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Abstract

A connectedlominatingsetin agraphis asubsebf verticessuchthateveryvertex is either
in the subsetor adjacento a vertex in the subsetandthe subgraphinducedby the subsets
connected. The minimum connecteddlominatingsetis sucha vertex subsetwith minimum
cardinality An applicationin ad hoc wirelessnetworks requiresthe study of the minimum
connectedlominatingsetin unit-diskgraphs.n this paperwe design(1+ 1/s)-approximation

for theminimumconnectedlominatingsetin unit-diskgraphsyunningin time nO(s10gs)?),
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1 Introduction

Ad hoc wirelessnetworkingattractsmore and more attentionsin theseyears[2 6, 8, 12]. It will
revolutionize information gatheringand processingn both urban ervironmentsand inhospitable
terrain. Ad hoc wirelessnetwork is an autonomousystemconsistingof mobile hosts(or routers)
connectedby wirelesslinks. It canbe quickly and widely deplojed. Exampleapplicationsof
ad hoc wirelessnetwork include emegeng search-and-rescugperationsdecisionmakingin the
battlefield,dataacquisitionoperationsn inhospitableterrain, etc.

Two importantfeaturesof ad hoc wirelessnetwork are dynamictopolagy and resouce limi-
tation. In an adhoc wirelessnetwork, every hostcanmove to ary directionat ary time andary
speed.Thereis no fixed infrastructureand centraladministration.A temporaryinfrastructurecan
beformedin ary way. Dueto multipathfading, multiple accessbackgrounchoiseandinterference
from othertransmissionsanactive link betweertwo hostsmaybecomenvalid abruptly Thuscom-
municationlink is unreliableandretransmissions quite oftenfor reliable services. The resource
constraintsfor an adhoc wirelessnetwork include battery capacity bandwidth,CPU, etc. These
two featureamale routing decisionsvery challenging.

Existing routing protocolsrely on flooding for the disseminationof topology updatepaclets
(proactiverouting protocols[5]) or routerequesipaclets(reactiverouting protocols[9][13]). Net-

work wide flooding (global flooding) may causethe following two problems:

e Broadcaststormproblem[12]. Network-wide flooding may resultin excessve redundancy
contention andcollision. This causesigh protocoloverheacandinterferenceo otherongo-

ing communicatiortraffic.

e Floodingis unreliable[8]. “in moderatelysparsegraphsthe expectednumberof nodesn the

network thatwill receve abroadcastmessagevasshown to beaslow as80%][15].”

To owercomeor at leastalleviate theseproblems,virtual badkbone-basedouting strateyy is
introduced[2][6][16]). Note that virtual backbonemimics the wired backbone.The mostimpor-
tant benefitof virtual backbone-baserbuting is the dramaticreductionof protocoloverheadthus

greatlyimprove the network throughput.Thisis achieved by propagatingcontrol pacletsinside the
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virtual backbonenot the whole network. Otherbenefitsincludethe supportof broadcast/multicast
traffic andthe propagatiorof “link quality” informationfor QoSrouting [14].

Basedntheseapplicationswe cansummarizéheessentiatequirementsor avirtual backbone
asfollows: (i) the numberof hostsin the backbonds minimized; (ii) all hostsin the backboneare
connected(iii) eachof thehostsnotin thebackbonéhasatleastoneneighborin thebackboneThis
is clearlythe ideaof aminimumconnectedlominatingset. A connectedlominatingset onagraph
is a subsebf verticessuchthat (a) every vertex is eitherin the subsetr adjacento avertex in the
subsefind(b) thesubgraptinducedby thesubseis connectedTheproblemof minimumconnected
dominatingset(MCDS) is to computea connectedlominatingsetof minimum cardinality

Ontheotherhand,we assumean adhocwirelessnetwork containsonly homogeneousnobile
hosts.Eachhostis suppliedwith anequal-paver omni-directionalantennaSimilarassumptionsire
taken by mostresearcherm the field of mobile ad hoc wirelessnetworking. Thusthe footprint of
an adhocwirelessnetwork is aunit-disk graph.Indeed,in a unit-diskgraph, the vertex setconsists
of finite numberof pointson the Euclideanplaneandan edgeexists betweerntwo vertices(points)
if andonly if the distancdetweerthemis atmostone.

