On the Power of BFS to Determine a Graph’s Diameter

Derek G. Corneil

Department of Computer Science, University of Toronto, Toronto, Ontario, Canada

Feodor F. Dragan

Department of Computer Science, Kent State University, Kent, Ohio

Ekkehard Kohler

Institut fiir Mathematik, Technische Universitét Berlin, Berlin, Germany

Recently, considerable effort has been spent on show-
ing that Lexicographic Breadth First Search (LBFS) can
be used to determine a tight bound on the diameter of
graphs from various restricted classes. In this paper, we
show that, in some cases, the full power of LBFS is not
required and that other variations of Breadth First
Search (BFS) suffice. The restricted graph classes that
are amenable to this approach all have a small constant
upper bound on the maximum-sized cycle that may ap-
pear as an induced subgraph. We show that, on graphs
that have no induced cycle of size greater than k, BFS
finds an estimate of the diameter that is no worse than
diam(G) — Lk/2J. © 2003 Wiley Periodicals, Inc.
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1. INTRODUCTION

Recently, considerable attention has been given to the
problem of developing fast and simple algorithms for var-
ious classical graph problems. The motivation for such
algorithms stems from our need to solve these problems on
very large input graphs; thus, the algorithms must be not
only fast, but also easily implementable.

Determining the diameter of a graph is a fundamental
and seemingly quite time-consuming operation. For arbi-
trary graphs (with n vertices and m edges), the current
fastest algorithm runs in O(nm) time, which is too slow to

Received February 2003; accepted July 2003

Correspondence to: F. F. Dragan; e-mail: dragan@cs.kent.edu

Contract grant sponsor: Natural Science and Engineering Research Council
of Canada

An expanded abstract of this paper appeared in the Proceedings of the
LATIN 2002, S. Rajsbaum (Editor), LNCS 2286, Springer, Berlin, 2002,
pp. 209-223

© 2003 Wiley Periodicals, Inc.

NETWORKS, Vol. 42(4), 209-222 2003

be practical for very large graphs. This naive algorithm
examines each vertex in turn and performs a Breadth First
Search (BFS) starting at the chosen vertex. Such a sweep
starting at vertex x immediately determines ecc(x), the
eccentricity of vertex x. Recall that the eccentricity of
vertex x, ecc(x) = maxyevd(x, y), where d(x, y) denotes
the distance between x and y; the diameter of G equals the
maximum eccentricity of any vertex in V. It is clear that this
algorithm actually computes the entire distance matrix;
clearly knowing the distance matrix immediately yields the
diameter of the graph.

For dense graphs, the best result known is by Seidel [14],
who showed that the all pairs shortest path problem (and,
hence, the diameter problem) can be solved in O(M(n)log
n) time, where M(n) denotes the time complexity for fast
matrix multiplication involving small integers only. The
current best matrix multiplication algorithm is due to Cop-
persmith and Winograd [4] and has an 0(n2'376) time
bound. Unfortunately, fast matrix multiplication algorithms
are far from being practical and suffer from large hidden
constants in the running time bound.

Note that no efficient algorithm for the diameter problem
in general graphs, avoiding the computation of the whole
distance matrix, has been designed. Thus, the question of
whether a graph’s diameter can be computed more easily
than can the whole distance matrix still remains open.

Clearly, performing a BFS starting at a vertex of maxi-
mum eccentricity easily produces the graph’s diameter.
Thus, one way to approximate the diameter of a graph is to
find a vertex of high eccentricity; this is the approach taken
in this paper. This is not, however, the only approach. For
example, Aingworth et al. [1] obtained a ratio of 2/3 ap-
proximation to the diameter in time O(mVnlogn +
n*logn). Note that a ratio of 1/2 can easily be achieved by
choosing an arbitrary vertex (the eccentricity of any vertex
is at least one-half the diameter of the graph) and perform-
ing a BFS starting at this vertex. It follows also from the



results in [1, 7] (see also paper [16] which surveyed recent
results related to the computation of exact and approximate
distances in graphs) that the diameter problem in unweighted,
undirected graphs can be solved in O(min{n*?*m"?, n"?}) time
with an additive error of at most 2 without matrix multiplica-
tion. Here, O(f) means O(f polylog(n)). The motivation be-
hind the work of Aingworth et al. was to find a fast, easily
implementable algorithm (they avoided using matrix multipli-
cation), a motivation that we share.

Our approach is to examine the naive algorithm of
choosing a vertex, performing some version of BFES from
this vertex, and then showing a nontrivial bound on the
eccentricity of the last vertex visited in this search. In fact,
this algorithm is one of the “classical” algorithms in graph
theory; if one restricts one’s attention to trees, then this
algorithm produces a vertex of maximum eccentricity (see,
e.g., [10]). This approach has already received considerable
attention. (In the following, we let v denote the vertex that
appears last in a particular search; the definition of the
various searches and families of graphs will be presented in
the next section.) For example, Dragan et al. [9] showed that
if LBFS is used for chordal graphs then ecc(v) = diam(G)
— 1, whereas for interval graphs, ecc(v) = diam(G). It is
clear from the work of Corneil et al. [5], that by using LBFS
on AT-free graphs, one has ecc(v) = diam(G) — 1. Dragan
[8], again using LBFS, showed that ecc(v) = diam(G) — 2
for HH-free graphs, ecc(v) = diam(G) — 1 for HHD-free
graphs, and ecc(v) = diam(G) for graphs that are both
HHD-free and AT-free.

