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Abstract. With the rapid development of information and communi-
cation technologies (ICT), the conventional electrical grid is evolving
towards an intelligent smart grid. Due to the complexity, how to protect
the security of smart grid environments still remains a practical chal-
lenge. Currently, collaborative intrusion detection systems (CIDSs) are
one important solution to help identify various security threats, through
allowing various IDS nodes to exchange data and information. However,
with the increasing adoption of ICT in smart grid, cloud computing is
often deployed in order to reduce the storage burden locally. However,
due to the distance between grid and cloud, it is critical for smart grid
to ensure the timely response to any accidents. In this work, we review
existing collaborative detection mechanisms and introduce a fog-based
CIDS framework to enhance the detection efficiency. The results show
that our approach can improved the detection efficiency by around 21%
to 45% based on the concrete attacking scenarios.

Keywords: Intrusion Detection, Smart Grid, Collaborative Environ-
ment, Fog Computing, Security and Trust, Time Efficiency.

1 Introduction

Conventional electrical grid is mainly used to transport electrical energy from a
central power plant to many end-users by adjusting the voltage level. With the
rapid growth in grid size, scale and complexity, there is an increasing need for a
Smart Grid (SG), which constitutes a technological evolution through involving
information and communication technologies (ICT), with the purpose of offering
better capabilities in terms of reliability, efficiency and security [5], i.e., 1) it can
enhance the robustness of power transmission; 2) improve the efficiency of power
distribution; 3) save budgets for electric utilities; 4) and reduce Greenhouse Gas
(GHG) and other gas emissions.

With the increased intelligence achieved by adopting ICT, Smart Grid also
expects to improve the system’s response capability under emergency. As such,
it is often composed of an electric network, a digital control appliance, and an
intelligent monitoring system. However, due to the distributed computing com-
ponents in grids interoperation, SG may face many cyber security threats. For
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example, the US gas pipeline was reported to be targeted by cyber attacker-
s, where the electronic data interchange (EDI) services were affected [6]. For a
concrete example, in Georgia USA, the Edwin I nuclear power plant was forced
to make an emergency shutdown as long as 48 hours for the sake of a soft-
ware update. This update patched the computer system but caused a lack of
monitoring information, resulting in an automatic shutdown [7]. Currently, the
security breaches target primarily on the aspects of confidentiality, integrity and
availability in SG.

To protect a smart grid environment, intrusion detection systems (IDSs)
are one basic and important security tool. Based on the detection methods, an
IDS can be categorized into either rule-based detection or anomaly-based de-
tection [36]. The former detects a potential attack by comparing the current
events with its stored rules (or signatures), which contain a set of features of
a (known) particular attack. The latter identifies a malicious event according
to the pre-defined normal profile. While the conventional detector has no infor-
mation about its protected environment in practice, it cannot identify complex
and advanced threats [26]. For this sake, distributed / collaborative intrusion
detection systems (DIDSs / CIDSs) are developed attempting to improve the
detection performance via information exchange, i.e., obtaining more accurate
result via alert aggregation.

Based on this idea, many IDS schemes are developed in the literature, by
using key management, encryption, authentication, security protocol, and so
on [35]. For instance, Patel et al. [33] introduced a collaborative intrusion detec-
tion and prevention system to safeguard SG with a fully distributed management
structure. Liu et al. [13] designed a CIDS to identify false data injection attacks
on the advanced metering infrastructure (AMI). These proposed mechanisms
have shown promising performance; however, with the increasing size and scale
of SG, real-time detection has become more difficult, i.e., some delay might be
caused by exchanging information with controllers or cloud servers. Focused on
this issue, in this work, we revise a CIDS framework using fog devices that can
help improve the time efficiency of detection. In the literature, there exist few
studies discussing the use of fog computing in SG. The contributions can be
summarized as below.

– We propose a fog-based CIDS framework to help reduce the latency caused
by the distance between SG and cloud. The fog devices can provide the
capability of making decisions nearby the IDS node.

