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ABSTRACT

Mobile network traffic prediction is an important input in to network capacity planning and optimiza-
tion. Existing approaches may lack the speed and computational complexity to account for bursting,
non-linear patterns or other important correlations in time series mobile network data. We compare
the performance of two deep learning architectures - Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) - for predicting mobile Internet traffic using two months of Telecom Italia data
for the metropolitan area of Milan. K-Means clustering was used a priori to group cells based on
Internet activity and the Grid Search method was used to identify the best configurations for each
model. The predictive quality of the models was evaluated using root mean squared error. Both Deep
Learning algorithms were effective in modeling Internet activity and seasonality, both within days
and across two months. We find variations in performance across clusters within the city. Overall, the
LSTM outperformed the GRU in our experiments.

Keywords Deep learning - mobile networking - network management - network optimization - Internet traffic
prediction - LSTM - GRU

1 Introduction

At the beginning of 2020, it was estimated that 67% of the global population (5.2bn people) subscribed to mobile
services [1]. According to industry forecasts, we are about to enter in to a period of unprecedented mobile data growth
driven by the Internet of Things (IoT). By 2023, machine-to-machine (M2M) connections that support a broad range
of IoT applications will represent about 50% (14.7 billion) of total global devices and connections; and 45% of all
networked devices will be mobile-connected [2]. The combination of this influx of new mobile-connected devices,
faster broadband speeds, greater video consumption, and the capabilities of 5G networks is dramatically increasing
mobile data traffic [2]]. The nature and scale of this growth poses significant challenges to mobile network providers
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including the management of complexity, scalability, Quality of Service (QoS), Quality of Experience (QoE), and
privacy, all against the backdrop of constrained budgets and intense competition [3]].

This massive surge in demand for mobile broadband requires solutions that satisfy QoS and QoE requirements with
minimum service delay and within budget constraints. Capacity planning is the process of adjusting the capacity across
the network in response to changing or predicted demands [4]. Mobile network traffic modeling and prediction is
an important input in to multiple capacity planning tasks including network design, performance evaluation, control,
and network optimization [5}16]. Network traffic has been characterized as a time series with non-linear and chaotic
characteristics and is correlated over both long and short time frames [6]. There is a well-established literature that
focuses on trend, seasonality and anomaly prediction at the network-level and the cell-level to guide mobile network
investments and optimization [5. [7, |8]. Much of the extant research focuses on traffic prediction across that while
presenting good forecast results, may have unacceptable training times, turnaround times, lack computational complexity
and may not therefore account for characteristics such as bursting, non-linear patterns or other important correlations
(6} 9].

To address this shortcoming not only requires a shift from coarse to fine prediction but the adoption of novel techniques
that can accommodate high dimensionality and provide a satisfactory solution quickly. In the last decade, we have
seen a number of applications that can benefit from short-term or fine mobile network traffic prediction including
opportunistic scheduling [10], multimedia optimization [[11]], and energy efficiency [12]. More recently, a combination
of deep learning (DL) techniques and new data sources have emerged that show promising results in mobile traffic
prediction [6} 13 [14].

This paper compares the performance of two recurrent neural networks (RNNs), Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU), for predicting mobile Internet traffic. Using two months (62 days) of Telecom Italia
spatio-temporal log data for the metropolitan area of Milan, we constructed twelve clusters each with its own time
series. We identify the best configuration of each model using the Grid Search method [15] and use root mean squared
error (RMSE) to evaluate the performance of the models. The models satisfactorily learned the pattern of Internet
activity and seasonality, both within days and across the two months. We find variations in performances based on
geographic clusters within the city. Overall the LSTM performed better than the GRU in most cases. We also compare
the mean absolute error (MAE) results for our models with extant research using similar data [[16] and find both of our
models significantly outperform previous works.

The rest of this paper is structured as follows. In Section 2} we provide an overview of RNNs and clustering algorithms.
The Section [3|presents some related works. Section [d]details the mobile Internet traffic data set and data pre-processing,
the configuration of the LSTM and GRU models, and the metrics used to evaluate model performance. Section 3]
presents and discusses our results and analysis. We conclude this article with a brief summary of the main contributions
of the article and propose future directions for research in Section [6]

2 Background

2.1 Deep Learning Neural Networks

In the last five years, deep neural networks, ‘deep learning’, have increased in prominence in research and practice. DL
is a sub-branch of machine learning (ML) that, at a high level, “enables an algorithm to make predictions, classifications
or decisions based on data, without being explicitly programmed” [[17]. DL addresses the limitations of single-layer
neural networks by using multiple layers to transform their input into higher-dimensional representations and then into
the output. The emergence of DL is largely driven by increased computational power through heterogeneous processors
such as GPUs, the availability of large data sets for training, and advances in optimization algorithms [18].