It is interesting to note that Corneil et al. [5] looked at
double-sweep LBFSs (i.e., start an LBFS from a vertex that is
last in a previous arbitrarily chosen LBFS) on chordal and
AT-free graphs. They provided a forbidden subgraph structure
on graphs where ecc(v) = diam(G) — 1. They also presented
both chordal and AT-free graphs, where for no c the c-sweep
LBES algorithm is guaranteed to find a vertex of maximum
eccentricity. Furthermore, they showed that for any c there is a
graph G where ecc(v) = diam(G) — ¢, where v is the vertex
visited last in a 2-sweep LBFS. This graph G, however, has a
large induced cycle whose size depends on c.

These results motivate a number of interesting questions:

e [s it an inherent property of LBFS to end in a vertex of
high eccentricity for the various restricted graph families
mentioned above? What happens if we use other variants
of BFS?

e Why do AT-free and chordal graphs, two families with

very disparate structure, exhibit such similar behavior

with respect to the efficacy of LBFS to find vertices of
high eccentricity?

Although LBFS “fails” to find vertices of high eccentric-

ity for graphs in general, all known examples that exhibit

such failure have large induced cycles. If we bound the
size of the largest induced cycle, can we get a bound on
the eccentricity of the vertex that appears last in an LBFS?

If the previous question is answered in the affirmative, is

the full power of LBFS needed? What happens if we just

use BFS?
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This paper addresses these questions. In the next section,
we present the various forms of BFS and define the graph
theoretic terminology used throughout the paper. In Section
3, we examine the behavior of the different versions of BFS
on various restricted graph families. We establish some new
bounds and show, by example, that all stated bounds on
ecc(wv) are tight. In Section 4, we examine families of graphs
where the size of the largest induced cycle is bounded and
show that BFS does succeed in getting vertices of high, with
respect to k, eccentricity. The paper concludes with some
final remarks in Section 5.

2. NOTATION AND DEFINITIONS

First, we formalize the notion of BFS and then discuss
various variations of it. We caution the reader that there is
some confusion in the literature between BFS and what we
call LL, defined below. In defining the various versions of
BFS, we are only concerned with identifying the last vertex
visited by the search; straightforward modifications produce
the list of vertices in the order that they are visited by the
search. It should be noted that none of the orderings are
unique; instead, each search identifies one of the possible
end-vertices.

Algorithm BFS: Breadth First Search
Input: graph G(V, E) and vertex u
Output: vertex v, the last vertex visited by a BFS starting at u

Initialize queue Q to be {u} and mark u as “visited.”
while O # O do
Let v be the first vertex of Q and remove it from Q.
Each unvisited neighbor of vis added to the end of Q and
marked as “visited.”

Note that the above algorithm can easily be modified to
obtain the “layers” of V with respect to u. In particular, for
each 0 = i = ecc(u), the i-th layer of V with respect to u
is denoted L,(u) = {v: d(u, v) = i}. This motivates the
next algorithm, LL.

Algorithm LL: Last Layer
Input: graph G(V, E) and vertex u
Output: vertex v, a vertex in the last layer of u

Run BFS to get the layering of V with respect to u.
Choose v to be an arbitrary vertex in the last layer.

Clearly, any vertex returned by BFS can also be returned by
LL; the converse is not true as shown by the graph in Figure 1.

Now, we modify this algorithm to obtain a vertex in the
last layer that has minimum degree with respect to the
vertices in the previous layer.

Algorithm LL+: Last Layer, Minimum Degree
Input: graph G(V, E) and vertex u
Output: vertex v, a vertex in the last layer of u, that has



u

FIG. 1. No BFS starting at u can return vertex d.

minimum degree with respect to the vertices in the
previous layer

Run BFS to get the layering of V with respect to u.
Choose v to be an arbitrary vertex in the last layer that has
minimum degree with respect to the vertices in the previous
layer.

Finally, we introduce Lexicographic Breadth First
Search (LBFS). This search paradigm was discovered by
Rose et al. [13] and was shown to yield a simple linear time
algorithm for the recognition of chordal graphs. In light of
the great deal of work currently being done on LBEFS, it is
somewhat surprising that interest in LBFS lay dormant for
quite a while after [13] appeared.

Algorithm LBFS: Lexicographic Breadth First Search
Input: graph G(V, E) and vertex u

Output: vertex v, the last vertex visited by an LBFS starting
at u

Assign label & to each vertex in V.

for i = n downto 1 do
Pick an unmarked vertex v with the largest (with respect
to lexicographic order) label.
Mark v “visited”.
For each unmarked neighbor y of v, append i to the label
of y.

If vertex a is removed from the graph in Figure 1, we have
a graph where a vertex, namely d, can be visited last by a
BFS from u but by no LBES from u.