– In the evaluation, we simulate a smart grid environment and investigate our
framework under both internal and external attacks. The results show that
our framework can greatly improve the time efficiency of detection.

Organization. Section 2 reviews related research studies on the application
of intrusion detection in smart grid. Section 3 introduces the background of
smart grid and DIDS / CIDS. Section 4 details our proposed fog-based CIDS
framework that uses fog devices to help enhance the efficiency of detection in
SG. Section 5 shows an evaluation to explore the performance of our approach
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and to validate its effectiveness under both internal and external attacks. Some
open challenges are discussed in Section 6. We conclude the work in Section 7.

2 Related Work

The public research of applying intrusion detection to SG started roughly from
2009. Klump and Kwiatkowski [12] noticed that it is very important to share the
information about cyber risks within the smart grid communications infrastruc-
ture, and introduced an IDS mechanism, which was inspired by the federated
model, to share the information regarding cyber security risks among smart
grid stakeholders, with the purpose of enabling better attack identification and
mitigation. Zhang et al. [40] developed a distributed intrusion detection system
for smart grids (named SGDIDS) to detect malicious traffic under the power
grid network, which consisted of an intelligent module and an analyzing mod-
ule (AM). To protect multiple layers of SG, multiple AMs can be deployed at
each level that utilize the support vector machine (SVM) and artificial immune
system (AIS) for detection of possible cyber threats.

Mitchell and Chen [29] then proposed a behavior-rule based intrusion de-
tection system (BRIDS) to help safeguard the critical smart grid applications.
They showed that BRIDS could trade false rates according to the requirements,
i.e., the detection accuracy is below 6% for random attackers. Lo and Ansari [14]
studied false data injection for smart meters and designed a combination sum
of energy profiles (CONSUMER) attack, in which intruders can read a lower
energy consumption. They further gave a hybrid detection framework to detect
anomalous and malicious activities. Pan et al. [32] introduced a systematic ap-
proach to automatically build a hybrid IDS to learn patterns from a fusion of
synchrophasor measurement data, and power system audit logs for power sys-
tem. Faisal et al. [8] focused on AMI system and introduced an IDS architecture
to monitor smart meter, data concentrator, and AMI headend. They also inves-
tigated the feasibility of three data mining algorithms. Genge et al. [10] studied
how to design an IDS for smart grid, and they proposed a heuristic approach to
decrease the computation time using the column-generation model.

Jokar and Leung [11] introduced HANIDPS, which adopted a model-based
intrusion detection mechanism with Q-learning to detect various attacks. Lu et
al. [21] targeted on microgrids and provided a model-based anomaly detection
and localization strategies to help identify threats in microgrids. Molzahn and
Wang [31] introduced an algorithm to extract features and identify attacks by
optimizing power flow issues. They also used simulated cases to validate the de-
tection performance. Li et al. [15, 18] proposed a concept of intrusion sensitivity
based on the observation that personalized IDS nodes may provide differen-
t levels of sensitivity in detecting particular intrusions. They then introduced
an intrusion sensitivity-based trust management model for CIDNs by assigning
the value in an automatic way [16]. They also studied how to apply intrusion
sensitivity for aggregating alarms and defending against pollution attacks, in
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which a group of malicious peers collaborate together by providing false alarm
rankings [17]. Other similar work can refer to [1, 13, 30, 33, 35, 38, 39].

Currently, with the increase in grid size and scale, SG needs more resources
than traditional electronic grid. Due to this, many approaches start using cloud
computing to enhance the performance. A cloud can be used to deliver the on-
demand computing power, storage and applications. Hasan and Mouftah [34]
identified that smart meters would be one major target by cyber criminals, and
a proper solution should balance many factors such as costs, system complexity,
and response time. Based on this idea, they designed a cloud-centric collabora-
tive security service architecture for protecting SG, especially the AMI traffic.
They also introduced a placement scheme that develops a quadratic assignmen-
t problem in order to reduce latency. Anderson et al. [2] focused on the wide
area monitoring and control, and found it is difficult to share data in a secure,
scalable and cost-effective way. They proposed GridCloud, which is an open-
source platform for real-time data collection and sharing in SG. This platform
uses commercial cloud tools to reduce costs, adopts cryptographic methods to
protect sensitive data, and overcomes failures via software-based redundancy.

