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ABSTRACT
Spoilers—critical plot information about works of fiction that
“spoil” a viewer’s enjoyment—have prompted elaborate con-
ventions on social media to allow readers to insulate them-
selves from spoilers. However, these solutions depend on the
conscientiousness and rigor of Internet posters and are thus
an imperfect system. We create an automatic alternative that
could alert users when a piece of text contains a spoiler. An
automated spoiler detector serves not only as an additional
protection against spoilers, but it also contributes to impor-
tant problems in computational linguistics. We develop a new
dataset of spoilers gathered from social media and create au-
tomatic classifiers using machine learning techniques. After
establishing baseline performance using lexical features, we
develop metadata-based features that substantially improve
performance on the spoiler detection task.

Author Keywords
Information Organization and Representation: supervised
learning, classification, feature engineering, social media

THE NEED FOR AUTOMATIC SPOILER DETECTION
“Spoilers” have the potential to kill the joy of an entertainment
experience: Darth Vader is Luke’s father. Andy Dufresne
escapes from Shawshank prison. Michael Corleone becomes
the next Godfather. Defined as essential information about
a work of fiction (e.g., a movie, television show, or book),
spoilers—if known—can decrease the audience’s anticipation
and excitement about the work, diminish enjoyment of the
work when consumed, or deter them from consuming the
media at all (Tsang and Yan, 2009). Pleasurable uncertainty
and curiosity about what will happen is replaced with mundane
knowledge (Wilson et al, 2005; Lowenstein, 1994).

Avoiding spoilers has become a common problem for social
media users who have not yet viewed or read about the plot
twist. Because fans enjoy talking about these works (especially
on social media), we shield others who have not yet viewed
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or consumed the work. There is a perceived—if not actual—
harm to hearing spoilers before experiencing a work (Leavitt
and Christenfeld, 2011).

In the age of the “second screen”—when users tweet, post, or
blog about television shows in real time—and where private
Netflix viewings replace “appointment television” and syn-
chronized cinema first releases, elaborate mechanisms have
evolved to protect viewers from spoilers. IMDb explicitly
defines spoilers and its message boards etiquette states “If
your message includes a spoiler you must announce it in the
subject of your post” (Amazon.com, 2013). Failure to follow
this policy can result in loss of posting privileges and deletion
of posts. Similarly, users who post to the websites Rotten
Tomatoes and Reddit include “Spoiler” in the subjects of their
posts. Lostpedia, a wiki for the television show Lost, adopted
an extensive spoiler policy, banning spoilers from all portions
of the wiki (articles, talk pages, user pages, theory pages, user
blogs, and comments). Images from upcoming episodes are
banned, and even official press releases and podcast transcripts
that could potentially contain spoilers are marked with a bright
red template.

Beyond specific sites adopting policies regarding spoilers, oth-
ers have weighed in on the issue. Some authors and bloggers
have proposed statutes of limitations on sensitivity to spoilers.
More broadly, many good Internet citizens have developed
a personal convention of issuing “spoiler alerts” to protect
others.

But despite these rich conventions, spoilers remain a real prob-
lem in online conversations. In part, this is because social
motivations might run counter to the conventions of spoiler
alerts. Additionally, the technological context of online in-
teraction often removes the ability of recipients to protect
themselves from spoilers. We discuss both of these aspects of
spoilers below.

First, the motivations of posters in social media. Not all users
of social media are conscientious or sensitive. In particular,
users’ motivations (Sanders, 1987) might be at odds with the
conventions that have led to spoiler alerts. They may wish
to influence others’ reactions, manage interpersonal relation-
ships, or establish self-image. Participants in communica-
tive exchanges thus may have different, conflicting motiva-
tions (Tracy, 2001). While sharing one’s knowledge and ex-
periences regarding a creative work through writing a review
on social media can be characterized as informational gift
giving, which is associated with motives such as altruism and



reciprocity, less altruistic exchanges can feature attempts to
achieve greater status (Lampel and Bhalla, 2007), commonly
by displaying superior knowledge. The latter in particular may
clash with the review reader’s goals and motivations to learn
enough about a movie to decide whether to see it, without
being exposed to spoilers.