We now turn to the definitions of the various graph
families introduced in the previous section. A graph is
chordal if it has no induced cycle of size greater than 3. An
interval graph is the intersection graph of intervals of a line.
Lekkerkerker and Boland [11] defined an asteroidal triple
to be a triple of vertices such that between any two there is
a path that avoids the neighborhood of the third and showed
that a graph is an interval graph iff it is both chordal and
asteroidal triple-free (AT-free). A claw is the complete
bipartite graph K 5, a hole is an induced cycle of length
greater than 4, a house is a 4-cycle with a triangle added to
one of the edges of the C,, and a domino is a pair of C,s
sharing an edge. A graph is HH-free if it contains no
induced houses or holes and is HHD-free if it contains no
induced houses, holes, or dominos. Finally, to capture the

notion of “small” induced cycles, we define a graph to be
k-chordal if it has no induced cycles of size greater than k.
Note that chordal graphs are precisely the 3-chordal graphs
and that AT-free graphs are 5-chordal.

We define the disk of radius r centered at u to be the set
of vertices of distance at most r to u, thatis, D (u) = {v €
Vid(u, v) = r} = Ui_y Li(u). A pair of vertices x, y of
a graph G is called a diametral pair if d(x, y) = diam(G).
A vertex s of G is universal if ecc(s) = 1, that is, N[s] =
V, and it is nonuniversal otherwise.

3. RESTRICTED FAMILIES OF GRAPHS

We now see how the four search algorithms mentioned
in the previous section behave on the following families of
graphs: chordal, AT-free, {AT, claw}-free, interval, and
hole-free. The results are summarized in the following table.
In this table, the references refer to the paper where the
lower bound was established; a [*] indicates that the result
is new. A figure reference refers to the appropriate figure
where it is shown that the lower bound is tight. In each of
the figures, the vertex pair a, b forms a diametral pair, that
is, d(a, b) = diam(G). Below each figure, a BFS, LBFS,
LL, or LL+ ordering is given that achieves the correspond-
ing bounds; vertex u is always the start-vertex and v the
end-vertex of the appropriate search; different BFS-layers
are separated by a |. Note that for “= D” entries we are
assuming that the search starts at a nonuniversal vertex.

Graph class LL LL+ BFS LBFS

Chordal graphs =D-2 =D—-2 =D-1 =D-1
[3] [3] [ [9]
Fig. 4 Fig. 5 Fig. 2 Fig. 6

AT-free graphs =D-2 =D—-1 =D-2 =D-1
[*] [*] [*] [5]
Fig. 3 Fig. 7 Fig. 3 Fig. 7

{AT, claw }-free =D -1 =D =D -1 =D

graphs [*] [*] [*] [2]

Fig. 2 Fig. 2

Interval graphs =D — 1 =D =D —1 =D
[*] [*] [*] [9]
Fig. 2 Fig. 2

Hole-free graphs =D -2 =D -2 =D -2 =D —2
[*] [*] [*] [*]
Fig. 8 Fig. 8 Fig. 8 Fig. 8

In what follows, we illustrate the types of techniques that
are used to establish lower bounds in the table. First, we
show that ecc(v) = diam(G) — 1 holds for chordal graphs
when BFS is used. This result subsumes the result shown in
[9] that this lower bound holds when LBEFS is used. Then,
we prove our new results for interval graphs and AT-free
graphs. Hole-free graphs and general k-chordal graphs are
considered in Section 4.
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FIG. 2. BFS: ulbcd|av.

a c d u e

FIG. 3.

BFS: u|dgelcfblav.

v d b
a u C

FIG. 7. LBFS: ulcda|bv.

3.1. Chordal Graphs

First, we comment on the BFS algorithm. In particular,
we may regard BFS as having produced a numbering from
n to 1 in decreasing order of the vertices in V where vertex
u is numbered n. As a vertex is placed on the queue, it is
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FIG. 8.

LBFS: u|ghic|fde|bav.

given the next available number. The last vertex visited, v,
is given the number 1. Thus, BFS may be seen to generate
a rooted tree T with vertex u as the root. A vertex y is the
father in T of exactly those neighbors in G which are
inserted into the queue when y is removed.

An ordering o = [v,, v,, ..., v,] of the vertex set of
a graph G generated by a BFS will be called a BFS-ordering
of G. Let o(y) be the number assigned to a vertex y in this
BFS-ordering . Denote also by f(y) the father of a vertex
y with respect to o. The following properties of a BFS-
ordering will be used in what follows. Since all layers of V
considered here are with respect to u, we will frequently use
the notation L, instead of L,(u):

(P1) Ify € L, (¢ > 0), then f(y) € L,_, and f(y) is the
vertex from N(y) N L, with the largest number in
ag.

(P2) Ifx € L;, y € L; and i < j, then a(x) > a(y).

(P3) If x, y € L; and a(x) > a(y), then either o(f(x))

> o(f(y)) or flx) = f(y).
(P4) Ifx,y,z € L;, o(x) > a(y) > o(z) and f(x)z € E,

then f(x) = f(y) = f(z) [in particular, f(x)y € E].

Henceforth, P(x, y) denotes a path connecting vertices x
and y. The proof of the following lemma is omitted since it
is a particular case of Lemma 9.

Lemma 1. [fvertices a and b of a disk D(u) of a chordal
graph are connected by a path P(a, b) outside of D (u) [i.e.,
P(a, b) N D(u) = {a, b}], then a and b must be adjacent.

Let o be a BFS-ordering of a chordal graph G started at
a vertex u. Let also P(a, b) = (a = Xy, X5, - .., Xp_1, Xk
= b) be a shortest path of G connecting vertices a and b.
We say that P(a, b) is a leftmost shortest path if the sum
o(x,) + o(x,) + -+ o(x;_;) + o(x;) is the largest
among all shortest paths connecting a and b.

