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Abstract

A connecteddominatingsetin agraphis asubsetof verticessuchthateveryvertex is either

in the subsetor adjacentto a vertex in the subsetandthe subgraphinducedby the subsetis

connected.The minimum connecteddominatingset is sucha vertex subsetwith minimum

cardinality. An applicationin ad hoc wirelessnetworks requiresthe study of the minimum

connecteddominatingsetin unit-diskgraphs.In thispaper, wedesign
�
1 � 1� s� -approximation

for theminimumconnecteddominatingsetin unit-diskgraphs,runningin timenO ��� slogs� 2 � .
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1 Introduction

Ad hoc wirelessnetworkingattractsmoreandmoreattentionsin theseyears[2, 6, 8, 12]. It will

revolutionize information gatheringandprocessingin both urbanenvironmentsand inhospitable

terrain. Ad hocwirelessnetwork is anautonomoussystemconsistingof mobilehosts(or routers)

connectedby wirelesslinks. It can be quickly and widely deployed. Exampleapplicationsof

ad hoc wirelessnetwork includeemergency search-and-rescueoperations,decisionmakingin the

battlefield,dataacquisitionoperationsin inhospitableterrain,etc.

Two important featuresof ad hoc wirelessnetwork aredynamictopology and resource limi-

tation. In an adhoc wirelessnetwork, every hostcanmove to any directionat any time andany

speed.Thereis no fixed infrastructureandcentraladministration.A temporaryinfrastructurecan

beformedin any way. Dueto multipathfading,multiple access,backgroundnoiseandinterference

from othertransmissions,anactive link betweentwo hostsmaybecomeinvalid abruptly. Thuscom-

municationlink is unreliableandretransmissionis quite oftenfor reliableservices.The resource

constraintsfor an adhoc wirelessnetwork includebatterycapacity, bandwidth,CPU,etc. These

two featuresmake routingdecisionsvery challenging.

Existing routing protocolsrely on flooding for the disseminationof topology updatepackets

(proactiveroutingprotocols[5]) or routerequestpackets(reactiveroutingprotocols[9][13]). Net-

work wideflooding(globalflooding)maycausethefollowing two problems:

� Broadcaststormproblem[12]. Network-wide floodingmayresultin excessive redundancy,

contention, andcollision. This causeshigh protocoloverheadandinterferenceto otherongo-

ing communicationtraffic.

� Floodingis unreliable [8]. “in moderatelysparsegraphstheexpectednumberof nodesin the

network thatwill receive abroadcastmessagewasshown to beaslow as80%[15].”

To overcomeor at leastalleviate theseproblems,virtual backbone-basedrouting strategy is

introduced[2][6][16]). Note that virtual backbonemimics the wired backbone.The mostimpor-

tantbenefitof virtual backbone-basedrouting is thedramaticreductionof protocoloverhead,thus

greatlyimprove thenetwork throughput.This is achievedby propagatingcontrolpacketsinside the

2



virtual backbone,not thewholenetwork. Otherbenefitsincludethesupportof broadcast/multicast

traffic andthepropagationof “link quality” informationfor QoSrouting[14].

Basedontheseapplications,wecansummarizetheessentialrequirementsfor avirtual backbone

asfollows: (i) thenumberof hostsin thebackboneis minimized;(ii) all hostsin thebackboneare

connected;(iii) eachof thehostsnot in thebackbonehasat leastoneneighborin thebackbone.This

is clearlythe ideaof aminimumconnecteddominatingset.A connecteddominatingset onagraph

is a subsetof verticessuchthat (a) every vertex is eitherin thesubsetor adjacentto a vertex in the

subsetand(b) thesubgraphinducedby thesubsetis connected.Theproblemof minimumconnected

dominatingset(MCDS) is to computeaconnecteddominatingsetof minimumcardinality.

On theotherhand,we assumean adhocwirelessnetwork containsonly homogeneousmobile

hosts.Eachhostis suppliedwith anequal-poweromni-directionalantenna.Similarassumptionsare

takenby mostresearchersin thefield of mobileadhocwirelessnetworking. Thusthe footprint of

an adhocwirelessnetwork is aunit-diskgraph.Indeed,in aunit-diskgraph, thevertex setconsists

of finite numberof pointson theEuclideanplaneandan edgeexistsbetweentwo vertices(points)

if andonly if the distancebetweenthemis atmostone.

Accordingto theabove analysis,we formulatetheproblemof constructinga virtual backbone

to theproblemof minimumconnecteddominatingset(MCDS)in unit-diskgraphs.