In contrast to traditional ML and neural networks, DL can cater for high dimensionality in data thus enabling DL
networks to model highly complex non-linear relationships between variables [18]]. As such, it is particularly suitable
to the mobile and wireless networking domain which is characterized by massive volumes of high velocity unlabeled
heterogeneous data [17]. In addition, DL can significantly reduce operational and capital expenditure by reducing
or eliminate the time and effort required by valuable and scarce human resources in feature extraction, and reduce
computational and memory requirements through multi-task learning [17]]. However, DL is not without its limitations. It
hides its internal logic to the user thereby sacrificing accuracy for interpretability with practical and ethical consequences
[19]. Other limitations include vulnerabilities to adversarial and privacy attacks [20], computational demands unsuitable
to small-form computing in edge networks, and the time taken to find optimal configurations, particularly for highly-
parameterised data and multi-step network prediction [5}[17]].

Common DL architectures include Multi-layer Perceptron (MLP), Restricted Boltzmann Machines (RBM), auto-
encoded (AE), convolutional neural networks (CNNs), and recurrent neural networks (RNNs) [[17]. These can be
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differentiated by the data structures that they target, and their respective tuning parameters [18]]. For example, MLP
targets feature vectors of fixed length and are tuned by the activation function setting and the number of layers and units
[18]. In contrast, CNNs target high-dimensional data with local dependencies and are tuned by the number and width of
convolutional kernels or filters [18]. Because both MLP and CNN assume that all inputs are independent of each other,
they are not suited to modeling sequential data, where sequential correlations exist between samples. RNNs specifically
target sequential data, like time series data flows from mobile networks. As such, we focus on the use of RNNs in this

paper.

2.2 Recurrent Neural Networks

22.1 LSTM

As discussed earlier, traditional ML, MLPs and CNN:ss, typically target input vectors with fixed dimensions. The
formalization for sequential data is fundamentally different and thus MLP and CNN are not suitable for time series data.
RNN architectures were specifically designed to model sequential data by producing output via recurrent connections
(cells) between hidden units [17]]. These recurrent connections are the memory that stores the previous data allowing
RNN:Ss to learn the temporal dynamicity of the sequential data [21]]. In RNNs, the output of the current timestamp is
influenced by the output of the previous timestamps, which is critical when the sequence of events or data is important
to determine the outcome of a problem. Despite being designed to model sequential data, early RNNs suffer from
long time dependencies resulting from both vanishing and exploding gradient problems [22]] that negatively impacted
training using the Back-Propagation Through Time (BPTT) algorithm. To overcome this limitation, a variation of
traditional RNNs was proposed, Long Short-Term Memory (LSTM), which introduces the concept of gates to mitigate
gradient problems [211, 23, 24]. Figure[I] presents the basic schema of an LSTM unit.
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Figure 1: Example of a LSTM block (adapted from [25])

The LSTM unit state updates through specific gate operations: write (input gate), read (output gate), or reset (forget
gate). These operations consist of component-wise multiplications and apply different functions in the input data as
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shown in the following equations [21]:

iy = 0s(Waire + Whihe—1 + Weice—1 + by) 9]
fi=0s(Warae + Whphi—1 + Weper—1 + by) )
et = ficr—1 + 110 (Waey + Whehi—1 + be) 3)
01 = 0o(Waomt + Whohi—1 + Weocr + bo) “4)
hy = orop(ct) (5)

where ¢, o, f, and c are, respectively, the input gate output, the output gate output, the forget gate output, and the unit
activation vector. h; is the hidden value of the unit (i.e. the memory state) and has the same size of the previous vectors.
The non-linear functions of the input, forget, and output gates are represented by o;, o, and o, respectively. The
weight matrices of the unit state (c), input (i), output (0), and forgot (f) gates are represented by W, Wi, Wei, Wy,
Whi, Wep, Wae, Whe, Wao, Whe, and W, where x is the input and A the hidden value of LSTM unit. Finally, b;,
b, be, and b, are, respectively, the bias of input gate, forget gate, cell, and output gate [21]. While LSTM addresses
gradient problems, critics have noted that the LSTM architecture is ad hoc, has a substantial number of components
whose purpose is not immediately apparent, and that it is characterized by long training times [23} 126].