Lemma 2. Let x and y be two arbitrary vertices of a
chordal graph G. Every leftmost shortest path P(x, y) be-
tween x and y can be decomposed (see Fig. 9) into three
shortest subpaths P, = (x = x|, X5, ..., X;) (called the
vertical x-subpath), P, = (y = yy, ¥, ..., ¥i) (called the
vertical y-subpath), and P(x;, y,) (called the horizontal sub-
path) such that



y=y y=y

Y2 Y2

FIG. 9. The structure of leftmost shortest paths in chordal graphs.

1. P(x;, y) C L for some j € {0, 1,..., ecc(u)}, and
d(x,, y) = 2 (i.e., x, and y, either coincide or are
adjacent or have a common neighbor in G[L;] N
P(x; yi))s

2.x €L for0=i=1-1;

3. Vkimi ELjfor0=i=k — L.

Proof. First, we prove that |P(x, y) N L,| = 3 for any
i=1,2,...,ecc(u). Assume that the intersection of P(x,
y) and a layer L, for some index ¢, contains at least four
vertices. Let a, b, ¢, d be the first four vertices of P(x, y)
N L, on the way from x to y. We claim that ab, bc, cd
€ E.

If ab ¢ E, then, by Lemma 1, subpath P(a, b) of the
path P(x, y) is completely contained in disk D, (). In
particular, the neighbor b’ of b on P(a, b) belongs to
D, (u). Using the same arguments, we conclude that be
€ E or subpath P(b, c) of the path P(x, y) is contained in
D, (u). If bc € E, then a neighbor v of ¢ in L,_; must be
adjacent to b’ (by Lemma 1). Since o(v) > o(b), we get
a contradiction to P(x, y) being a leftmost path [we can
replace vertex b of P(x, y) with v and get a shortest path
between x and y with larger sum]. If bc ¢ E, then the
neighbor b” of b on P(b, c) is also contained in D,,_(u).
By Lemma 1, vertices b’ and b” must be adjacent, but this
is impossible since P(x, y) is a shortest path.

Thus, vertices a and b have to be adjacent. If vertices b
and c are not adjacent, then the neighbor »” of b on P(b, c)
belongs to Dq_l(u) and, by Lemma 1, it must be adjacent
to any neighbor w of @ in L,,_ . Since a(w) > a(b) holds,
again we have a contradiction to P(x, y) being a leftmost
path. Consequently, vertices b and c¢ are also adjacent. In
exactly the same way, one can show that ¢ and d have to be
adjacent. Note also that the adjacency of a with b and b with
¢ is proved without using the existence of the vertex d.

We have now ab, bc, cd € E and the induced path (a,
b, ¢, d) is a leftmost shortest path [as a subpath of the
leftmost shortest path P(x, y)]. Consider neighbors a’ and
d' in L,_, of a and d, respectively. Since o(a') + o(d)
> o(b) + o(c) and the path (a, b, c, d) is leftmost and
shortest, vertices a’ and d’ can neither coincide nor be

adjacent. But, then, we get a path (a’, a, b, ¢, d, d)
connecting two nonadjacent vertices of D, _;(u) outside of
the disk. This contradiction to Lemma 1 shows that |P(x, y)
NL|=3foranyi=1,2,...,ecc(u).

Now, let [P(x, y) N L,| = 3 and let a, b, ¢ be the
vertices of P(x, y) N L, on the way from x to y. It follows
from the discussion above that ab, bc € E and both the
neighbor @’ of a on subpath P(x, a) and the neighbor ¢’ of
c on subpath P(c, y) (if they exist) belong to layer L, ;. If,
for example, a' € L, i, then, by Lemma 1, ¢’ must be
adjacent to any neighbor vof b in L,_,. Again, since o(v)
> o(a), we have a contradiction to P(x, y) being a leftmost
path.

Furthermore, if for some index ¢, P(x, y) N Lq = {a,
b},and P(x,y) = (x,...,a’,a,b,b',...,y), then both
a’ and b’ belong to layer L, .

Summarizing, we conclude that, while moving from x to
y along the path P(x, y), we can have only one horizontal
edge or only one pair of consecutive horizontal edges. Here,
by horizontal edge, we mean an edge with both end-vertices
from the same layer. All other vertices of the path P(x, y)
belong to higher layers. "

Having the structure of a leftmost shortest path estab-
lished, we can now prove the main result for chordal graphs.
In presenting a leftmost shortest path, we use “/”’s to differ-
entiate the appropriate subpaths.

Theorem 3. Let v be the vertex of a chordal graph G last
visited by a BFS. Then, ecc(v) = diam(G) — 1.

Proof. Let x, y be a pair of vertices such that d(x, y)
= diam(G), and consider two leftmost shortest paths

P(x,v)=(x=x,, X0 ..., XjilXpy o oo

Py ’ -
vh/vh*h ceey Upy U T U)

and
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Lecc(u) i

L
q
Lq_1
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u
FIG. 10. Rightmost shortest paths P(x, v) and P(y, v).