MCDS in generalgraphs hasbeenstudiedby [7], which proposesa reductionfrom set-cover

problem.This impliesthatfor any fixed0 � ε � 1, nopolynomialtimealgorithmwith performance

ratio
�
1 � ε � H �

∆ � exists unlessNP � DTIME � nO � log log n�	� [10], where∆ is the maximumdegree

andH is the harmonicfunction. MCDS in unit-disk graphsis still NP-hard[4]. The bestknow

performanceratio of previous polynomial-timeapproximationsis a contant 
 7 [1, 3, 11]. In this

paper, we will proposea PolynomialTime ApproximationScheme(PTAS) for MCDS in unit-disk

graphs.

An algorithmA is aPolynomialTimeApproximationScheme(PTAS) for aminimizationprob-

lem with optimalcostOPT if thefollowing is true: Given aninstanceI of theproblemanda small

positive error parameterε, (i) the algorithmoutputsa solutionwhich is at most
�
1 � ε � OPT; (ii)

whenε is fixed,therunningtime is boundedby a polynomialin thesizeof the instanceI . If there
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exists a PTAS for an optimizationproblem,the problem’s instancecan be approximatedto any

requireddegree.

2 Preliminary

A dominatingset in a graphis a subsetof verticessuchthat every vertex is eitherin thesubsetor

adjacentto at leastonevertex in the subset.If in addition,thesubgraphinducedby a dominating

setis connected,thenthedominatingsetis calleda connecteddominatingset. The following is a

well-known factaboutthedominatingsetandtheconnecteddominatingset.

Lemma 2.1 For anydominatingsetD in a connectedgraph,wecanfindat most2
���

D
� � 1� vertices

to connectD. Moreover, if D �1 andD �2 arerespectivelytheminimumdominatingsetandtheminimum

connecteddominatingset,then
�
D �2 ��� 2

���
D �1 � � 1� .

We areinterestedin theminimumconnecteddominatingsetin unit-diskgraphs.Theunit-disk

graphhasthefollowing property.

Lemma 2.2 Supposea unit-diskgraph G lies in an m � m square such that every vertex is away

fromtheboundarywith distanceat least1� 2. ThenG hasat most � 4m2 � π � connectedcomponents.

Proof. Let x denotethe numberof connectedcomponentsof sucha unit-disk graph. From each

connectedcomponent,wechooseavertex andidentify it with thecenterof aunit-disk. (A unit-disk

hasdiameterone.)Suchunit-disksaredisjoint andall lie in thecell. Therefore,we have

x 	 π �
1� 2� 2 � m2 


Hence,x � 4m2 � π. �

It hasbeenknow that the minimum connecteddominatingsethassomepolynomial-timeap-

proximationwith constantperformanceratio [1, 3, 11]. Here,we quotea resultfrom [3].

Lemma 2.3 There existsa polynomial-timeapproximationfor theminimumconnecteddominating

setin unit-diskgraphs,with performanceratio eight.
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In designof a PTAS for the minimum connecteddominatingset,we sometimesconsiderthe

following extensionof theconceptof dominatingsetandconnecteddominatingset.

ConsideragraphG � �
V � E � . SupposeH is asubgraphof G. A subsetD of verticesin G is said

to beaconnecteddominatingsetin G for H if everyvertex in H is eitherin D or adjacentto avertex

in D, andin addition,thesubgraphof G inducedby D is connected.

3 Main Results

For input connectedunit-diskgraphG � �
V � E � , we initially find a minimal squareQ to containall

verticesin V. Without lossof generality, assumeQ ��� � x � y� �
0
�

x
�

q � 0 �
y
�

q� . Let mbealarge

integer that we will determinelater. Let p � � q� m� � 1. Considerthe squareQ̄ ��� � x � y� � � m
�

x
�

mp � � m
�

y
�

mp� . Partition Q̄ into
�
p � 1� � �

p � 1� gridesothateachcell is am � msquare.

This partitionof Q̄ is denotedby P
�
0 � 0� (Fig. 1).. In general,thepartitionP

�
a � b� is obtainedfrom

P
�
0 � 0� by shifting theleft-bottomcornerof Q̄ from

� � m� � m� to
� � m � a � � m � b� .

Figure1: SquaresQ andQ̄.