The motivations of social media users then interact with
the technological context. Social media distorts the tradi-
tional conventions of discourse. Because social media are
technologically-mediated, traditional techniques to ward off
spoilers are unavailable—a recipient cannot interrupt a partner
to say, “wait, I haven’t seen that yet”. Instead, new mecha-
nisms (Herring, 2013) must protect personal and social goals.

The goal of our work is to add these new interaction mech-
anisms to improve users’ interactions online by providing
automatic methods to detect text that is a spoiler. Identifying
potential spoilers adds to the human repertoire of response
in social media, preserving the ability to shape the nature of
interaction in an asynchronous context.

In the remainder of the paper, we review existing approaches
for detecting spoilers and show how detecting spoilers fits
within the larger computational linguistics research area. We
then describe our new dataset that allows us to discover clas-
sifiers that detect spoilers. This dataset was assembled from
a large wiki site devoted to popular culture, TV Tropes. We
next develop machine learning algorithms that generalize from
examples of spoilers to new spoilers from media that the algo-
rithm has never seen before.

We show that simple metadata about the work in question can
dramatically improve the performance of the spoiler detection
algorithms. We conclude the paper with error analysis and a
discussion of applications and extensions.

TRANSITIVITY, NARRATIVE, AND SPOILERS
Previous work has looked at automatically detecting spoil-
ers. Guo and Ramakrishnan (2010) used manual annotation
and supervised classification to detect spoilers in movie sum-
maries. In contrast, our classifiers are trained on large, diverse
data created by many heterogeneous, untrained annotators
collaboratively building an online resource.

Other work has taken a more heuristic approach and focused
on high-recall solutions. Golbeck (2012) created a “Twit-
ter Mute” button that used a knowledge resource to discover
terms related to a topic of interest and then intercept relevant
messages.

More broadly, the problem of detecting “spoiler” text is con-
nected to core problems in linguistics and natural language
processing: Transitivity and narrative. We first discuss Transi-
tivity (Hopper and Thompson, 1980),1 a property of a clause
measuring how impactful, deliberate and complete the action
it describes is. An action like “kill” is far more Transitive

1Following convention in linguistics, we write the Hopper and
Thompson definition of Transitivity with a capital letter. This is
to distinguish grammatical transitivity (whether a verb takes a direct
object or not) with the more general Transitivity we describe here.

than an action like “think” would be. “Kill” is kinetic, com-
pleted, volitional, done with agency, real (not imagined), and
powerfully affects its object. An action like “think” is far less
Transitive. People you think about may not know you are
thinking about them; they are not affected by your thinking
about them; your thinking about them may not have a clear
starting point and stopping point, and you may not have made
a conscious decision to think about them. A central component
of spoilers is that they are inherently Transitive. Transitive
actions advance the narrative, causally linking actors, actions,
and outcomes in recognizable schemata (Schank and Abelson,
1977).

While there have been attempts to automatically detect Transi-
tivity (Greene and Resnik, 2009; Madnani et al, 2010), these
techniques have faltered because of a lack of extensive train-
ing data for traditional machine learning techniques. Machine
learning approaches typically require large amounts of an-
notated data to be successful (Halevy et al, 2009), which is
difficult to obtain for such a niche linguistic concept. However,
the ubiquity of spoilers and the explicit annotation of spoilers
in social media (e.g., users providing a “spoiler alert”) allows
researchers to build larger datasets to capture this linguistic
phenomenon.

Another key concept from natural language processing that
is connected to spoilers is automatic narrative detection. A
spoiler is, by definition, an event that is later than the viewer’s
knowledge of the current work. Thus, spoiler detection de-
pends on discovering which sentences refer to later events.
While supervised (Bethard et al, 2012) and unsupervised sys-
tems (Chambers and Jurafsky, 2011) have shown promise for
extracting narrative events, such techniques have again suffer
from a paucity of data.

CROWDSOURCED SPOILER ANNOTATION
What sets our approach apart is that, rather than relying on
manual annotation (Guo and Ramakrishnan, 2010) or naı̈ve
wordlists (Golbeck, 2012), we rely on the insights of thousands
of web users to generate examples of spoilers from the web
site TV Tropes.