Cloud-based platform can ease the burden of computing resources and data
storage. However, in modern SG, with the size and scale complexity, communica-
tion delay is inevitable between the cloud and the deployed CIDS. The decision
latency in SG is extremely sensitive, i.e., a fire might be caused without timely
detection of malicious smart meters. Therefore, there is a need for designing a
mechanism to further enhance the performance of DIDS / CIDS in SG, especially
for AMI and SCADA systems.

3 Background

3.1 Smart Grid

As compared with the traditional electrical grid, SG is developed based on the
adoption of communication networking capabilities in order to improve the pro-
cess of data exchange and automated management in power systems. It is be-
lieved to provide much flexibility, resilience, scalability, cost-effectiveness and
sustainability. Figure 1 shows the high-level architecture of smart grids includ-
ing three main layers:

– Physical Power Layer. It contains the most important physical parts like
power generation, transmission, and distribution. The power generation is
mainly performed in power plants, and then power will be delivered from
the plants to substations, and finally, delivered from substations to the con-
sumers.

– Application Layer. It contains all the services provided to the customer-
s like automated metering. There are various entities including data cen-
ter, service provider, policy makers, regulation authorities, enterprises, and
household, etc.
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Fig. 1. An overview of Smart Grid architecture.

– Transport Control Layer. It contains some major parts to help control
how to transmit power. In modern SG, a high speed communication net-
work is usually implemented to ensure the data collection and to handle the
interaction and communication among various entities.

In SG, advanced metering infrastructure (AMI) and SCADA systems are very
critical. In particular, AMI offers all necessary operations for the bidirectional
data exchange between the main power distribution and the customers. It often
has three major components [35]: smart meters that are used to monitor the
power consumption, data collectors that are used to store relevant information,
and AMI headend that acts as a central point to handle the decision based on
the stored information. On the other hand, SCADA systems are responsible for
monitoring and handling the commands send or received by the logic controllers.

3.2 Collaborative Intrusion Detection

Traditionally, an IDS aims to identify any potential incidents in a computer sys-
tem or network. An intrusion can be regarded as any events that compromise
the pre-defined computer security policies, acceptable use policies, or standard
security practices [36]. Based on the deployed location, there could be different
types of IDSs such as network-based IDS, host-based IDS, and wireless-based ID-
S. When detecting a malicious event, an IDS can record the related information
and generate alerts to inform security managers.

While a conventional IDS has no information about its protected environ-
ment, making it hard to detect complicated and advanced attacks like distribut-
ed denial-of-service (DDoS) attack. To improve the detection performance, dis-
tributed / collaborative intrusion detection has been developed, which allows a
set of detectors exchanging required information [13, 19]. A typical example is
the exchange of alarms to decide whether there is a DoS attack.

Figure 2 depicts the typical architecture of collaborative intrusion detection
systems, in which IDS nodes can communicate with each other and exchange
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Fig. 2. The typical architecture of collaborative intrusion detection systems.

information. There are several key components in one node: collaboration com-
ponent, trust management component, IDS component with a detector, a rule
database and a normal profile, and P2P communication component.

– IDS component. This is the basic part that is responsible for detecting any
signs of intrusions by monitoring the computer systems or networks. Various
detection methods can be applied here like rule-based and anomaly-based
detection.

– Collaboration component. This is one main component, which aims to
assist a node to communicate with another node, i.e., requesting interested
information or sending back required data. To establish a trust management
mechanism against insider attacks, this component can also be used to send
or receive relevant information, like challenge-based CIDNs [18, 19, 27].

– Trust management component. Modern CIDSs often adopt such com-
ponent to defend against insider attacks, in which an insider malicious node
has much more resources than an external node to compromise the protected
systems or networks.