Given its ability to model time series data and predictive capacity, we use LSTM in this study.

222 GRU

GRU is a variation of LSTM which only uses two gates, an update gate and a reset gate. Indeed the update gate in a
GRU replaces the input and forget gates used in LSTM and decides what input data will be kept [27]. Furthermore and
unlike LSTM, GRU exposes its memory content at each step balancing between the previous and new memory content
(28]

The GRU activation, h{ , is represented in Equation@ Considering the input data as a time series, at the timestamp ¢, hg
is the linear interpolation between the previous unit data (h{_l) and the current data (h}).

hi=1—z)hi | +zh (6)

where zi is the output gate, and defines what should be forgotten and what should be kept in the GRU unit. The output
gate is defined in Equation [7] [28]):

zf =o(W,xs + Uhi—1) @)

where the current and previous weight matrices are W, and U, respectively. In a simplified way, this procedure taking
a linear sum between the previous hidden states h;_; and the current input x; and applies the sigmoid function (o).

The new memory unit is calculated as described in Equation [8}
iLt = thcm(Wxt +7r © Uhtfl) (8)

where © is the element-wise multiplication, 7; refers to reset gate, and its output can be calculated as defined in Equation
9

Ty = O'(WT.Z’t + Urht-l) (9)

Research suggests that GRUs are easier to generalize with faster training times while achieving comparable performance
outcomes [23], 128, |29} 30]. As such, we also propose a GRU for comparison against an LSTM in this study.
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2.3 Clustering

Clustering is an unsupervised ML technique that breaks down a data set into multiple groups (clusters) of observation
with similar characteristics [31]]. A number of different clustering techniques exist [32]] but K-Means clustering is of the
most-widely used [31]. The K-Means algorithm is a partitioning method which groups unlabeled data into a predefined
k number of clusters based on the Euclidean distance between different data vectors [31]].

The K-Means algorithm starts by randomly selecting a £ number of centroids; it then calculates the distance between a
data vector and each centroid and assigns the vector to the cluster with the closest centroid as outlined in Equation
[31].

t 2 N2 .. )
S3 = {ap: [Jap — V| < Jlap — | Vi1 < 5 < K} (10)
where S is the distance between the element and the centroid; ¢ is the cluster number; ¢ is the number of iterations; x,,

is point value; u(t) is the value of centroid; and j is the measure of dissimilarity.

Every time a new data vector is assigned to a cluster, the K-Means algorithm calculates a new centroid based on the
average of distances of all data points in each cluster as presented in Equation[I1] This iterative process is completed
when all data vectors have been allocated to different clusters and the ultimate centroids are identified.

1
D FQ > a (11)

|5; \ijSEﬂ

We are seeking to predict mobile Internet traffic across a city comprising multiple cells. Traffic behavior may vary
across different cells and the behavior of one cell is not necessarily similar to its neighboring cell. As such, we propose
a methodology based on cell clustering to predict the Internet traffic using K-means clustering.

3 Related Works

Predicting traffic for the next day, hour, or even the next minute can be used to optimize the available system resources,
for example by reducing the energy consumption, applying opportunistic scheduling, or preventing problems in the
infrastructure [8]].

Zhang et al. [33] proposed a CNN model that was able to capture the spatial dependency and two temporal dependencies,
closeness and period. Prediction matched the ground truth trend well, and the peaks of both in and out traffic was
effectively captured and predicted compared to three existing algorithms - Historical Average value, Auto-Regressive
Integrated Moving Average (ARIMA) and LSTM. Huang et al. [[10] propose a multi-task learning architecture with
three different types of DL models including LSTM, three-dimensional CNN, and a combination of CNN and RNN
(CNN-RNN) to model spatial and temporal aspects of the traffic. They also compare the performance against ARIMA
and non-DL methods. The CNN-RNN model was found to be reliable for all tasks with 70 to 80% forecasting accuracy.
Chen et al. [16] propose a two-phase framework to dynamically find optimal Remote Radio Head (RRH) clustering
and Baseband Unit (BBU) mapping schemes under different contexts. A multivariate LSTM was used to learn the
temporal dependency and spatial correlation among base station traffic patterns, and make accurate traffic forecasts for
future time periods. The prediction output was used to create RRH clusters and map them to BBU pools to maximize
the average BBU capacity utility and minimize the overall deployment cost. Results suggested that the proposed
method increased the average capacity utility and reduced the overall deployment cost outperforms baseline methods
i.e. Distance-Constrained Complementarity-Aware (DCCA) ARIMA, DCCA Windowed Artificial Neural Networks
(DCCA-WANN), and multivariate distance-constrained LSTM. Wang et al. [34] propose a hybrid DL model for
spatio-temporal prediction comprising of an AE-based model for spatial modeling, and LSTM for temporal modeling.
Results suggest that the proposed hybrid model significantly improves prediction accuracy compared to ARIMA and
Support Vector Regression (SVR). In Alawe et al. [35], an LSTM and a deep neural network model were compared for
predicting traffic load on a 5G network to inform a scalability mechanism. Performance was evaluated using simulation
and suggests that the forecast-based scalability mechanism outperformed threshold-based solutions.