The name of the site TV Tropes comes from “tropes”, from
the Greek word for “turn”, that characterize the common plot
twists, character types, or recurring narrative structures that
recur in many works of fiction. The goal of TV Tropes is
to define a set of common tropes (e.g., (“There’s No Place
Like Home”, “Delayed Explosion”) and meticulously assign
examples from film, books, video games, and other media to
each trope. For example, the trope “There’s No Place Like
Home” references the film The Wizard of Oz, from which the
trope is named. In addition, the that trope page also includes
examples of the trope from other works, such as the novel
Alice in Wonderland, the film Back to the Future, and the
television show Gilligan’s Island.

Because TV Tropes focuses on describing the plots of works
of fiction, it has developed an ingenious system to allow users
to browse the site while protecting themselves from spoilers.
When users browse the site, spoilers are covered by an opaque
box. These annotations are added to the site by the users



who curate the user-generated content. While not directly
comparable to academic annotation protocols, TV Tropes has
developed a comprehensive system to define what a spoiler is.
The site defines spoilers as:2

• Important: only important plot developments warrant be-
ing declared a spoiler,
• Fictional: events that are a part of “real” history are not a

spoiler, and
• Not Universally Known: mythology, religion, and out-

of-copyright works (e.g., Shakespeare and Goethe) are as-
sumed to be known by any literate reader.

TV Tropes divides its pages into two main types: trope pages
and work pages. Trope pages serve as a concordance of all
of the examples of a particular trope (e.g., “There’s No Place
Like Home”, mentioned above). Work pages go in the other
direction; they list all of the tropes that appear in a single work.
We focus on the latter, as spoilers are applied more uniformly
within work pages (some tropes particularly associated with
spoilers—Death, Love, Betrayal, and Twist Endings—are pop-
ulated almost entirely by spoilers, so TV Tropes has elected
not to hide spoilers on those trope pages).

The content of TV Tropes is shared under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 license.3

SUPERVISED CLASSIFIERS FOR DETECTING SPOILERS
As mentioned above, we focus on works pages that list, for a
given work of fiction, the tropes contained in that work. We
collect all of the pages associated with a single television show
and then extract individual entries—examples of an instance
of a trope within that television show. Some of these entries
are marked as containing a spoiler.

Spoilers are marked in TV Tropes pages by enclosing a sub-
string of an entry in a HTML span tag that marks words that
should be hidden to prevent a reader from being spoiled. These
annotations can conceal entire sentences, single words, or
phrases. The following are examples of entries from the work
page associated with the U.S. television show The Office, with
spoilers underlined:

• When it comes up that his girlfriend Katy was a high school
cheerleader, he briefly doesn’t believe it and overall seems
to see it as a negative, in preference to Pam the “art geek”.
He dumps her near the end of the episode.
• Dwight, who manages a one night stand with one of Pam’s

friends at her and Jim’s wedding and handles it with a level
of expertise that suggests experience . . .
• Partway through Season 7, Holly realizes her relationship

with AJ isn’t going to work out and she gets together with
Michael. The two are Put on a Bus after getting engaged.

What is marked as a spoiler emerges over time. If the first au-
thor of an entry is overzealous or too conservative in marking
spoilers, subsequent users will edit the post until a consensus
2We summarize their definitions here, but the full policy
is available at http://tvtropes.org/pmwiki/pmwiki.php/
Main/HandlingSpoilers
3Our dataset available from http://umiacs.umd.edu/˜jbg/
downloads/spoilers.tar.gz.

annotation is achieved. Because users do not always agree on
exact spans that should be marked as a spoiler, we focus on
identifying sentences that contain a spoiler.

We then remove all of the entries associated with a show
that are not a well-formed sentence. While this is a difficult
problem, we found that applying a part of speech tagger (Bird
et al, 2009) to an entry and removing any entry that did not
have a word tagged as a verb resulted in a relatively effective
first-pass filter to ensure that each entry has an associated verb.