– P2P communication component. This part is used to keep connection
with nearby nodes and offer physical network organization and management.
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4 Our Proposed Fog-based CIDS Framework

For the sake of the increasing size of modern smart grid, real-time detection has
become much more difficult and critical. Targeted on this issue, in this work, we
introduce a fog-based CIDS framework that can further improve the detection
performance and reduce the latency caused by the large communication devices
and the significant amount of traffic. For instance, the computing burden of an
IDS would be at least linear to the size of an incoming payload [22].

The main idea is to use fog computing to reduce the detection delay. Techni-
cally, fog computing is relevant to cloud computing, which offers the computing
resources and various services to the edge of the network or system. In the lit-
erature, it is very close to the term of edge computing. It is believed that edge
computing focuses more on the things side, while fog computing puts more em-
phasis on the infrastructure side [3]. The main feature of fog computing is its
proximity to end users, the dense geographical distribution and mobility. For ex-
ample, fog services are performed nearby the network edge or event end devices,
aiming to reduce service latency and improve service quality. Any device with
computing, storage, and network connectivity can be a fog node [37].

The idea of using fog computing to improve CIDS in SG is not new, but there
are few studies on investigating its effectiveness. In the literature, Chekired et
al. [4] provided a hierarchical and distributed intrusion detection system (HD-
IDS), which adopted fog computing to secure three levels: home area network,
residential area network, and Fog operation center network. Their work focused
mainly on the detection of false data injection attack at AMI. Differently, our
work emphasizes more on how much detection efficiency of CIDSs could be
achieved under fog computing in a SG environment.

The framework is depicted in Figure 3, which involves the SG environment,
CIDS, Fog devices, and a cloud. On the whole, it can be roughly considered as
four layers.

– Cloud layer. This layer provides on-demand computing resources and ser-
vices, which can be acted as central station to help data storage and analysis.

– Fog layer. This layer offers the capability of making decisions nearby the
device (the edge of the computer networks), which is more efficient than
handling events at central cloud. This layer contains a set of fog devices that
provide computing resources and services. Data can be handled based on
geographical location without being delivered to the cloud layer.

– CIDS layer. This layer provides threat monitoring, detection, and diag-
nosis. To ensure the detection performance, an IDS node has to exchange
information with other nodes like alerts. Detection approaches could be rule-
based and anomaly-based. In SG, an IDS can be deployed at any nodes
that need protection. Various machine learning algorithms can be applied as
well [23–25].

– SG layer. This layer contains the major component of SG, from the power
generation to power transmission and distribution.
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Fig. 3. The typical architecture of collaborative intrusion detection systems.

In the era of IoT, the data volumes could be large, and the following strategies
from Cisco can be used to decide sending different types of data to the cloud or
fog devices [9].

– The most time-sensitive data should be sent to fog devices for processing,
i.e., data should be handled by the fog node closest to where the data come
from.

– Data that can afford latency like seconds or minutes can be forwarded to an
aggregation node for processing. In SG, the aggregation node should also be
close to the data source.

– Data that is not time-sensitive can be delivered to the cloud for traditional
processing, like long-term storage. In addition, various fog devices can send
their summarized grid data to the cloud for analysis and storage.

5 Evaluation

To explore the performance of our framework, we perform an experiment in col-
laboration with a grid service provider (in South China) and an IT organization
(in South China). The experimental environment is shown in Figure 4. The pow-
er grid was constructed based on simulators like GridLAB-D Simulation3. The
CIDS environment contains a total of 21 nodes, and there are 32 fog devices.

3 https://www.gridlabd.org
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Fig. 4. The experimental environment with two scenarios. S1 means the data will be
handled by fog devices, and S2 means the data will be forwarded to cloud for processing.

5.1 Experimental Conditions

As a study, this work mainly focuses on one question: that is, to what degree the
CIDS performance can be improved with the use of fog computing. As shown in
Figure 4, the following two major scenarios are considered:

– 1) S1 : the data will be handled by the fog devices;
– 2) S2 : the data will be delivered to the cloud for processing.