Accordingto the above analysiswe formulatethe problemof constructinga virtual backbone
to the problemof minimumconnectedlominatingset(MCDS)in unit-diskgraphs

MCDS in generalgraphs hadeenstudiedby [7], which proposesa reductionfrom set-caower
problem.Thisimpliesthatfor ary fixed0 < € < 1, no polynomialtime algorithmwith performance
ratio (1 —€)H(A) exists unlessNP ¢ DTIME[n©(109!09M] [10], whereA is the maximumdegree
andH is the harmonicfunction. MCDS in unit-disk graphsis still NP-hard[4]. The bestknow
performanceatio of previous polynomial-timeapproximationds a contant> 7 [1, 3, 11]. In this
paperwe will proposea PolynomialTime ApproximationSchemgPTAS) for MCDS in unit-disk
graphs.

An algorithmA is a PolynomialTime ApproximationSchemegPTAS) for aminimizationprob-
lem with optimal costOPT if thefollowing is true: Given aninstance of the problemanda small
positive error parametet, (i) the algorithm outputsa solution which is at most(1+ €) OPT; (ii)

whene is fixed, the runningtime is boundedby a polynomialin the sizeof the instanced. If there



exists a PTAS for an optimization problem, the problems instancecan be approximatedo any

requireddegree.

2 Preliminary

A dominatingsetin a graphis a subsetof verticessuchthat every vertex is eitherin the subsetor
adjacento at leastonevertex in the subset.If in addition, the subgraphinducedby a dominating
setis connectedthenthe dominatingsetis calleda connecteddominatingset. The following is a

well-known factaboutthe dominatingsetandthe connectedlominatingset.

Lemma 2.1 For anydominatingsetD in a connectedyraph,wecanfind at most2(|D| — 1) vertices
to connecD. Moreover, if D] andD3 arerespectivelgheminimumdominatingsetandtheminimum

connectealominatingset,then|D3| < 2(|Dj| —1).

We areinterestedn the minimum connectediominatingsetin unit-disk graphs.The unit-disk

graphhasthefollowing property

Lemma 2.2 Suppose unit-diskgraph G lies in an m x m squae sud that every vertex is away

fromthe boundarywith distanceat least1/2. ThenG hasat most|4m? /1| connecteccomponents.

Proof. Let x denotethe numberof connecteccomponentf sucha unit-disk graph. From each
connectecomponentye choosea vertex andidentify it with the centerof a unit-disk. (A unit-disk

hasdiameterone.) Suchunit-disksaredisjoint andall lie in the cell. Therefore we have
x-T(1/2)? < mf.

Hence x < 4nm?/Tt O

It hasbeenknow that the minimum connecteddominatingsethassomepolynomial-timeap-

proximationwith constanperformanceatio[1, 3, 11]. Here,we quotea resultfrom [3].

Lemma 2.3 Thee «istsa polynomial-timeapproximationfor the minimumconnectediominating

setin unit-diskgraphs,with performanceratio eight.

4



In designof a PTAS for the minimum connecteddominatingset, we sometimesconsiderthe
following extensionof the conceptof dominatingsetandconnectediominatingset.

ConsideragraphG = (V,E). SupposéH is asubgraptof G. A subseD of verticesin G is said
to beaconnectedlominatingsetin G for H if everyvertex in H is eitherin D or adjacento avertex

in D, andin addition,the subgraplof G inducedby D is connected.

3 Main Resaults

For input connectedinit-disk graphG = (V, E), we initially find a minimal squareQ to containall
verticesin V. Withoutlossof generalityassum& = {(x,y) | 0< x< g,0<y< q}. Letmbealarge
integer thatwe will determinelater Let p = |qg/m| + 1. Considerthe squareQ = {(x,y) | -m<
x < mp,—m<y< mp}. Partition Qinto (p+1) x (p+1) gridesothateachcell isamx msquare.
This partition of Q is denotecby P(0,0) (Fig. 1).. In generalthe partition P(a, b) is obtainedfrom
P(0,0) by shifting the left-bottomcornerof Q from (—m, —m) to (—m-+a, —m-+b).

Figurel: Square®Q andQ.