We pause for a moment to consider how removing these sen-
tences would affect our goal of building an automatic spoiler
detector for use in social media. First, it is unreasonable to
assume that all social media posts will be complete sentences.
However, the same properties of non-sentences that frustrate
our automatic methods also mean that these spoilers are often
inscrutable without additional context. While “Stay-Puft” is
indeed a spoiler for the film Ghostbusters, without additional
context it’s a fairly benign spoiler.

Creating a Balanced Dataset
Thus, we consider any sentence that has any overlap with
a spoiler to contain a spoiler tag. This results in nearly 10
thousand spoilers. We randomly select an equal number of
non-spoiler sentences to create a balanced dataset (an equal
number of spoiler and non-spoiler sentences). We then di-
vide these sentences into training (70%), test (10%), and two
development sets (10% each) (Resnik and Lin, 2010).

Sentences are allocated to folds such that a single work only
appears within a single fold. Thus, no sentences from Doctor
Who will appear in both the training and test split. Sentences
from a work only appear in a single fold. This forces our tech-
nique to generalize across works and not learn—for example—
proper nouns associated with spoilers within a single work.

We balance the data in this way to prevent classifiers from
learning that nothing is a spoiler (as most statements are
not). This allows us to balance precision and recall, and pro-
vides convenient random guessing for subsequent experiments
(guessing a single class would get 50% accuracy).

Data Representation and Classifier
Our goal is to take examples of spoilers and from those exam-
ples create a system that can determine, given a new example
sentence, whether it is a spoiler or not. This is a text classi-
fication task. Text classification as an approach dates to the
1960s (Maron, 1961), and machine learning techniques pro-
vide the mathematical foundation for effective automatic text
classification. In contexts where the quantities of text to be
classified are large, the requisite response time is short, or
the cost and availability of human raters prohibit a manual ap-
proach, machine learning techniques are the only cost-effective
solution (Sebastiani and Ricerche, 2002). We train a classifier
that, given a representation of a document x can produce a
prediction f(x) which is either “spoiler” or “not spoiler”. If
we had such a system, a user could use this preprocessing
technique to filter their social media stream. Like a spam filter,
our spoiler filter could detect sentences likely to detract from
a user’s enjoyment.



This results in two questions: how do we represent a can-
didate sentence x, and how do we learn the function f that
tells us whether a sentence is a spoiler or not? We represent
sentences as a point in a d-dimensional vector space and learn
our function f as a support vector machine (Joachims, 1999,
SVM).

Each example xn is represented as a vector with d-dimensions
(one dimension for each feature). Each dimension is associated
with a real number xd,i that represents how much that example
is associated with that feature. We will develop many of these
features in subsequent sections, but for the moment we focus
on the ubiquitous unigram feature, which encodes how often
a word type appears in a document. Each dimension i of our
example vector xn is

xd,i =

{
count(d, i) if wordi in sentence d
0 otherwise,

(1)

where count(d, i) is the number of times word i appears in
the dth document. We then normalize each vector to ensure
that we are not affected by the number of words in a sentence
and to ensure convergence of the methods used to discover
classifier. We create a new normalized feature vector for each
sentence,

ẋd ≡
xd
||xd||2

, (2)

which divides each dimension by the length of the original
vector; features with a value of zero are left unchanged. Thus,
if an example only contains the words “he” and “died”, the
vector would have two entries that were non-zero (“he” and
“died”) both with weight around 0.71 (because the length of
the original vector, ||xd||, was

√
2).

We then use examples, represented as in Equation 2, to train
a linear-kernel SVM (Ben-Hur and Weston, 2009). This pro-
duces a function f that can take an arbitrary sentence (en-
coded into the same vector space, as in Equation 2) and output
whether the sentence is a spoiler or not.

In practice, additional parameters must be set during SVM
classification. These include the cost parameter and the num-
ber of active features to use during recursive feature elimina-
tion (Guyon et al, 2002). We select these parameters using grid
search on development data (for each feature set) and apply
those values to the final classifier. All numbers are reported
on the test dataset.

In the next sections, we describe the features needed to learn
effective classifiers.

BASELINE FEATURES
The most straightforward features we can extract are the words
present in the sentence. We tokenize the sentences (Kiss and
Strunk, 2006) to extract word tokens and remove words found
in an English stoplist (Bird et al, 2009).