Unlike the other Telecom Italia studies cited above, Zhang and Patras [36] focus on reliable long-term mobile data
traffic forecasting. They propose an ensemble system that leverages convolutional LSTM and 3D-ConvNets structures
to model long-term trends and short-term variations of the mobile traffic volume, respectively. Results suggest that
the proposed system provided highly accurate long term (10-hour long) traffic predictions, while operating with short
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observation intervals (2 hours), irrespective of the time of day. The ensemble system outperformed baseline methods
including Holt Winters (HW), ARIMA, MLP, and Support Vector Machine (SVM).

Wang et al. [34] propose a novel decomposition of in-cell and inter-cell urban data traffic, and apply a graph-based
neural network (GNN) using LSTM to accurately predict mobile traffic. They compare their proposed GNN with a
number of baseline methods including NAIVE, ARIMA, LSTM, HW and variations of their GNN. Results suggest
that the proposed DL variant of their GNN consistently and significantly outperformed all the baselines in both MAE
and Mean Absolute Relative Error (MARE). Feng et al. [37] propose an LSTM-based end-to-end model (DeepTP) to
forecast traffic demands from spatial-dependent and long-period cellular traffic. DeepTP outperforms ARIMA, SVR
and GRU (although to a lesser extent) based on MRSE. While outperforming other models, DeepTP was much slower
than other models including GRU. Qiu et al. [14] also use LSTM combined with unified multi-task learning frameworks
to explore spatio-temporal correlations among base stations to improve traffic prediction. They evaluate their proposal
against Online SVR, Non-parametric Regression, the Adaptive Kalman filters, and an AE approach. The proposed
LSTM-approach outperforms other methods using MSE as a performance metric.

Even though a number of studies have already tried to address the challenges posed by mobile traffic prediction, our
work proposes a different methodology. In fact, while other studies have clustered cells based on their geographical
location, in this study we group them based on traffic similarity in order to mitigate traffic variation and therefore
improve traffic prediction. In addition, we test and compare different DL approaches in order to identify the most
effective model for traffic prediction.

4 Material and Methods

4.1 Data Set

The metropolitan area of Milan is located in northern Italy and consists of nine different municipalities (see Figure2).
Milan is the largest metropolitan area in Italy and one of the ten most populous in the European Union [38]].
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Figure 2: The Milan Metropolitan AreaSource: https://www.wikiwand.com/en/Municipalities_of_Milan

In this study, we use the Telecom Italia data set for Milan from the Big Data Challenge |39]. The data set is organized
into 10,000 cells (100 x 100) comprising over 10 million user activity logs, each related to a particular cell. The data
set has log data for two months (62 days) from 1 November 2013 to 1 January 2014 [40]]. Although this data set was
collected between 2013 and 2014, it still proves to be quite valuable for researchers exploring mobile traffic prediction
and it has been used in a number of recently published articles (see, for example, [41},42] 43]]). The Telecom data set
adopted in this study in fact is one of the few telecommunication data sets that are publicly available in contrast to
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the large number of data sets that are typically accessible to a restricted number of researchers under non-disclosure
agreements (NDAs), or by third parties that have a contractual relationship with telecommunication providers.

The log activity is structured as Call Detail Records (CDRs) on the following activities: (i) incoming and outgoing
voice calls, (ii) short message service (SMS) messages, and (iii) Internet activity. A CDR is generated every time a user
starts or finishes a voice call, sends or receives an SMS, and starts or terminates an Internet session (the data is recorded
if the connection takes more than 15 minutes, or more than 5 MB is transferred during the session). In this paper, we
specifically focus on predicting Internet traffic.