For eachcell e asan m x m square we denoteby C¢(d) the setof pointsin e away from the
boundaryby distanceat leastd, e.g.,Ce(0) is the cell e itself. Fix a positive integer h whose
valuewill be determinedater We will call C¢(h) the central areaof e andCe(0) — Ce(h+ 1) the

boundaryareaof e (Fig.2). For simplicity of notation,we denoteB¢(d) = Cg(0) — Ce(d). Notethat
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for eachcell its boundaryareaand centralareaare overlappingwith width one. For eachpartition
P(a,a), denoteby C?(d) (B(d)) theunionof C¢(d) (Be(d)) for eoverall cellsin P(a,a). C?(h) and

B?(h+ 1) arecalledthecential areaandthe boundaryareaof P(a, a).

boundary area

e — 1

i
H |
| |
i |
: |
le—e; Central area : le— o !
i |
i |
] |
|

Figure2: Centalareaandboundaryarea.

For agraphG, denoteby G¢(d) (Ge(d)) thesubgraptof G inducedby all verticeslying in Ce(d)
(Be(d)) andby G2(d) (G?(d)) the subgraptof G inducedby all verticeslying in C3(d) (B2(d)).

Let G = (V,E) be aninput connectedunit-disk graph. Considera subgraphGe(h). This sub-
graphmayconsistof severalconnectedomponentsFor eachconnectedomponentd, we compute
theminimumconnectealominatingsetDy in G¢(0) for H by brutalsearch.Theunionof Dy for H
over all connecteccomponent®f Gg(h) is denotedby Ke. Thus,Ke hasthe propertythatfor every
connecteccomponent of G¢(h), Ke hasa connecteccomponentdominatingH. Now, we denote
by K2 theunionof K for e overall cellsin partition P(a, a).

By Lemma2.3, we cancomputein polynomialtime a connecteddominatingsetF for input
connectedyraphG within afactorof 8 from optimal. SetA2 = K2U F2(h+ 1). (note: We consider

F asagraphwithout edge.Accordingto above definition, F3(h+ 1) = F NB*h+1).)

Lemma 3.1 For 0 < a< m-1, A%is a connectedlominatingsetfor input graph G. Moreover, A2

canbe computedn timenC(™).

Proof. A, is clearly a dominatingset for input graphG. We next shaow its connectvity. Note
that for ary connecteccomponent of the subgraphGe(h) for somecell e in partition P(a, a), if

a connecteccomponentE of F3(h+ 1) hasa vertex in H, then E mustconnectto the connected



dominatingsetDy for H. Therefore the connectity of A? follows from the connectity of F.

To establishthe time for computingA?, we note the fact that for a squarewith edgelength
v/'2/2, all verticeslying inside thesquareinducesa completesubgraphin which ary vertex must
dominateall othervertices. It follows from this fact that the minimum dominatingsetfor Ve has
size< ([v/2m])?. Hence the minimum connectediominatingsetfor Ve is atmost3 < ([v/2m])?2.
Therefore,|Ke| < 3([v/2m])?. Supposecell e containsne verticesof input unit-disk graph. Then
the numberof candidatesor eachdominaterin K is atmost

([v2m)? (n> _ o)
=hs' ’.

& k

Hence computingA? canbedonein time

Z ng(mz) <( z ne)O(mZ) _ nO(m)
e

e
O
By Lemma3.1, we may take A? to approximatethe minimum connecteddominatingset. The

next lemmawill helpusestimatethe approximationperformanceof A2,

Lemma 3.2 Supposéh = 7+ 3|log,(4m?/m)|. Let D* be the minimumconnecteddominatingset
for inputgraphG. Then|K? < |D*|forO0<a<m- 1

Proof. RecallthatG2(h) is the subgraphof input graphG = (V, E) inducedby its verticeslying in
the centralareaC?(h) of the partition P(a, a). Let D bea minimum connectedlominatingsetin G
for G#(h). Then,we musthave |D| < |D*|.

