n− 1.

Proof. Without loss of generality we assume that N is sufficiently satu-
rated. Suppose the result fails. Thus X has burden n. Let the formulas
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ϕi(x, y) for 1 ≤ i ≤ n and parameters ai,j for 1 ≤ i ≤ n and j ∈ ω wit-
ness that X has burden n. Notice that we only need countably many
elements from X to witness that the burden is n, thus by compactness
we can find δ > 0 so that

X ′ = {x ∈ X : (x− δ, x+ δ) ∩X = {x}}

also has burden n witnessed by the same formulas and parameters.
We can find 0 < ε0j < ε1j < δ for j ∈ ω so that ε1j < ε0j+1 for all j ∈ ω.

Let ϕn+1(x, y1y2) be the formula

∃z ∈ X ′(z < x ∧ ∀w(w ∈ X ′ → w ≤ z ∨ w > x) ∧ y1 < x− z < y2)

and let ϕ′
i(x, y) for 1 ≤ i ≤ n be the formula

∃z(z ∈ X ′ ∧ ∀w(w ∈ X ′ → w ≤ z ∨ w > x) ∧ ϕi(x, y)).

It now follows that the formulas ϕ′
1(x, y) . . . ϕ

′
n(x, y) and ϕn+1(x, y1y2)

with respective sequences of parameters a1,j, . . . an,j and ǫ
0
j , ǫ

1
j witness

that the theory of N has burden at least n + 1, a contradiction. �

Proposition 3.15. T ∗
G has burden 2.

Proof. FixM a sufficiently saturated model of T and suppose the result
fails. Let ϕk(x, y) for k ∈ {1, 2, 3} together with mutually indiscernible
parameters ak,l with k ∈ {1, 2, 3} and l ∈ R be an inp-pattern with
three rows.
If any of the ϕk(x, ak,0), say k = 1, defines a discrete set X then by

Lemma 3.13X is definable inM ↾ L. AsM ↾ L has dp-rank 2, X must
have dp-rank 1 inM ↾ L by Lemma 3.14. Now consider ϕ2(M, a2,0)∩X .
This set is discrete and hence also definable in M ↾ L, say by the
L-formula θ2(x, b2,0). As {a2,i : i ∈ R} is indiscernible over a1,0 we

find {b2,i : i ∈ R} so that θ2(x, b2,i) defines X ∩ ϕ2(x, a2,i) for i ∈ R.

Similarly we find an L-formula θ3(x, y) and parameters {b3,i : i ∈ R}
so that θ3(x, b3,i) defines X ∩ϕ3(x, a3,i) for all i ∈ R. Hence the pair of
formulas θ2(x, y) and θ3(x, y) with respective sequences of parameters
{b2,i : i ∈ R} and {b3,i : i ∈ R} witnesses that X has burden 2. But
then X has dp-rank 2, a contradiction.
Consider ϕ1(x, y). By [4, Lemma 7.1] we may assume that this for-

mula is of the form given by Lemma 3.12, say

ϕ1(x, y) = ψ1(x, y) ∧
∧

i∈I

P (ti(x, y)) ∧
∧

j∈J

¬P (sj(x, y))

with ψ1(M, a1,0) open.
Suppose that {ψ1(x, a1,l) : l ∈ R} is consistent. Then by compactness

we may find an open interval V = (c, d) so that V is a subset of



TOPOLOGY OF DEFINALBE SETS IN OAGS OF BURDEN 2 27

ψ1(M, a1,l) for all l ∈ R. By shrinking V further we may also assume
by Fact 3.8(6) that all the terms ti(x, a1,l) and sj(x, a1,l) are given by
linear functions of the form λx + a on V . As M ↾ L is of dp-rank 2,
by [21, Theorem 4.16] we may find an open interval W ⊂ R so that
{a1,j : j ∈ W} is indiscernible over cd as a sequence in M ↾ L. For
notational convenience assume that W = R.
Fix κ ∈ ω such that {ϕ1(x, a1,l) : l ∈ R} is κ-inconsistent. By the

assumptions on the formula ϕ1(x, y) from Lemma 3.12 all the terms are
continuous, monotone, and non-constant on V and we have guaranteed
that they are also all linear on V . But then by Fact 3.10 we can
only have κ-inconsistency of {ϕ1(x, a1,l) : l ∈ R} if for some i ∈ I,
some j ∈ J , and some l1, l2 ∈ R, we have that ti(x, a1,l1) = sj(x, a1,l2)
densely often in some subinterval of V . As these functions are linear
over Q, it follows that ti(x, a1,l1) = sj(x, a1,l2) on all of V . Then by
indiscernibility of a1,l over cd (as an M ↾ L-sequence) it follows that
ti(x, a1,0) = sj(x, a1,0) on V . But this violates the properties of ϕ1

guaranteed by Lemma 3.12.
Thus it must be the case that {ψ1(x, a1,l) : l ∈ R} is inconsistent.

But the same holds for {ψk(x, ak,l) : l ∈ R} for k ∈ {2, 3}. Thus
ψk(x, y) for k ∈ {1, 2, 3} and ak,l for k ∈ {1, 2, 3} and l ∈ R is an
inp-pattern with three rows in M ↾ L which is impossible as M ↾ L
has dp-rank 2.

�

This example demonstrates that the results in Section 2 of this pa-
per are in some sense sharp. In particular notice that as indicated in
Theorem 2.26 the formula τ(x, y) := x ∈ P − y has the independence
property by the axioms for TG.
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