As the data set has periods with no Internet traffic (e.g., a few minutes at night where there are no records), we aggregate
all CDRs for Internet traffic into 30-minute periods. Consequently, we have 48 records per day related to Internet traffic.
We use a sliding window strategy with a window size of four time periods thus we are use the previous two hours to
predict the Internet activity of the subsequent 30 minutes.

To create the training and testing data sets, the original data set is divided in two parts: the first 80% of the time series
for training and the last 20% for testing. We also normalized these data sets to the [0,1] range to facilitate the training of
DL models, since their parameters are very small, close to zero.

4.2 Clustering the Cells

The data set is composed of traffic data of different cells for Milan. As discussed in[2.3] we propose a methodology
based on cell clustering using Internet activity as a statistical metric to propose DL models to predict Internet traffic.
We calculate the total number of Internet activities considering six periods in each day, as described in Table [lﬂ

Table 1: Periods of the day

Period Time (in hour)
Late Night 00:00 - 04:00
Early Morning ~ 04:00 - 08:00

Morning 08:00 - 12:00

Afternoon 12:00 - 16:00
Evening 16:00 - 20:00

Night 20:00 - 00:00

Each cell can be represented by a vector containing six values based on the average Internet activity for each period of
the day. Based on these values, we create clusters of cells using the K-Means algorithm [31]] which has been widely
used in a number of different research domains such as document classification, recommendation systems based on
user interests, classification based on user purchase behavior etc. The K-Means algorithm in fact has many advantages
compared to other clustering techniques such as ease of implementation and fast convergence even in the context of big
data [44].

To automatically estimate the optimal number of clusters (k) of cells, we applied the Elbow method. This method varies
the number of clusters within a range to find the optimal %k based on the sum of square error [45]. We varied k from
one to 50 as shown in the Figure 3} As the number of cluster increases, the sum of squared distance tends towards
zero with the elbow of curve being the optimal value. In our case, we select k£ = 12 since it is at the end of the elbow
and the beginning of the stabilization of the sum of the squared distances. Based on the results presented in Figure 3]
using more than 12 clusters would only increase the complexity of the algorithm with no significant gains in terms of
performance.

The 12 clusters have a similar Internet activity pattern across different time periods within each day, regardless of the
cell location. Figure ] shows the 12 clusters overlaid on a map of the Milan Metropolitan Area.

To some extent, Cluster 1 represents the external areas of Milan; Cluster 10 represents the border of the municipalities
(excluding the municipality 1, at the center), while Cluster 6 is at the center of such municipalities. Other Clusters (2, 3,
4,5,7,8,9, 11 and 12) are regions within the city.

We calculate the mean Internet traffic for each of the 12 clusters using the 30-minute aggregated traffic of all cells
included in each cluster divided by the number of cells of the cluster. Thus, for each cluster, we have a time series
related to their mean cell’s traffic. This time series is used to train and test the proposed DL models.

'In Northern Italy, unlike other countries where lunch is 1230-1400, the working day often includes a break from 1200-1330 or
1430-1600. For the purposes of this study, we have aggregated this as a four hour block. Researchers may need to modify this for
other countries.
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Figure 4: Overlay of the 12 clusters on a map of the metropolitan area of Milan

4.3 Metric

To assess the performance of the models, we used the RMSE metric as described in Equation

RMSE = | ~ > (i —wi)? (12)

where N is the number of points from the traffic series, f; is the model prediction at timestamp ¢, and y; is the the real
value at timestamp 7 [46)].
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4.4 DL Model Configuration

In this paper, we propose two different RNNs that are widely used in the DL literature for regression problems, LSTM
and GRU. To find the best configuration of the models, we apply a technique called Grid Search. This technique
performs an exhaustive search in a subset of the previously defined parameters and provides the near optimal parameter
combination within the given range [15]].

To apply the Grid Search, we vary the number of hidden layers and their units for both LSTM and GRU (see the
parameters and levels in Table[2).

Table 2: Parameters and levels of Grid Search

Parameters Levels
Number of layers 1to4,step 1
Number of units 50 to 150, step 50

The first layer of the model is a fixed recurrent layer (the same as the hidden layers) where the number of units equals
the input data length. The last layer is a fully connected layer with one neuron that gives the prediction value. Table[3]
shows the fixed parameters (empirically chosen) to train the DL models.