We consider three types of baseline features, which use only
the information available in the sentences:

• unigram uses only single word tokens from the original
sentence;

Unigram Bigram
show turns out
finale the end
killed the show
death end of
turns the season

s out that
season one episode

end at the
back he s

revealed to kill
dead that he
kill in the

Table 1: Most useful unigram and bigram features, sorted by
information gain.

Feature Set Number of Features Accuracy
Unigram 20,269 0.53

Stems 16,683 0.56
Bigrams 125,523 0.60

Table 2: Baseline classifiers trained on text alone. Bigram
features do better than either raw words or stemmed words.

• stem uses only single word tokens, but reduces each to-
ken to a stem (Porter, 1980) of each unigram (i.e., “runs”
becomes “run” and “quicker” becomes “quick”); and
• bigram uses all consecutive pairs of tokens from the orig-

inal sentence. This results in a much larger feature space,
but can capture important contextual information lost to the
“bag of words” model.

For both the unigram and bigram features, we show the most
useful features sorted by the information gain for each feature
in Table 1. The information gain of a feature is the difference
between the original label entropy (in this case over whether
a sentence has a spoiler S) minus conditional label entropy
given the value of a feature w,

IG(S,w) ≡ H(S)−H(S |w), (3)

where the entropy is

H(S) =
∑

v∈S

p(S = v) lg p(S = v), (4)

summed over the event space of the spoiler random variable—
in this case the presence or absence of a spoiler. If seeing a
feature allows you to be more certain whether a sentence is a
spoiler or not, it will have a larger information gain (Quinlan,
1986).

For both the unigrams and bigrams, we see two common pat-
terns in the useful features. Both highly transitive verbs “kill”,
“revealed”, “to kill” and temporal expressions are common
(“the end”, “in the season”, “end of”). Both are evidence
of the strong connection between spoiler detection and the
computational linguistics tasks discussed earlier: temporal
ordering and detecting the Transitivity of verb expressions.



To evaluate the classifier, we take a classifier trained on the
“training” fold and present it examples from the “test” fold.
We present accuracy as the fraction of sentences classified as
spoiler or not a spoiler. The higher this number, the better. The
classifiers trained using basic feature sets are only marginally
better than the most-frequent-class baseline; a classifier that
always said that a sentence was not a spoiler would only have
an accuracy of 0.5 (recall that we balanced the dataset during
preprocessing).

Table 2 presents these results. Unigram features perform
slightly better than the baseline, with an accuracy of 0.53.
Stemming the words allows the classifier to generalize from
the sparse training data, improving performance to 0.56. How-
ever, more information is available in bigram features, which
improves the performance to 0.60.

The unigram features are able to capture many of the Transitive
properties we expect spoilers to contain. Words like “kill” and
“death” imply an irrevocable change of state, a hallmark of
highly Transitive constructions. Unigram features are able
to capture these properties, learning which events should be
hidden behind a spoiler alert. Stemming unigrams improves
performance by clustering different forms of verbs such as
“killing”, “kills”, and “killed” into a single feature, “kill”,
which is easier for the classifier to represent.

In contrast, bigram features allow the system to discover more
of the temporal aspects of the dataset. This includes both
relative time markers such as “end of” and “the end” and
absolute markers such as “one episode” and “the season”.
By adding bigram features, we are able to further improve
the classifier’s ability to recognize when a sentence refers to
something later in a work’s chronology.

FEATURES FOR DETECTING SPOILERS
In contrast to previous approaches that focused on lexical
features, additional metadata can dramatically improve a clas-
sifier prediction of whether a sentence is a spoiler or not. In
this section, we describe features that improved our ability to
detect whether a sentence is a spoiler.

Obtaining this information required us to match entries in the
TV Tropes dataset. We did this by matching television show
names with two additional resources: Episode Guides and the
Internet Movie Database.

Episode Guides4 is an Internet clearing house for the airdates
of television shows. It combines information from public
listings, contributor information, and other websites to create a
comprehensive listing of when shows aired. The authors make
their assembled information freely available to interested users.
Episode Guides provides us with our first air date, country of
origin, and length features.