P(y,v) =(y=yu Y0 oo o YietlVio -+ o

n
g—1> =+«

Vv , U5, U = v)
connecting vertex v with x and y, respectively (see Fig. 10).
By Lemma 2, each of these paths consists of two (perhaps
of length 0) vertical subpaths and one horizontal path of
length not greater than 2. Assume, without loss of general-
ity, that h = g and letx;, ..., v}, € L,. Since v € Leec(y)s
we also have / = h and k = g. By Lemma 1, vertices v,
v}, in L, either coincide or are adjacent. Note that, if d(x;,
vy) = 1, then d(x, y) = d(x, x,) + 1 + d(v}, y) = d(v,
vy) + 1+ d(v}, y) = d(v, y) + 1 = ecc(v) + 1, that is,
ecc(v) = d(x, y) — 1 = diam(G) — 1, and we are done.

FIG. 11.
have similar shape and the same length 2k — 1.
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Lecc(u)

Hence, we may assume that d(x,, v’,) = 2 and, therefore,
X, F v,

We distinguish between two cases. The first one is sim-
ple. Only for the second case we will need to use the special
properties of a BFS-ordering.

CASE g > h.

In this case, there exists a vertex v, ; in the intersection
P(y, v) N L,_;. Consider also a neighbor xj of x,in L,,_;.
Since vertices x; and v}, are connected by path (xj,
Xpsovos Upy Uy, 054q) outside the disk D,_,(u), by
Lemma 1, they are adjacent if they do not coincide. Hence,
d(x;,, v} ;) = 2 and, therefore, d(x, y) = d(x, x,) + 2

+ A0, y) = d(ov, v)) + 2 + d(v)4, ¥) = d(v, y)
+ 1 = ecc(v) + 1, that is, again ecc(v) = d(x, y) — 1
= diam(G) — 1.

CASE g = h.

From the discussion above (now, since g = h, we have
a symmetry), we may assume that d(y,, v;,) = 2 and y,
# v}, Consider neighbors x; and y; in L, of vertices x,
and y,, respectively [see Fig. 11(a)]. By Lemma 1, they are
adjacent if they do not coincide, that is, d(x;, y,) = 3. Now,
if at least one of the equalities d(x,, v},) = 2, d(y,, v},) =2
holds, then we are done. Indeed, if, for example, d(x,, v},)
= 2, then d(x, v) = d(x, x,) + 2 + d(vj,, v) and,
therefore, d(x, y) = d(x, x;) + d(x, yu) + d(ys ¥)
=d(x,x) + 3 + d(v), v) = d(x, v) + 1 = ecc(v) + 1,
implying that ecc(v) = d(x, y) — 1 = diam(G) — 1.

So, we may assume that x,;v;,, y,v’, € E. Moreover, since
d(y, vy,) = 2, vertices v;, and v, cannot coincide, that is,
they are adjacent. If / < h or k < h ord(x,, y,) < 3, again,
we will get d(x, y) = ecc(v) + 1 by comparing distances
d(v,y) =h +k—1,d(v,x) = h + 1 — 1 withd(x, y)
=l—-—1+d(x,y) +k—1=1+ 1+ k. Thus, we

®
u

(a) Horizontal subpaths of P(x, v) and P(y, v) are in the same layer; (b) paths P(x, v) and P(y, v)



arrive at a situation when [ = k = h, x,v},, y, v}, v,v}, € E
and d(x;, y,) = 3, d(v, x) = d(v, y) = 2k — 1 [see Fig.
11(b)]. We may also assume that d(x, y) = 2k + 1, since,
otherwise, d(x, y) = 2k = d(v, y) + 1 = ecc(v) + 1 and
we are done. We show that this final configuration [with
d(x, y) = 2k + 1] is impossible because of the properties
of BFS-orderings.

Assume, without loss of generality, that o(y,) > a(x;)
and consider the fathers f = f(y,), g = f(x;) of y, and x,,
respectively. Since d(x,, y,) = 3, we have f # g and fx,,
gy, ¢ E. By Lemma 1 and property (P3) of BFS-ordering,
vertices f and g are adjacent and o(f) > o(g). Chordal
graphs cannot contain an induced cycle of length greater
than 3. Therefore, in the cycle formed by g, x,, v}, v, Vs,
[ at least chords gv, and fv7 must be present. Since for the
father f(v7) of v7 we have o(f(v})) = o(f) > o(g),
inequality o(v}) > o(x;) must hold [here, we used prop-
erties (P1) and (P3) of BFS-orderings]. We will need the
inequality o(v}) > o(x,;) later to get our final contradic-
tion.

Now, consider vertices x,_; and v _,;. We claim that
o(v}_1) < a(x;_;). Assume that this is not the case, and
letj(je {1,2,...,k— 2}) be the largest index such that
(v} < o(x;) [recall that o(v}) = o(v) = 1 < o(x)
= o(x,)]. Then, (v, ) > o(x;;,) holds, and since j
=k — 2 and d(v, x) = 2k — 1, we obtain d(x;, v}’) =5
[because of 2k — 1 = d(v, x) = d(v, v_}’) + d(v}’, X;)
+ d(x;, x) = 2(j — 1) + d(v], x;) = 2(k — 3) + d(v],
x) =2k — 6+ d(v_;’, x;)]. Consider the father 1 = f(x;)
of x;. From the distance requirement and properties of
BFS-orderings, we conclude that ¢ # v/, ,, t # x;,,, and
o(t) > (T(v_'/-’H) > o(x;.,). Moreover, vertex f has to be
adjacent to x;,, (by Lemma 1), but cannot be adjacent to
Xjio [since o(r) > o(x;, ) and the path P(x, v) is left-
most]. Consider now the father z = f(¢) of the vertex z. It
is adjacent to x;, ,, by Lemma 1, and has to be adjacent to
Xjiq, 1O avoid an induced cycle (z, t, Xit1s Xji2s z) of
length 4. Applying property (P4) to o(r) > o(v},)
> o(x;4y) and zx;,, € E, we get zvj,,; € E, which is
impossible since d(x;, v7) = 5. This contradiction shows
that, indeed, the inequality (v’ _,;) < o(x,_,) must hold.