Table 3: Parameters used to train the DL models

Parameter Value

Activation function of recurrent layers  sigmoid

Activation function of last layer hard sigmoid
Number of epochs 50

Optimizer ADAM [47]

Batch size 32

Loss function mean squared error
Number of runs 30

Due to the random characteristics that exist in training, such as initialization of weights, selection of batches etc., we
perform the experiments 30 times and calculate the average RMSE.

5 Results

Figure[5]and [6] present the Grid Search results for each cluster for each of the LSTM and GRU models, respectively.

For the LSTM models (Figure 3)), for the majority of the clusters, the best configuration had one layer and 250 units.
The only exception is Cluster 12, where the best overall average RMSE was achieved using a configuration with one
layer and 150 units (LSTM-12-1L-150U) and one layer with 200 units (LSTM-12-1L-200U). Cluster 1 achieved the
worth average RMSE result (0.084) while Cluster 12 achieved the best average RMSE result (0.068).

For GRU (Figure[6)), the configurations with one layer presented the best average RMSE, however the performance of
different clusters varied based on the number of units. From Cluster 2 to Cluster 9 (GRU-2-1L-200U, GRU-3-1L-200U,
GRU-4-1L-200U, GRU-5-1L-200U, GRU-6-1L-200U, GRU-7-1L-200U, GRU-8-1L-200U, andd GRU-9-1L-200U),
the configuration with the lowest average RMSE was one layer with 200 units. For Clusters 1 and 10, the configuration
that provided the best average RMSE was one layer with 250 units (GRU-1-1L-250U and GRU-10-1L-250U). In
Clusters 11 and 12, two configurations had the best average RMSE, all with only one layer. For Cluster 11, the best
configurations had 150 units (GRU-11-1L-150U) and 250 (GRU-11-1L-250U) units while for Cluster 12 the best
performing configuration had 150 units (GRU-12-1L-150U) and 200 units (GRU-12-1L-250U). Similar to LSTM, the
clusters with the worst and best average RMSE were Cluster 1 (0.0091) and Cluster 12 (0.0045), respectively.

The complexity of the model is directly related to the number of layers and units i.e. the more layers and units, the more
complex the model becomes. Model complexity has to be adjusted according to the data. Figures [5and [6]illustrate
that very complex models (those with many layers and units) resulted in poorer performance, due to model overfitting.
Simpler models with less complexity also performed poorly, most likely due to model underfitting.

In general, the DL models with one hidden layer obtained better average RMSE results than models with more layers;
while those with 150 units or more resulted in better average RMSE results. Fine-tuning the models by increasing
the number of units rather than layers resulted in better performance. Adding hidden layers resulted in performance
degradation.
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Figure 5: Mean RMSE of LSTM model for (a) cluster 1, (b) cluster 2, (c) cluster 3, (d) cluster 4, (e) cluster 5, (f) cluster
6, (g) cluster 7, (h) cluster 8, (i) cluster 9, (j) cluster 10, (k) cluster 11, and (1) cluster 12.

5.1 Statistical analysis

Some configurations achieved by the Grid Search obtained very similar average RMSE. To explore this further, we
used Kruskal-Wallis non-parametric analysis to compare independent samples to check whether they are similar or not,
based on the mean ranks of these samples [48]).

In our LSTM results, Cluster 12 (LSTM-12-1L-150U and LSTM-12-1L-200U) have two configurations with the same
average RMSE. Figure[7] presents the box plot of the RMSE of these configurations of Cluster 12.

While the best configurations of Cluster 12 have the same average RMSE (0.068), they have different RMSE distributions.
We can note that the LSTM-12-1L-200U has a lower dispersion and a lower median than LSTM-12-1L-150U. LSTM-
12-1L-200U has an outlier below the minimum RMSE value, and LSTM-12-1L-150U has an outlier above of the
maximum RMSE value. This analysis suggests that LSTM-12-1L-200U is the best configuration since it has the lowest
dispersion and the lowest median.

For the GRU models, Clusters 1-3 and 5-9 each had at least one statistically similar best configuration (Figure [8).
For Clusters 1-3 and 5-7, the configurations with 250 units (GRU-1-1L-250, GRU-2-1L-250, GRU-3-1L-250, GRU-
5-1L-250, GRU-6-1L-250 and GRU-7-1L-250) presented a higher dispersion than the configurations with 200 units
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(GRU-1-1L-200, GRU-2-1L-200, GRU-3-1L-200, GRU-5-1L-200, GRU-6-1L-200 and GRU-7-1L-200); GRU-1-1L-
200 presented a higher median than GRU-1-1L-250. For Cluster 8, three models are statistically similar, those with
one layer and 150, 200, and 250 units. Again, the configuration with 200 units presented lower dispersion and a lower
median than the other configurations. Finally, both configurations of Cluster 9 (GRU-9-1L-200 and GRU-1-1L-250)
had very similar distributions, with similar dispersion and a similar median.