For eachcell e asan m � m square,we denoteby Ce
�
d � the setof points in e away from the

boundaryby distanceat leastd, e.g.,Ce
�
0� is the cell e itself. Fix a positive integer h whose

valuewill bedeterminedlater. We will call Ce
�
h� the central areaof e andCe

�
0� � Ce

�
h � 1� the

boundaryareaof e (Fig.2).For simplicity of notation,we denoteBe
�
d � � Ce

�
0� � Ce

�
d � . Notethat
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for eachcell its boundaryareaandcentralareaareoverlappingwith width one. For eachpartition

P
�
a � a� , denotebyCa �

d � (Ba �
d � ) theunionof Ce

�
d � (Be

�
d � ) for eoverall cellsin P

�
a � a� . Ca �

h� and

Ba �
h � 1� arecalledthecentral areaandtheboundaryareaof P

�
a � a� .

h h+1central area

boundary area

Figure2: Centalareaandboundaryarea.

For agraphG, denoteby Ge
�
d � (G̃e

�
d � ) thesubgraphof G inducedby all verticeslying in Ce

�
d �

(Be
�
d � ) andby Ga �

d � (G̃a �
d � ) thesubgraphof G inducedby all verticeslying in Ca �

d � (Ba �
d � ).

Let G � �
V � E � be aninput connectedunit-disk graph. Considera subgraphGe

�
h� . This sub-

graphmayconsistof severalconnectedcomponents.ForeachconnectedcomponentH, wecompute

theminimumconnecteddominatingsetDH in Ge
�
0� for H by brutalsearch.Theunionof DH for H

over all connectedcomponentsof Ge
�
h� is denotedby Ke. Thus,Ke hasthepropertythat for every

connectedcomponentH of Ge
�
h� , Ke hasa connectedcomponentdominatingH. Now, we denote

by Ka theunionof Ke for eover all cells in partitionP
�
a � a� .

By Lemma2.3, we cancomputein polynomial time a connecteddominatingsetF for input

connectedgraphG within a factorof 8 from optimal. SetAa � Ka �
F̃a �

h � 1� . (note:Weconsider

F asagraphwithout edge.Accordingto above definition, F̃a �
h � 1� � F � Ba �

h � 1� .)

Lemma 3.1 For 0
�

a
�

m � 1, Aa is a connecteddominatingsetfor input graphG. Moreover, Aa

canbecomputedin timenO � m2 � .

Proof. Aa is clearly a dominatingset for input graphG. We next show its connectivity. Note

that for any connectedcomponentH of the subgraphGe
�
h� for somecell e in partition P

�
a � a� , if

a connectedcomponentE of F̃a �
h � 1� hasa vertex in H, thenE mustconnectto the connected
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dominatingsetDH for H. Therefore,theconnectivity of Aa follows from theconnectivity of F.

To establishthe time for computingAa, we note the fact that for a squarewith edgelength�
2� 2, all verticeslying inside thesquareinducesa completesubgraphin which any vertex must

dominateall othervertices. It follows from this fact that the minimum dominatingset for Ve has

size
� ��� �

2m� � 2. Hence,theminimumconnecteddominatingsetfor Ve is atmost3
� ��� �

2m� � 2.

Therefore,
�
Ke

� �
3
��� �

2m� � 2. Supposecell e containsne verticesof input unit-disk graph. Then

thenumberof candidatesfor eachdominaterin Ke is atmost

3 ����� 2m� � 2
∑
k 	 0



ne

k � � nO � m2 �
e




Hence,computingAa canbedonein time

∑
e

nO � m2 �
e

� �
∑
e

ne � O � m2 � � nO � m2 � 


�
By Lemma3.1, we may take Aa to approximatetheminimum connecteddominatingset. The

next lemmawill helpusestimatetheapproximationperformanceof Aa.

Lemma 3.2 Supposeh � 7 � 3 � log2
�
4m2 � π � � . Let D � be theminimumconnecteddominatingset

for input graphG. Then
�
Ka � � �

D � � for 0
�

a
�

m � 1.

Proof. RecallthatGa �
h� is thesubgraphof input graphG � �

V � E � inducedby its verticeslying in

thecentralareaCa �
h� of thepartitionP

�
a � a� . Let D bea minimumconnecteddominatingsetin G

for Ga �
h� . Then,we musthave

�
D
� � �

D � � .
Now, let G � D � bethesubgraphof G inducedby D. Wefirst claimthatG � D � hasaspanningtreeT

withoutcrossingedgesin theplane.In fact,supposeT is aspanningtreeof G � D � with theminimum

numberof crosspoints.If T containstwo edges
�
u � v� and

�
x � y� crossingat a point w in theplane.