So, we have o(v}_;) < o(x,_,) and o(v}) > o(x;).
We repeat our arguments from the previous paragraph con-
sidering index k — 1 instead of j. [The only difference is
that now we do not have the vertex x; , = x;; on the path
P(x, v).] Again, consider the father r = f(x,_,) of x,_,.
Clearly, t # wv;. Since d(x;, y,) = 3, vertex t is not
adjacent to y,. Furthermore, ¢ does not coincide with v’
since Lemma 1 would require x, v} € E. Hence, t # v/,
and, by property (P3), o(¢) > o(v}) > o(x;). Vertex ¢
must be adjacent to x,, by Lemma 1, but cannot be adjacent
to vy, since the path P(v, x) is leftmost and o(7) > o(xy).
To avoid an induced cycle of length 4, vertex ¢ is not
adjacent to v/ as well.

Consider also the father z = f(t) of the vertex ¢ (see Fig.
12). If zy, € E, thend(x, y) = d(y,y,) + 1 + d(z, x,_,)
+dx,x) =k—1+1+2+k—2=2k anda

FIG. 12.

Illustration of the proof of Theorem 3.

contradiction to the assumption d(x, y) = 2k + 1 arises.
Therefore, z and y, are not adjacent and, hence, z # f (recall
that f is the father of y, and fv}, € E, fx;, ¢ E). By Lemma
1, zf € E. Since o(t) > o(v}) and fv), € E, by properties
(P3) and (P1), we get o(z) = o(f(v})) = o(f), that is,
0(z) > o(f). Consequently, o(t) > o(y,). Now, vertex z
cannot be adjacent to x,, since this would imply also the
adjacency of z with y, [by o(t) > o(y,) > o(x;) and
property (P4)]. But, then, in the cycle (z, t, x;, v}, v, f, 2),
only chords zvy, zv%, fuv,, ft are possible, which are not
enough to avoid an induced cycle of length greater than 3 in
G. A contradiction to the chordality of G completes the
proof of the theorem. "

3.2. Interval Graphs

Now, we consider interval graphs and LL+. Recall that
G is an interval graph if and only if G is chordal and
AT-free [11].

Theorem 4. Let G be an interval graph. Consider a BFS,
starting at some nonuniversal vertex u of G, and let v be a
vertex of the last BFS layer having the fewest neighbors in
the previous BFS layer. Then, ecc(v) = diam(G).

Proof. Let L be the last, and L', the second to last
layers of a BFS started at vertex u. Suppose that x, y is a
diametral pair of vertices of G with

ecc(v) < d(x, y). (1)

Suppose, first, that diam(G) = 2. Since u is not univer-
sal, u is not contained in L’. Consequently, for any vertex v
€ L, we have ecc(v) = diam(G), contradicting (1). Hence,
from now on, we can assume that diam(G) > 2 and, thus,
at most one of x and y is adjacent to v.

Cast 1. Both x and y are not adjacent to v.

Let P(x, v) be a path of shortest length, connecting x and
v. Vertex y cannot have a neighbor on P(x, v), because d( x,
y) > d(x, v), and neither x nor vis adjacent to y. Similarly,
x has no neighbor on shortest path P(y, v), connecting y
and v. In particular, x, y, v form an independent triple of G.

Since G is AT-free, every (x, y)-path (path connecting x
and y) has to contain a neighbor of v; in other words,
removing N[v] leaves x and y in different connected com-
ponents. This implies that at least one of x and y, say x, has
to be contained in L, since, otherwise, there is a path
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between x and y in G (via u) that does not contain a
neighbor of v.

By definition of BFS, vertex x has to have neighbors in
L'.Let U, = N[x] N L'.Ify ¢ L, vis adjacent to all
vertices from U, because, otherwise, there is an (x, y)-path
(via U, and u) not containing a neighbor of v, contradicting
the fact that G is AT-free. If also y € L, and v misses a
vertex in U, as well as a vertex in U, = N[y] N L', we
again have an (x, y)-path not containing a neighbor of v.
Thus, without loss of generality, we may assume that v is
adjacent to all vertices in U,. Since vis a vertex of L, which
has the fewest neighbors in L', we conclude that U, = N[ v]
N L.

Now, consider a vertex u, € U, and a shortest path P(v,

¥) = (v = Yo, Yis---s Yik—1» Yx = ¥) between v and y.
Since d(x, y) > d(v, y), xv ¢ E and U, = N[v] N L',
we have xy;, uy; ¢ E foreachi = 0, 1, ..., k and each
j=2,3,...,k and also y, € L. We claim that the whole

path P(v, y) is contained in L. Assume not and let y; be a
vertex of P(v, y) N L' with smallest index i. Vertices u,
and y; belong to disk D...,,—(«) and are connected by a
path outside of the disk. By Lemma 1, these vertices have to
be adjacent. But since i = 2, this is impossible.