In general, for these clusters with statistically similar configurations, the configuration with one layer and 200 units
presented a lower dispersion and lower median; this is considered the best performing configuration for the GRU
models.

5.2 LSTM vs. GRU comparison

We also compared the best configurations for LSTM and GRU models for each cluster using the Kruskal-Wallis test.
For all clusters, the RMSE distributions of the LSTM and GRU models are statistically different. The LSTM models
obtained better average RMSE results except for Cluster 12, where the GRU slightly outperformed the LSTM (See
Table ). Cluster 1 presented the worst average RMSE for both LSTM (0.084) and GRU (0.095) while Cluster 12 had
the best average RMSE, 0.068 and 0.067 for LSTM and GRU, respectively. Figure 9] compares the actual Internet
activity (green line) and the predictions of LSTM model (blue line) and GRU model (orange line).

One can see that both models learned the pattern of Internet activity data, capturing the data seasonality. For Cluster
1-9, we can see that the models’ predictions are slightly lower than the ground truth data in some periods, with the GRU
prediction values lower than the LSTM predictions, consistent with the GRU models’ higher average RMSE results. For
Clusters 10-12, the predictions of both models are closer to the ground truth data in comparison to the other clusters,
with the LSTM model closer to the ground truth data in more periods than the GRU models. It is important to notice
that Cluster 10 is situated at the outskirt of the metropolitan area of Milan while Clusters 11 and 12 are closer to the
center of the city.

The periods where the predictions of the DL models (for all clusters) were more distant from the ground truth data are
between in Christmas period (24-26 December). During this period, the predictions of both models were much lower
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than the ground truth data. This can be explained easily by the seasonal, although predictable, traffic at that time. This
could be addressed by augmenting the overall DL scheme with historical statistics that summarize prior knowledge of
predictable long-term trends as per [36].

Based on our statistical tests, the LSTM models outperformed the GRU models in all but one cluster. In that case,
Cluster 12, the superior performance of the GRU model was relatively small. As shown in Figure [0 both RNNs
captured the data pattern, however, the values predicted by the LSTM models were closer to the ground truth Internet
activity data. This is not entirely surprising. As discussed in Section[2.2.2] typically LSTM is expected to outperform
its less complex variant, GRU. However, the GRU took less time to train and thus where a model needs to be retrained
for multi-step traffic prediction, the time saving may outweigh the differences in accuracy.

Table 4: Best configurations for LSTM and GRU models for each cluster

LSTM GRU
Configuration model Average RMSE Configuration model = Average RMSE

LSTM-1-1L-250U 0.084 GRU-1-1L-250U 0.095
LSTM-2-1L-250U 0.081 GRU-2-1L-200U 0.092
LSTM-3-1L-250U 0.080 GRU-3-1L-200U 0.092
LSTM-4-1L-250U 0.080 GRU-4-1L-200U 0.090
LSTM-5-1L-250U 0.080 GRU-5-1L-200U 0.091
LSTM-6-1L-250U 0.081 GRU-6-1L-200U 0.093
LSTM-7-1L-250U 0.081 GRU-7-1L-200U 0.092
LSTM-8-1L-250U 0.081 GRU-8-1L-200U 0.093
LSTM-9-1L-250U 0.081 GRU-9-1L-200U 0.092
LSTM-10-1L-250U 0.068 GRU-10-1L-250U 0.072
LSTM-11-1L-250U 0.071 GRU-11-1L-150U/250U 0.072
LSTM-12-1L-150U/200U 0.068 GRU-12-1L-150U/200U 0.067

As discussed earlier, Chen et al. [[16] also used the Telecom Italia data set for Milan and an LSTM to predict base station
traffic. While they used a clustering strategy at a group base stations level, it was post hoc i.e. they forecast the traffic
patterns using the LSTM and then cluster complementary base stations to BBUs based on the traffic patterns. As such,
the results of Chen et al. [16] may not be entirely comparable with this study. In fact, the different clustering approaches
may result in different traffic patterns and consequently impact model performance. However, some similarities between
both studies exist so we calculated the MAE for our LSTM and GRU models to compared results.