Without loss of generality, assume
�
u � w� is the longestone amongfour segments

�
u � w� , �

v� w� ,
�
x � w� and

�
y� w� (Fig. 3). Removal

�
x � y� from T would breakT into two connectedcomponents

containingverticesx and y respectively. One of them containsedge
�
u � v� . Note that d

�
x � v� �

d
�
x � w� � d

�
v� w� �

d
�
u � w� � d

�
w� v� �

1 and d
�
y� v� �

d
�
y� w� � d

�
v� w� �

d
�
u � w� � d

�
w� v� �

1.

7



u v
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y

u

y

x

v
w

Figure3: Two edges
�
u � v� and

�
x � y� have crosspointw.

Therefore,we canaddeither
�
x � v� or

�
y� v� to connectthetwo connectedcomponentsof T � �

x � y�
into one.Thisoperationremovedacrosspoint,contradictingtheassumptionthatT hastheminimum

numberof crosspoints.

AssumeT is a spanningtreeof G � D � without crosspoint.Let Tb bethesub-forestof T induced

by thoseverticesnot dominatingany vertex in Va �
h� . We next modify T to a forest with two

operations.

Operation 1: If after deletinga vertex u of Tb, T still keepsthe following property(B1), then

deleteu.

(B1) For any connectedcomponentH of Ga �
h� , T connectsevery two verticesin H � T, i.e.,T

hasaconnectedcomponentdominatingH.

ThroughOperation1, T becomesa forestwith propertythatdeletingany vertex would destroy

property(B1). Now, we applythesecondoperationto T.

Operation 2: If Tb hastwo adjacentverticesu andv bothwith degreetwo, thendeletethemand

restoretheproperty(B1) asfollows: Note that deletingu andv breaksa connectedcomponentof

T into two parts,sayC1 andC2. SinceT alreadypassedOperation1, theremustexist a connected

componentH of Gc suchthatT � H exists in bothC1 andC2. SinceT � C1 andT � C2 dominates

H, theremustexist eitheronevertex x in H suchthatx is dominatedby bothT � C1 andT � C2, or

two adjacentverticesx andy in H suchthatx is dominatedby T � C1 andy is dominatedby T � C2.

Therefore,addingeitherx or x andy to T would restoretheproperty(B1).

After Operation2 is employed once,it may be possibleto apply Operation1 again. At any

time, if Operation1 canbeapplied,thenwe useOperation1; if Operation1 cannotbeappliedbut
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 x

 y

u

v

Figure4: Operation2

Operation2 canbe,thenweemploy Operation2. SincebothOperations1 and2 reducethenumber

of verticesin Tb, thisprocesshasto endin finitely many steps.At theend,forestT would still have

property(B1) andin additionhave thefollowing properties:

(B2) Tb hasno adjacenttwo verticesbothwith degreetwo.

(B3) T hasat most
�
D � � vertices.

Sinceany vertex dominatingsomevertex in the centralareaof e must lie in Ce
�
h � 1� , every

vertex of T lying in Be
�
h � 1� mustbelongto Tb. By Lemma2.2, Te

�
h � 1� hasat most � 4m2 � π �

connectedcomponents.

Now, consideramaximalsubtreeT
�

of T suchthat

(C) T
�

hasall leavesin Ce
�
h � 1� andall otherverticesnot in Ce

�
h � 1� (Fig. 5).

Weclaim thatT
�

lies in cell e. To show ourclaim,supposeT
�

hask leaves.Sinceno two leaves

canlie in thesameconnectedcomponentof Te
�
h � 1� , we have k

� � 4m2 � π � . Note thatT
�

e
�
h � 1�

consistsof k leaves ofT
�

andhencehask connectedcomponents.Theouterpath p of T
�

is a path

betweentwo leavessuchthatT
�

lies in theareabetweenthepathp andtheboundaryof Ce
�
h� . Since

T hasnocrosspointandT
�

is amaximalsubtreesatisfying(C), only verticesin pathp is possibleto
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r

Figure5: TreeT
�

meetan edgein T but not in T
�

.