Thus, P(v, y) C L, and, therefore, this path avoids the
neighborhood N[«] of u. Consider also shortest paths P(v,
u), P(y, u) between u and v and y, respectively. Since d( x,
y) > 2 and U, = N[v] N L', v cannot have neighbors in
U,. From this and u,y ¢ E, we conclude that neither v has
a neighbor in P(y, u#) nor y has a neighbor in P(v, u).
Consequently, vertices v, y, u form an AT in G.

CaSE 2. One of x and y, say y, is adjacent to v.

Consider a shortest (v, x)-path P(v, x) = (v = X,
Xis oo Xp_1, X = x). Since d(x, v) < d(x, y), the only
neighbor of y on P(v, x) is v.

Case 2.1. y € L.

Let x;, € L'. Since v is a vertex of L with the fewest
neighbors in L" and x,y ¢ E, there has to be a neighbor u,
of y in L', not adjacent to v. By Lemma 1, vertices x, and
u, have to be adjacent. But, then, this edge together with
path (x,, v, y, uy) create an induced cycle of length 4 in G,
which is forbidden. Therefore, x; has to be in L.

Now, we prove that the whole path P(v, x) is contained
in L. Assume not and let x; be the vertex of P(v, x) N L’
with smallest index i. Vertices u, € N[y] N L’ and x;
belong to disk D .(,,—(#) and are connected by a path
outside of the disk. By Lemma 1, these vertices have to be
adjacent. But since i = 2, we get d(y, x) = d(x, x;) + 2
= d(x, v), which is impossible. Hence, P(v, x) C L, and,
therefore, the path formed by P(v, x) and edge vy avoids
the neighborhood N[u] of u. Consider also arbitrary short-
est paths P(x, u), P(y, u) between u and x and y, respec-
tively. Since d(x, y) > 2 and x, y € L, neither x has a
neighbor in P(y, u) nor y has a neighbor in P(x, u).
Consequently, vertices x, y, u form an AT in G.
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Case 2.2. y ¢ L (ie,y € L).

Assume that P(v, x) has a vertex in L', and let x; be the
vertex of P(v, x) N L' with smallest index i. Vertices y and
x; belong to disk D,.(,,—(#) and are connected by a path
outside of the disk. By Lemma 1, they have to be adjacent,
contradicting d(x, v) < d(y, x). Therefore, again, P(v, x)
C L must hold. From the choice of v and xy ¢ E, we
deduce that there has to be a neighbor u, of x in L', not
adjacent to v. By Lemma 1, u,y € E, which contradicts
d(x, y) > 2. n

From this proof, we also conclude the following:

Corollary 5. Let G be an interval graph. Consider an LL,
starting at some vertex u of G and let v be a vertex of the last
BFS layer. Then, ecc(v) = diam(G) — 1.

3.3. AT-free Graphs

In this subsection, we consider AT-free graphs, claw-free
AT-free graphs, and LL+.

Theorem 6. Let G be an AT-free graph. Consider a BFS,
starting at some vertex u of G, and let v be a vertex of the

last BFS layer having the fewest neighbors in the previous
BFS layer. Then, ecc(v) = diam(G) — 1.

Proof. If u is universal, then diam(G) = 2 and ecc(v)
= 2, so we may assume there are at least three layers
(including {u}) in the BFS. Let L be the last, and L', the
second to last layer, of a BFS started at u. Suppose that x,
y is a diametral pair of vertices of G with

ecc(v) <d(x,y) — 1. )

Let P(x, v), P(y, v) be paths of shortest length con-
necting v with x and y, respectively. Vertex y cannot have
a neighbor on the path P(x, v), because, otherwise, d(x, y)
= d(x, v) + 1 = ecc(v) + 1, contradicting (2). Similarly,
there is no neighbor of x on the path P(y, v). In particular,
x, vy, v form an independent triple of G.

Since G is AT-free, every (x, y)-path has to contain a
neighbor of v; in other words, removing N[v] leaves x and
y in different connected components. This implies that at
least one of x and y, say x, has to be contained in L, since,
otherwise, there is an (x, y)-path in G (via u) that does not
contain a neighbor of v.

By definition of BFS, vertex x has to have neighbors in
L'.Let U, = N(x) NL'.Ify ¢ L, vis adjacent to all
those neighbors U, because, otherwise, there is an (x,
y)-path (via U, and u) not containing a neighbor of w,
contradicting the fact that G is AT-free. If y € L, and v
misses a vertex in U, as well as a vertex in U, = N(y) N
L', we again have an (x, y)-path not containing a neighbor
of v. Thus, without loss of generality, we may assume that
v is adjacent to all vertices in U .. However, d(x, y) > d(wv,



y); therefore, the shortest path P(v, y) does not use any of
the U, vertices. The neighbor of v on P(v, y) must be in L,
since, otherwise, v would not have the fewest neighbors
in L',

First, assume that P(v, y) has a vertex in L" and let y’ be
the first such vertex in the v to y direction. Let x’ be a vertex
in U, and let x” be one of its ancestors in the previous BFS
layer. If y' is adjacent to x”, then d(x, y) = 3 + d(y, y').
Butd(y,y") = d(v, y) — d(v, ') and d(v, y') = 2. Thus,
d(x, y) = d(v, y) + 1 and d(x, y) = ecc(v) + 1
contradicting (2). Therefore, x"y’ ¢ E, and we claim that
{x", v, y'} forms an AT in G. Indeed, vertex v misses the
concatenation of the direct paths from x” to u and from y’
to u. Vertex x” misses the subpath of P(v, y) from vto y’
since all vertices other than y' are in L and x"y’ ¢ E.
Vertex y’ misses the path (v, x', x"), since if x'y’ € E,
then d(x, y) = d(wv, y), which is impossible.