The Internet Movie Database5 (henceforth IMDb) contains
information on the individuals associated with works of media.
Previous research has used IMDb’s data to explore sentiment
analysis (Pang and Lee, 2004) and deanonymization (Brickell

4http://epguides.com
5http://imdb.com

and Shmatikov, 2008). While IMDb contains a wealth of data,
we focus on the IMDb’s classification of media into genres.

Because we have used the show names to look up these meta-
data, an important question is whether this is a realistic as-
sumption for our envisioned applications. This is a problem,
because if we have a sentence but do not know what show it
is talking about, we cannot use these metadata features. We
leave these issues for future work, as determining the asso-
ciated show is traditional topic classification, a well-studied
problem computational linguistics and natural language pro-
cessing. Moreover, in many contexts the topic / show is known
(e.g., on a board dedicated to a particular show) or can be more
easily determined from wider contexts (e.g., it is easy to know
if a whole conversation is about The Walking Dead, but the
spoiler classification must be done sentence-by-sentence.

While the previous section’s features were discrete, many of
the features presented in this section are continuous. Rather
than being present or absent (e.g., whether a word is in a
document or not), these features are associated with a real
number. To ensure the magnitude of these new features do not
overwhelm existing features, we rescale a continuous feature i
for observation n as a z-score

zn,i =
xn,i − µi

σi
, (5)

where µi is the average value of this feature (across all obser-
vations) and σi is the standard deviation of this feature (again,
across all observations). For example, if the average length of
shows is forty minutes and the standard deviation is twenty
minutes, a sixty minute show will have a z-score of 1.0 and a
twenty minute show will be −1.0.

This also has the added advantage of making the average value
of a feature zero. For any work for which we lack a feature, we
represent that feature value of zero and set a “feature missing”
feature indicator to be 1.0. Thus, the classifier recovers grace-
fully when the feature is missing (e.g., if we do not know
how long a given show is, we pretend that it is the average
length—forty-four minutes).

Genre
Media are often sorted by genre; IMDb categorizes every
movie and television show into a set of overlapping categories.
This can be a reflection of the target audience (“Family” or
“Adult”), the subject (“Crime” or “Sci-Fi”), or the way the
subject is presented (“Comedy” or “Short”).

Table 3 shows the information gain when IMDb genre cat-
egories are incorporated as binary features into a sentence’s
feature vector. We set a feature for a document n to be 1.0 if
and only if the show associated with the sentence is classified
by IMDb as having that genre (afterward, feature vectors are
normalized via Equation 2).

Length
The length of a work serves as a useful indicator of whether it
is likely to have a spoiler. As seen in Figure 1a, longer works
are more likely to have a spoiler than shorter works. This
is a function both of format and genre. First, length is often



Genre Spoilers
outside genre

Spoilers
inside genre

Information
Gain

Mystery 0.46 0.69 0.03
Drama 0.43 0.62 0.03
Thriller 0.47 0.67 0.02
Crime 0.49 0.66 0.02
Short 0.49 0.61 0.01
Sci-Fi 0.50 0.64 0.01

Comedy 0.57 0.47 0.01
Action 0.50 0.60 0.01
Family 0.54 0.45 0.01

Table 3: The usefulness of genre features at predicting whether
a sentence discussing a show contains a spoiler or not. The col-
umn “spoilers outside genre” gives the proportion of sentences
with spoilers given that they are labeled as not being associ-
ated with a genre (by row). The column “spoilers inside genre”
gives the same quantity for sentences labeled with that genre.
Recall that the dataset average is 0.5. Some genres are more
likely to have spoilers (“mystery”) than others (“family”).

correlated with genre; comedies are more likely to be thirty
minutes, while dramas are more likely to be one hour.

However, the format on its own is also critical. Longer shows
are more likely to be plot-centric, increasing the probability of
spoilers.

First Aired
Because TV Tropes concerns all media, not just recent pro-
ductions, there is a diverse range of works discussed on the
site. If the algorithm knows when the work was created, it can
better replicate the collective decision about which sentences
are spoilers or not.