For contradiction,supposeT
�

hasa vertex r lying outsideof cell e. Without lossof generality,

we mayassumethat r is on thepath p. We considerr asa root for T
�

andstudythek pathsfrom

leavesto r. Thepath p is brokenat r into two suchpaths.Note thatany pathpassesthrougharea

Ce
�
h � 4� � Ce

�
h � 1� mustmeetan edgenot on thepath. (Otherwise,thepathwould containtwo

verticesin Tb bothwith degreetwo.) It followsthatexceptthetwo pathsobtainedfrom pathp, every

pathhasto bemergedinto anotheronein areaCe
�
h � 4� � Ce

�
h � 1� . This meansthatthesek paths

becomeatmost2 � k � 2 pathswhenthey goout fromCe
�
h � 4� . Namely, T

�

e

�
h � 4� containsatmost

2 � �
k � 2� � 2 connectedcomponents.Similarly, T

�

e
�
h � 1 � 3

� � log2
�
k � 2� � � � � � T

�

e
�
6� � containsat

mostthreeconnectedcomponentsandT
�

e

�
3� containsat mosttwo connectedcomponents.That is,

all k pathsin Ce
�
3� have mergedinto two paths.Notethat thesetwo pathswill merge into oneat r

lying outsideof cell e. Therefore,eachof themhasa vertex u in areaCe
�
0� � Ce

�
3� incidentto an

edgein T � T
�

, sothatthereexistsapathin T from u toCe�
�
h � 1� for anothercell e

���� e. Thispath

atareaCe�
�
0� � Ce�

�
3� canmeetanothersimilar path.In thisway, wecanfind apathof infinite long
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in T, which is impossiblesinceT containsno cycle. This contractioncompletesthe proof of our

claim thatT
�

lies in cell e.

Notethatevery pathwith only two endpointsin Ce
�
h � 1� mustbecontainedin suchamaximal

subtreeT
�

. It follows immediatelyfrom our claim that for every connectedcomponentH of Ge
�
h� ,

Te
�
0� hasaconnectedcomponentdominatingH sinceT has.Thismeansthatthenumberof vertices

in Te
�
h� is atleast

�
Ke

�
. Thus,

�
Ka � � ∑

e

�
Ke

� �
∑
e

�
Te

�
h� � � �

T
��� �

D � � �

where
�
T
�
denotesthenumberof verticesin T. �

Wearereadyto presentthefollowing maintheorem.

Theorem 3.3 Supposeh � 7 � 3 � log2
�
4m2 � π � � and � m� �

h � 1� � �
32s. Thenthere is at leasta half

numberof i � 0 � 1 � 
 
 
 � � m� �
h � 1� � � 1 such that Ãi � h� 1� is

�
1 � 1� s� -approximation for theminimum

connecteddominatingset.

Proof. By Lemma3.2, for every i � 0 � 1 � 
 
 
 � � m� �
h � 1� � � 1,

�
K i � h� 1� � � �

D � � whereD � is a min-

imum connecteddominatingset for G. Moreover, let F a
H (Fa

V ) denotethe subsetof verticesin

F̃a �
h � 1� eachwith distance�

h � 1 from horizontal(vertical) boundaryof somecell in P
�
a � a� .

ThenF̃a �
h � 1� � Fa

H
�

Fa
V . Moreover, all F i � h� 1�

H for i � 0 � 1 � 
 
 
 � � m� �
h � 1� � � 1 aredisjoint. Hence,

�
m� � h� 1����� 1

∑
i 	 0

�
F i � h� 1�

H

� � �
F
���

8
�
D � � 


Similarly, all F i � h� 1�
V for i � 0 � 1 � 
 
 
 � � m� �

h � 1� � � 1 aredisjoint and

�
m� � h� 1����� 1

∑
i 	 0

�
F i � h� 1�

V

� � �
F
���

8
�
D � � 


Thus �
m� � h� 1����� 1

∑
i 	 0

�
F̃ i � h� 1� � h � 1� � �

�
m� � h� 1����� 1

∑
i 	 0

���
F i � h� 1�

H

� � �
F i � h� 1�

V

� � �
16

�
D � � 


11



Therefore,
�
m� � h� 1����� 1

∑
i 	 0

�
Ai � h� 1� �

� �
m� � h� 1����� 1

∑
i 	 0

���
K i � h� 1� � � �

F̃ i � h� 1� � h � 1� � �
� � � m� �

h � 1� � � 16� �D � � 


Thatis,
1

� m� �
h � 1� �

�
m� � h� 1����� 1

∑
i 	 0

�
Ai � h� 1� ��� �

1 � 1� �
2s� � �D � � 


This meansthatthereareat leastahalf numberof Ãi � h� 1� for i � 0 � 1 � � m� �
h � 1� � � 1 satisfying

�
Ai � h� 1� ��� �

1 � 1� s� �D � � 


�

Thefollowing corollary follows immediatelyfrom thetheorem.