MAE was calculated as presented in Equation

N
1
MAE = N;Iﬁ—yﬂ (13)

where N is the length of time series, f; is the prediction, and y; is the actual value at timestamp .

Table [5] presents the MAE of our LSTM and GRU models for the 12 clusters. All MAE values obtained for LSTM
models were lower than the best result presented in [[16]], which was 0.074. For the GRU models, Cluster 1 obtained
the same MAE as [[16] (0.0739) while the models for the other clusters performed better. Cluster 12 achieved the best
MAE. The LSTM presented an improvement of 26.22% and the GRU model presented an improvement of 27.16%
when compared to the reported results in [[16]].

6 Conclusion

Global total mobile data traffic is projected to grow 4X to reach 160EB per month in 2025; 5G networks will carry
nearly half of the world’s mobile data traffic by that time [49]. This massive surge in demand for mobile broadband
requires solutions that satisfy QoS and QoE requirements with minimum service delay and within budget constraints.
Mobile network traffic prediction will be an essential input in to infrastructure planning as well as dynamic and proactive
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Figure 9: Comparison against ground truth Internet activity and the predictions of LSTM and GRU models for (a)
cluster 1, (b) cluster 2, (c) cluster 3, (d) cluster 4, (e) cluster 5, (f) cluster 6, (g) cluster 7, (h) cluster 8, (i) cluster 9, (j)
cluster 10, (k) cluster 11, and (1) cluster 12.

network resource optimization. Extant approaches may have unacceptable accuracy, training times, turnaround times,
lack computational complexity and may not therefore account for characteristics such as bursting, non-linear patterns or
other important correlations to meet the QoS and QoE requirements of increasingly demanding end users [6} [9]. These
issues can result in mis-timed resource allocation as well as over- and under-utilization. DL has the potential to address
these shortcomings.

In this work, we propose and compare the performance of two RNNs, LSTM and GRU, to predict mobile Internet
traffic in a large metropolitan area, Milan. We proposed a novel a priori clustering methodology to group cells using
K-Means clustering and used the Grid Search method to identify the best configurations for each RNN. We compared
RNN performance using RMSE and testing against ground truth data for Milan. Both RNNs were effective in modeling
Internet activity and seasonality, both within days and across two months however were sub-optimal in predicting
anomalies e.g. Christmas. In this case, this could have been addressed by augmenting the training with historic trend
data as per [36]. We also find variations by in clusters across the city. While the LSTM outperformed the GRU, the
GRU had faster training times which may be relevant for multi-step prediction scenarios. We compared our proposed
RNN models against the results in Chen [16] using MAE. Notwithstanding the validity issues in such a comparison,
results suggest our models present significantly better performance.
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Table 5: MAE of best configurations for LSTM and GRU models for each cluster

LSTM GRU
Configuration model Average MAE  Configuration model  Average MAE

LSTM-1-1L-250U 0.0653 GRU-1-1L-200U/250U 0.0739
LSTM-2-1L-250U 0.0639 GRU-2-1L-200U 0.0716
LSTM-3-1L-250U 0.0634 GRU-3-1L-200U 0.0720
LSTM-4-1L-250U 0.0629 GRU-4-1L-200U 0.0701
LSTM-5-1L-250U 0.0632 GRU-5-1L-200U 0.0709
LSTM-6-1L-250U 0.0636 GRU-6-1L-200U 0.0724
LSTM-7-1L-250U 0.0638 GRU-7-1L-200U 0.0718
LSTM-8-1L-250U 0.0639 GRU-8-1L-200U 0.0725
LSTM-9-1L-250U 0.0636 GRU-9-1L-200U 0.0716
LSTM-10-1L-250U 0.0544 GRU-10-1L-250U 0.0564
LSTM-11-1L-250U 0.0564 GRU-11-1L-150U/250U 0.0565
LSTM-12-1L-150U/200U 0.0546 GRU-12-1L-150U/200U 0.0539

In future work, we plan to compare additional deep learning architectures including ensemble approaches and augment-
ing the model with longer-term historical trend data. Furthermore, we will extend the data set with more heterogeneous
data sources including SMS and voice call log data, amongst others, as well as other areas, e.g. Trentino, available in
the Telecom Italia data set. Improved mobile network prediction can be applied to a wide range of network planning
and optimization use cases to optimise utilization, reduce cost and meet QoS. In future works, we will explore the
efficacy of these models in a variety of use cases particularly where the faster training times of GRUs may provide
advantages over LSTM, such as multi-step prediction and faster optimization time scales.
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