We mainly explore the performance of our framework by measuring the dif-
ference between S1 and S2. The following two adversarial conditions are studied:

– Internal attack. CIDS is known to be suspicious to insider attacks. In SG,
collaborated nodes have to exchange information with only trusted partner
nodes. To mitigate this issue, we need to deploy trust mechanisms. In this
condition, we take challenge-based trust mechanism [19] as a study, which
measures the reputation by sending out a kind of message called challenge.
For investigation, we take betrayal attack as a case, where a normal node
suddenly becomes malicious.

– External attack. The main advantage provided by collaborative intrusion
detection is the capability of exchanging information like alerts, which can
help improve the detection accuracy of complex external attacks. In this con-
dition, we take flooding attack as a study to learn the performance difference
between S1 and S2.

For the challenge-based trust mechanism, we adopted the below equation to
compute the reputation of a CIDS node. The initial threshold is set as 0.8 based
on [19].
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Fig. 5. The detection efficiency (DE) for insider attack under two rounds and external
attack: Round 1 only randomly selected one malicious nodes while Round 2 randomly
selected two malicious nodes.

T j
i = (

∑n
k=0 F

j,i
k λtk∑n

k=0 λ
tk

− Ts)(1 − x)d + Ts (1)

where F j,i
k means the satisfaction level regarding the kth feedback, and n

means the overall feedback number. λ means the forgetting factor that gives
more emphasis on the recent feedback. x represents the percent of of “unknown”
answers during a period, and d is used to control the severity of punishment to
“unknown” answers. More details can be referred to the previous work [18, 19].

5.2 Experimental Results

Insider attack condition. In this study, we launched a betrayal attack by ran-
domly selecting one CIDS node to be malicious. The malicious node can spread
malware to other nodes, which could be identified by IDS rules. Our purpose is
to investigate the time efficiency between S1 and S2 among the remaining nodes.

External attack condition. In this study, we launched a flooding attack via a
traffic generator (https://github.com/Markus-Go/bonesi), where the malicious
traffic can be detected by the deployed IDSs. To confirm the situation, IDS nodes
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have to exchange the alerts and make a decision. The purpose here is to exploit
the time efficiency between S1 and S2.

Results and analysis. To measure the detection performance between S1 and
S2, we use the below metric of detection efficiency (DE).

DE =
Ts2 − Ts1

Ts2
(2)

where Ts1 means the time consumption under S1 and Ts2 means the time
consumption under S2. The results of detection efficiency are shown in Figure 5.

– Insider attacks. We totally performed two rounds of betrayal attacks: we
randomly selected one CIDS node as malicious in the first round, and select-
ed two as malicious in the second round. The experiments were repeated five
times for each round. The results show that the use of fog devices can help
improve the detection efficiency ranged from 21% to 39% and from 24% to
43%, under Round 1 and Round 2, respectively.

The detection efficiency depends on the geographical location among the
CIDS nodes, fog devices and the cloud. Generally, a closer fog device can
provide better efficiency. Further, it is found that the improved performance
is roughly more visible under Round 2 than Round 1. This is because fog
devices can help quickly identify all malicious nodes, while there would be
much more delay caused by delivering information to the cloud for analysis
and decision.

– External attacks. We repeated this experiment five times and Figure 5
shows the average DE value for different CIDS nodes. It is visible that with
the help of fog devices, CIDS nodes can detect such flooding attack more
quickly than sending information to the cloud. Similar to the insider attack
detection, the values of DE varied with geographical distance among the
CIDS nodes, fog devices and the cloud, in the range from 29% to 45%. The
CIDS node that is closer to a fog device can have a better DE value.

The above results show that the detection efficiency is much better under S1
than S2. In other words, our results demonstrate the positive impact by using
fog devices to improve the detection efficiency of CIDSs.

5.3 Validation

To validate the results, we constructed another CIDS environment with a total
of 50 nodes and 35 fog devices. We performed the same attacks and the results
are shown in Figure 6.