Figure 1b shows the relationship between the distribution over
air date for sentences without spoilers and those with spoilers.
More recent shows are more likely to have spoilers. This is
because users are more careful about labeling these spoilers
but also because of a shift from comedy to more spoiler-heavy
genres.

Other Features
In addition to these features, we also added features based on

• Country We thought that the nation of origin might help
determine if a work was likely to have a spoiler or not.
However, this was the least useful feature we added.
• Episodes The number of episodes in a television series

helped the algorithm distinguish long-running series from
shorter ones. Longer series are likely to have a richer
mythology and thus have spoilers.

The results of adding each of these features individually to a
feature set containing both stemmed unigrams and unstemmed
bigrams (Table 4). All of these features were individually able
to raise baseline performance. Many of these features seem
to be similar, as each individually improve accuracy by about
the same amount. This is often reasonable, as the length of a
television show is correlated with the genre of the television
show.

Feature Set Additional
Features

Accuracy

All Features 20 0.67
Length 1, cont 0.64
Genre 13 0.64

Episodes 1, cont 0.64
First Aired 1, cont 0.64

Country 4 0.61
Baseline 0 0.60

(unigram and bigram)

Table 4: Performance of classifiers compared to baseline per-
formance of classifier with text features only. All of the new
features improve performance, although length, genre, the
number of episodes, and the date of first airing do best. For
discrete features, the number of levels (and thus number of
features) is given. For continuous features, only one feature is
added. When all features, accuracy rises to 0.67.

However, by combining all of the features together into a
single classifier, we improve accuracy to 0.67, higher than any
of the features individually. This shows that while some of the
information contained in the features is complementary, not
all of the information is. For example, while you can tell a
show is more likely to be a genre based on its run time, more
recent works are more likely to have a higher concentration of
spoilers.

ERROR ANALYSIS
Our classifier with additional features is better than a baseline
model but still makes errors. This section analyzes those
errors to explain what the system is doing, what features might
improve performance further, and the intrinsic difficulty of
detecting spoilers.

Distracted by Murder
Hell, pretty much the only villain there’s no Foe Yay
with is Annie’s murderer Owen, which is ironic, as he
was her fiancee.

It is understandable why our system might label this sentence
as a spoiler. The prediction is grounded in both Transitive
text-based features (“murderer”) and metadata features such
as genres (Drama, Thriller), length, and country. However,
this sentence is not a spoiler for two reasons: Annie’s murder
happens before the timeline of the work (in this case, the
UK series Being Human), and this entry is focused on the
relationship, not the actual murder.

The character Annie is a ghost, so her murder is not a sur-
prise. It is part of the premise of the show. Because many
recent shows have supernatural elements, it may be useful
to distinguish “true death” from “fantasy death”; this could
be accomplished by using kernel functions to allow implicit
feature products.

Beyond this timeline issue, the focus is not on her death.
The focus is on “Foe Yay”, a trope meaning sexual—often
homoerotic—tension between characters who are bitter ene-
mies. The existence or lack of such tension would be unlikely
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Figure 1: For show length (left), entries about longer shows (particularly hour-long) are more likely to contain spoilers than short
format shows. Some of this can be explained by genre (sitcoms are more likely to be thirty minutes long); however, hour-long
formats are more likely to involve spoilers even within a genre. For when the show first aired (right), more recent shows are more
likely to be tagged with spoilers. There are multiple reasons this could be the case. Newer shows have pages that are more carefully
curated; there has been an upsurge in epic, arc-centered dramas; and entries about older shows are more likely to be considered
“common knowledge”. (Media produced before 1980 are in the dataset but excluded in this plot because of low frequency.)

to constitute a spoiler. A classifier able to leverage trope infor-
mation contained within sentence text might correctly predict
this sentence.

We have thus far ignored trope-based information because
tropes are an idiosyncratic property of TV Tropes; outside of
this setting, it’s unlikely that individuals would use the same
trope-laden lexicon to describe works of fiction. While we
might be able to improve performance on this dataset, it would
unlikely generalize to social media in general.

Low-Transitivity Syntax
Sam’s confrontation with his father is much darker
than in the British version.