Now, let G|D] bethesubgraptof G inducedby D. Wefirst claimthatG[D] hasaspanningreeT
without crossingedgesn theplane.In fact,supposel is aspanningreeof G[D] with theminimum
numberof crosspointsIf T containstwo edges(u,v) and(x,y) crossingat a pointw in the plane.
Without loss of generality assume(u,w) is the longestone amongfour sggments(u,w), (v,w),
(x,w) and(y,w) (Fig. 3). Remoal (x,y) from T would breakT into two connecteccomponents
containingverticesx andy respectrely. One of them containsedge (u,v). Note that d(x,v) <

d(x,w) +d(v,w) < d(u,w) +d(w,v) <1 andd(y,v) < d(y,w) +d(v,w) < d(u,w) +d(w,v) < 1.
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Figure3: Two edgequ,Vv) and(x,y) have crosspointw.

Therefore we canaddeither (x,Vv) or (y,v) to connectthe two connecteccomponent®f T — (X, y)
into one. Thisoperatiorremovedacrosspointcontradictingheassumptiothat T hastheminimum
numberof crosspoints.

AssumeT is a spanningreeof G[D] without crosspoint.Let Ty bethe sub-foresof T induced
by thoseverticesnot dominatingary vertex in V2(h). We next modify T to a forest with two
operations.

Opemation 1. If afterdeletinga vertex u of Ty, T still keepsthe following property(B1), then
deleteu.

(B1) For ary connecteccomponentd of G2(h), T connectsvery two verticesn HN T, i.e., T
hasa connecteccomponentiominatingH.

ThroughOperationl, T becomes forestwith propertythatdeletingany vertex would destrgy
property(B1). Now, we applythe secondoperationto T.

Opemation 2: If T, hastwo adjacentverticesu andv bothwith degreetwo, thendeletethemand
restorethe property(B1) asfollows: Note that deletingu andv breaksa connecteccomponenbf
T into two parts,sayC; andC,. SinceT alreadypasseddperationl, theremustexist a connected
componenH of G¢ suchthatT NH existsin bothC; andC,. SinceT NC; andT NC, dominates
H, theremustexist eitheronevertex x in H suchthatx is dominatedby bothT NC; andT NC,, or
two adjacentserticesx andy in H suchthatx is dominatedoy T NC; andy is dominatedoy T NCs.
Thereforeaddingeitherx or x andy to T would restorethe property(B1).

After Operation2 is employed once,it may be possibleto apply Operationl again. At ary

time, if Operationl canbe applied,thenwe useOperationl; if Operationl cannotbe appliedbut



Figure4: Operation2

Operation2 canbe,thenwe employ Operation2. Sinceboth Operationsl and2 reducethenumber
of verticesin Ty, this processhasto endin finitely mary steps.At theend,forestT would still have
property(B1) andin additionhave the following properties:

(B2) T, hasno adjacentwo verticesbothwith degreetwo.

(B3) T hasat most|D*| vertices.

Sinceary vertex dominatingsomevertex in the centralareaof e mustlie in C¢(h— 1), every
vertex of T lying in Be(h— 1) mustbelongto T,. By Lemma2.2, To(h— 1) hasat most | 4m? /]
connecteccomponents.

Now, considera maximalsubtreelT’ of T suchthat

(C) T' hasall leavesin C¢(h— 1) andall otherverticesnotin Ce(h— 1) (Fig. 5).

WeclaimthatT’ liesin cell e. To shav our claim, supposeél’ hask leaves. Sinceno two leaves
canlie in the sameconnecteccomponenof Te(h— 1), we have k < |4n?/m1|. Notethat T/ (h— 1)
consistsof k leaves of T' andhencehask connecteccomponentsThe outer path p of T' is a path
betweertwo leavessuchthat T’ liesin theareabetweerthe path p andtheboundaryof C¢(h). Since

T hasno crosspoinand T’ is amaximalsubtreesatisfying(C), only verticesin pathp is possibleto



Figure5: TreeT’

meetan edgen T but notin T'.