– Insider attacks. Similar to the previous experiment, we had two rounds
of betrayal attacks: we randomly selected one and two CIDS node as ma-
licious in each round. We repeated experiments five times for each round.
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Fig. 6. The detection efficiency (DE) for insider attack under two rounds and external
attack: Round 1 only randomly selected one malicious nodes while Round 2 randomly
selected two malicious nodes.

The results show that the use of fog devices can help improve the detection
efficiency ranged from 21% to 37% and from 24% to 42%, under Round 1
and Round 2, respectively.

– External attacks. We repeated this experiment five times and the results
indicate that CIDS nodes can detect attacks faster with fog devices than
forwarding the information to the cloud, in the range from 26% to 41%.

On the whole, the results validate the effectiveness of our approach. The
improved efficiency can vary from 21% to 42% based on the attacking scenarios.

6 Challenges and Discussion

Our study demonstrates that fog computing can be used to enhance the per-
formance of CIDS by alleviating the response time, which is very important for
SG. However, SG components like AMI and SCADA systems are still the ma-
jor target for cyber attackers. There are many security challenges needed to be
considered.

– Various cyber-attacks. In this work, we mainly consider the improved
CIDS performance by adopting the fog computing. Due to the vulnerabilities
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in SG, many more efforts are needed to protect such environment from cyber-
attacks. For example, there is a need to protect unauthorized access to the
infrastructure, and safeguard the privacy of data. Without timely detection,
SG attacks can lead to a devastating impact on the critical infrastructures
relying on power supply. Further, how to maintain the data integrity and
privacy has become a major concern from the customers.

– Environmental security. This factor can help control the impact of po-
tential damage on the infrastructures due to any of natural or human-caused
environmental hazards. As an example, the hurricane sandy in US caused a
loss of $70 billion, and a disruption in power supply for over 8 million cus-
tomers in 2012. In addition, how to organize the fog devices could depend
heavily on the environmental conditions.

– Operational security. Due to the grid size, the SG critical infrastructures
and relevant operations would become more complex. Operational security
thus becomes a challenge, which is relevant to infrastructural installations,
control procedures, operational reliability and resiliency, system intelligence,
regular checking process and maintenance plan, etc. All these aim to achieve
a more robust SG environment.

– CIDS detection capability. Although the use of cloud and fog computing
can help improve the efficiency of CIDSs, it is still a challenge to develop
an effective detector for SG. This is because most commercial IDSs do not
have specialized rules to build a normal profile for SCADA systems. That is,
a CIDS node has to be tuned based on the particular SG environments and
requirements.

– CIDS security. Collaborative intrusion detection is an essential security
solution for protecting SG; however, CIDS has its inherent limitations. For
instance, due to the distributed nature, CIDS is vulnerable to insider attacks.
To mitigate such issue, appropriate trust mechanisms should be established
to protect CIDS, as well as SG environments. For example, the challenge-
based trust mechanism can be used to evaluate the reputation of another
nodes according to its feedback [19]. Recently, blockchain technology also
received much attention [20, 28]. This is an interesting and important topic
for future investigation.

– Limitations of fog computing. Although fog computing can complement
cloud environment, it also suffers from many limitations. For instance, fog
devices have to use global storage that may result in the complexity of data
management. Data schedule is a major concern, by moving data between
the central cloud and end users. In addition, fog computing cannot solve the
traditional trust and authentication issues. In practical implementation, pre-
defined encryption schemes and security policies may also cause difficulty in
exchanging data among fog devices.

7 Conclusion

With the increasing adoption of ICT and cloud computing in smart grid, it is
very critical to reduce the detection latency caused by the distance between
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the cloud and smart grid. In this work, we focus on improving the detection
efficiency and propose a fog-based CIDS framework to help make a decision
near the CIDS node. In the evaluation, we examine the performance of our
framework under both internal and external attacks. The results demonstrate
that our framework can greatly reduce the latency and enhance the detection
efficiency, i.e., enhancing the detection efficiency ranged from 21% to 39% and
from 24% to 43% for two internal attack scenarios; and from 29% to 45% for
external attack scenario.
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