Our classifier incorrectly predicted this sentence was a spoiler
because of lexical features (primarily “confrontation” and “fa-
ther”; family relationships are often a part of spoilers). There
was no metadata available for the show associated with the
sentence. In the absence of that information we must rely
on features derived from content. Our discussion of Transi-
tivity pointed out that indicators of Transitive action (kinetic,
completed, volitional, done with agency, real (not imaginary),
and affecting an object) correlate with spoilers. Syntactic
constructs such as comparatives (e.g., “is darker than”) lack
many of these properties. Additional features recognizing low-
Transitivity constructions such as predicate adjectives could
improve the model.

Figurative Language
Then his mother finally points out the elephant in the
room.

This sentence is not classified as a spoiler by our system, in
contradiction to human judgment. This sentence might ap-
pear to have been mistagged by a human annotator, in that
referring to an “elephant in the room” appears to effectively

conceal the plot rather than spoil it. However, in this episode,
a ceramic statue of an elephant actually is in the room, and
becomes a point of controversy. This is clear in the larger
context, but cannot be understood from a single sentence. Our
classifier operates at the sentence level and cannot predict
this. Collocations, metaphorical language, and limited context
are long-standing natural language processing problems (Fell-
baum, 2007; Geyken and Boyd-Graber, 2003).

Annotator Error
Eleanor gets Simon to seduce Abigail in order to
learn the King’s secrets.

Our classifier classifies this sentence as a spoiler, though it is
not annotated as a spoiler in TV Tropes. We assert that the
classifier was correct, and the crowdsourcing efforts of TV
Tropes, though extensive, have not yet thoroughly reviewed
this statement. While crowdsourced ground truth data has
many strengths, it may be less accurate than ground truth
judgments made by trained annotators applying a standard,
well-defined protocol. In TV Tropes, raters affirmatively an-
notate spoilers, but do not explicitly label non-spoilers. Thus
the occasional unrated statement cannot be distinguished from
a non-spoiler.

CONCLUSION
This work approached the problem of detecting “spoilers” in
social media. We produced a new dataset of spoilers and use
these data to contribute to the problem of spoiler detection, a
fun task connected with more serious computational linguistics
tasks such as detecting Transitivity and recovering temporal
relations from text. This work also develops features than can
effectively discriminate spoilers from non-spoilers in natural
text.

The connection of spoilers to deeper linguistic tasks is im-
portant. Many of these related tasks have faltered because



of the lack of effective training data. By connecting these
fundamental tasks to individuals’ interactions on social media
that they already self-annotate, we allow big data techniques
to be harnessed for what had been restricted to the realm of
“armchair linguists”.

Our features improved over text-only baselines, but we expect
that additional features would further improve the ability of
automatic classifiers to detect spoilers. Previous research has
shown that topic models (Blei et al, 2003) provide useful
features, as do syntactic features (Guo and Ramakrishnan,
2010). While our genre features serve as a proxy for topics,
other properties of a work—sub-genre and “weighting” works
that straddle multiple genres—might be better captured by
topic models. Moreover, detecting writers’ sentiment (Pang
and Lee, 2008) may also improve the algorithm’s performance.

One limitation of our work is we assume that we know which
work is being discussed. In a longer discussion or document,
it is relatively easy to determine which work is being dis-
cussed; even without machine learning algorithms, matching
proper nouns is a reasonable heuristic. However, a real-world
system would need to determine how errors on this easier
pre-processing step (identifying a work) affects the more com-
plicated downstream task (determining whether a sentence is
a spoiler).

We also hope to investigate the interface implications of inte-
grating spoiler detection in a user’s online experience. How
aggressive should the algorithm be, and what are effective
strategies for alerting users of potential spoilers and allowing
them to continue to see the message once they understand
the risk? Together with effective automatic classification tech-
niques, these can make spoiler alerts more consistent and more
effective as users obtain information from the web and social
media. Further, if we consider both author and reader in a
social media context to be engaged in communication, how
best can we provide feedback to the author of the spoiler in
order to constructively advance dialog? Our work, based in
the seemingly lighthearted task of identifying spoilers, offers
new mechanisms to enrich social media interactions.
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