For contradiction,supposel’ hasa vertex r lying outsideof cell e. Without lossof generality
we may assumehatr is on the path p. We considerr asaroot for T’ andstudythe k pathsfrom
leavesto r. The path p is brokenatr into two suchpaths. Note thatary pathpasseshrougharea
Ce(h—4) — C¢(h— 1) mustmeetan edgenot on the path. (Otherwise the pathwould containtwo
verticesin Ty bothwith degreetwo.) It follows thatexceptthetwo pathsobtainedrom pathp, every
pathhasto bemegedinto anotheronein areaCe(h — 4) — C¢(h— 1). This meanghatthesek paths
becomeatmost2+ k/2 pathswhenthey go outfrom Ce(h—4). Namely T/(h— 4) containsat most
2+ (k—2)/2 connecteccomponentsSimilarly, TS (h—1—3(|log,(k—2) ]))(C Ti(6)) containsat
mostthreeconnecteccomponent&ndTZ(3) containsat mosttwo connecteccomponentsThatis,
all k pathsin C¢(3) have meigedinto two paths.Note thatthesetwo pathswill meigeinto oneatr
lying outsideof cell e. Therefore eachof themhasa vertex u in areaCe(0) — C¢(3) incidentto an
edgein T — T’, sothatthereexistsa pathin T from uto Cy (h— 1) for anothercell € # e. Thispath

atareaCy (0) — Cg¢(3) canmeetanothersimilar path. In this way, we canfind a pathof infinite long
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in T, which is impossiblesinceT containsno cycle. This contractioncompleteshe proof of our
claimthatT' liesin cell e.

Notethatevery pathwith only two endpointsn C¢(h — 1) mustbe containedn sucha maximal
subtreeT’. It follows immediatelyfrom our claim thatfor every connecteccomponentd of G¢(h),
Te(0) hasaconnectedcomponentominatingH sinceT has.This meanghatthenumberof vertices

in Te(h) is atleast|Ke|. Thus,
K=Y Kl < 5 [Te(h)] <[T| < D7,
e e

where|T| denoteghe numberof verticesin T. O

We arereadyto presenthe following maintheorem.

Theorem 3.3 Supposér= 7+ 3|log,(4m?/m) | and|m/(h+1)| > 32s. Thenthereis at leasta half
numberofi =0,1,...,|[m/(h+1)] — 1 such that,&i(hH) is (14 1/s)-approximatian for theminimum

connectedlominatingset.

Proof. By Lemma3.2,for everyi = 0,1,...,|m/(h+1)| — 1, [K{"™1| < |D*| whereD* is amin-

imum connecteddominatingsetfor G. Moreover, let F§ (R?) denotethe subsetof verticesin

F2(h+ 1) eachwith distance< h+ 1 from horizontal(vertical) boundaryof somecell in P(a, a).

ThenFa(h+1) = F3URZ. Moreover, all F,L(hﬂ) fori=0,1,...,[m/(h+1)] — 1 aredisjoint. Hence,

[m/(h+1)]-1
> R < R < 8D
1=

Similarly, all R\ fori = 0,1,..., |m/(h+ 1) — 1 aredisjoint and
[m/(h1))-1
> IR <80
i=

Thus
[m/(h+1)] -1 [n/(h+1)]-1

“fi(h+l)(h_|_ 1) < Z (|F:|(h+1)|+‘F\;(h+1)‘) < 16/D*|.
i=
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Therefore,

Lm/(h+1)] -1

|Ai(h+1)|
%

[m/(h+1)]-1 .
% (|K|(h+1)‘ + |F|(h+1)(h_|_ l)|)
i=

IN

IA

(Im/(h+1)] +16)|D*|.

Thatis,
L 0 < (14 1/29) 0
S — A < (14+1/(2s))|D*|.
mhFD] 2

This meanghatthereareat leasta half numberof A,-(hH) fori=0,1,|m/(h+1)| — 1 satisfying

AP < (141/9)D7).

Thefollowing corollary follows immediatelyfrom thetheorem.

Corollary 3.4 Theris a (1+ 1/s)-approximationfor minimumconnectedlominatingsetin con-

nectedunit-diskgraphs,runningin timenC((slogs)®),

Proof. NotethatcomputingeachA? needstime (™). By TheoremB.3,a (1 + 1/s)-approximatia
can be obtainedby computingall [m/(h+ 1) | A¥s and choosingthe bestone. Thus, the total
runningtime is (mrP(™) = nO(™) _ Choosem to be the leastinteger satisfying|m/(h+ 1) | > 32s,
whereh = 7+ 3|log,(4m?/m) |. Thenm= O(slogs). This completeshe proof. 0

4 Conclusion

We designeda PTAS for the minimum connecteddominatingsetin unit-disk graphs. This is an
evidenceto shaw that currently existing implementedapproximationshave alarge spacefor im-

provement.
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