Corollary 3.4 There is a
�
1 � 1� s� -approximationfor minimumconnecteddominatingsetin con-

nectedunit-diskgraphs,runningin timenO � � slogs� 2 � .

Proof. NotethatcomputingeachAa needstimenO � m2 � . By Theorem3.3,a
�
1 � 1� s� -approximation

can be obtainedby computingall � m� �
h � 1� � Aa’s and choosingthe bestone. Thus, the total

runningtime is
�
mnO � m2 � � nO � m2 � . Choosem to be the leastintegersatisfying � m� �

h � 1� � �
32s,

whereh � 7 � 3 � log2
�
4m2 � π � � . Thenm � O

�
slogs� . This completestheproof. �

4 Conclusion

We designeda PTAS for the minimum connecteddominatingset in unit-disk graphs. This is an

evidenceto show that currently existing implementedapproximationshave alarge spacefor im-

provement.

12



References

[1] K.M. Alzoubi, P.-J.WanandO. Frieder, New distributedalgorithmfor connecteddominating

setin wirelessadhocnetworks,to appearin Proc.HICSS2002.

[2] A.D. Amis andR. Prakash,Load-balancingclustersin wirelessadhocnetworksApplication-

SpecificSystemsandSoftwareEngineeringTechnology, Proc.3rd IEEESymposiumon, 2000,

pp.25-32.

[3] X. ChengandD.-Z. Du, Virtual backbone-basedroutingin adhocwirelessnetworks,submit-

tedto IEEETransactionson Parallel andDistributedSystems.

[4] B. N. Clark, C. J. ColbournandD. S.Johnson,Unit disk graphs,DiscreteMathematics, Vol.

86,1990,pp.165-177.

[5] T. Clausen,P. Jacquet,A. Laouiti, P. Minet, P. Muhlethaler, andL. Viennot,Optimizedlink

stateroutingprotocol,IETF InternetDraft, draft-ietf-manet-olsr-05.txt, October2001.

[6] B. DasandV. Bharghavan,Routingin adhocnetworksusingminimumconnecteddominating

sets,ICC ’97, Montreal,Canada,June1997.

[7] S. GuhaandS. Khuller, Approximationalgorithmsfor connecteddominatingsets,Algorith-

mica,Vol. 20(4),April 1998,pp.374-387.

[8] P. Johansson,T. Larsson,N. Hedman,B. MielczarekandM. Degermark,Scenario-basedper-

formanceanalysisof routing protocolsfor mobileadhocnetworks,Proc. IEEE MOBICOM,

Seattle,Aug. 1999,pp.195-206.

[9] D.B. Johnson,D. A. Maltz, Y.-C.Hu andJ.G. Jetcheva,TheDynamicSourceRoutingProto-

col for Mobile Ad HocNetworks,InternetDraft draft-ietf-manet-dsr-05.txt, March2001.

[10] C. LundandM. Yannakakis,On thehardnessof approximatingminimizationproblems,Jour-

nal of theACM, Vol. 41(5),pp.960-981,1994.

13



[11] M.V. Marathe,H. Breu,H.B. Hunt III, S.S.Ravi andD.J.Rosenkrantz,Simpleheuristicsfor

unit-diskgraphs,Networks25, pp.59-68,1995.

[12] S.-Y. Ni, Y.-C. Tseng,Y.-S.ChenandJ.-P. Sheu,Thebroadcaststormproblemin amobilead

hocnetwork, Proc.MOBICOM, Seattle,Aug. 1999,pp.151-162.

[13] C. E. Perkins,E. M. Royer and S. R. Das, Ad hoc On-DemandDistanceVector (AODV)

Routing,InternetDraft draft-ietf-manet-aodv-08.txt, March2001.

[14] R. Sivakumar, P. SinhaandV. Bharghavan,CEDAR: acore-extractiondistributedadhocrout-

ing algorithm,SelectedAreasin Communications,IEEE Journal on, Vol. 17(8), Aug. 1999,

pp.1454-1465.

[15] P. Sinha,R. SivakumarandV. Bharghavan, Enhancingad hoc routing with dynamicvirtual

infrastructures,INFOCOM2001, Vol. 3, pp.1763-1772.

[16] J. Wu and H. Li, On calculatingconnecteddominatingset for efficient routing in ad hoc

wirelessnetworks, Proc. of the 3rd International Workshopon Discrete Algothrithmsand

Methodsfor MOBILEComputingandCommunications, 1999,Seattle,WA USA, pp.7-14.

14