So, P(v, y) has to be contained in L. Now {v, y, u}
forms an AT in G. Indeed, u clearly misses P(v, y) since it
isin L. Let x" be an arbitrary vertex in U,. We have x'y ¢
E, since, otherwise, d(x, y) = 2 = d(v, y) = ecc(v).
Hence, y misses the (v, u)-path formed by the edge vx’
together with a direct path from x’ to u. Let y' be an
arbitrary ancestor of y in L’. We have vy’ ¢ E, since,
otherwise, v would no longer have the fewest neighbors in
L' and, thus, v misses the (y, u)-path formed by the edge
y'y together with a direct path from y’ to u. "

This result can be strengthened further for claw-free
AT-free graphs.

Theorem 7. Let G be a claw-free, AT-free graph. Con-
sider a BFS, starting at some (nonuniversal) vertex u of G,
and let v be a vertex of the last BFS layer having the fewest
neighbors in the previous BFS layer. Then, ecc(v)
= diam(G).

Proof. Let L be the last, L', the second to last, and L”,
the third to last layer of a BFS started at vertex u. Suppose
that x, y is a diametral pair of vertices of G with

ecc(v) < d(x,y). 3)

First, assume that diam(G) = 2. Since u is not universal,
u is not contained in L. Consequently, for any vertex v €
L, we have ecc(v) = diam(G), contradicting (3). Hence,
from now on, we can assume that diam(G) > 2 and, thus,
at most one of x and y is adjacent to v.

Cast 1. Both x and y are not adjacent to v.

Let P(x, v) be a path of shortest length, connecting x and
v. Vertex y cannot have a neighbor on P(x, v), because d( x,
y) > d(x, v) and neither x nor v is adjacent to y. Similarly,
x has no neighbor on shortest path P(y, v) connecting
vertices y and v. In particular, x, y, v form an independent
triple of G.

Since G is AT-free, every (x, y)-path has to contain a
neighbor of v». This implies that at least one of x and y, say
x, has to be contained in L, since, otherwise, there is an (x,
y)-path in G (via u) that does not contain a neighbor of v.

By definition of BFS, vertex x has to have neighbors in
L', thatis, U, = N(x) N L' # J. If y ¢ L, v is adjacent
to all those neighbors of x because, otherwise, there is an ( x,
y)-path (via U, and u) not containing a neighbor of wv,
contradicting the fact that G is AT-free. If, also, y € L, and
vmisses a vertex in U, as well as a vertex in U, = N(y) N
L', we again have an (x, y)-path not containing a neighbor
of v. Thus, without loss of generality, we may assume that
v is adjacent to all vertices in U,.

Now, consider some vertex x' € U,, adjacent to both x
and v. Vertex x’ has to be adjacent to some vertex x” in L".
By definition of BFS, x” is not adjacent to v and x, which
are not adjacent. Hence, x’, x”, x, v form a claw, contra-
dicting G being claw-free.

CASE 2. One of x and y, say y, is adjacent to v.
Case 2.1. y € L.

Casg 2.1.1. N(v) N L" C N(y) N L.

Consider a shortest (x, v)-path P(x, v). Since d(x, v)
< d(x, y), the neighbor v" of v on P(x, v) is not adjacent
to y; thus, v’ € L. In fact, the only neighbor of y on P(x,
v) is v. In particular, using P(x, v), one can construct a (v’,
u)-path P, not containing a neighbor of y. Indeed, extend
the (v, x)-subpath of P(x, v) by any shortest (x, u)-path.
If x € L, then any neighbor x" of x in L’ is not adjacent to
y [because d(x, y) > 2] and, by the definition of BFS, y is
not adjacent to any vertex of a shortest (x', u)-path. If x
itself is not contained in L, then y is not adjacent to any
shortest (x, u)-path.

Now, we claim that v’, u, y form an AT in G. To see this,
observe the following: Vertices v' and y are not adjacent
and are contained in L. Thus, v’, u, y form an independent
triple. Path (v', v, y) is a (v’, y)-path which avoids N[u].
To see that there is a path (y, y’, ..., u) which avoids
N[v'], one just has to observe that any neighbor y' of y in
L' cannot be adjacent to v’ (because, otherwise, y', y, v', y"
form a claw for any neighbor y” of y’ in L") and any
shortest (y’, u)-path cannot contain a neighbor of v'. A
similar argument shows there is a (v’, u)-path which avoids
N[y].

Cast 2.1.2. There exists w € N(v) N L' with w ¢ N(y).

Since v is a vertex of L with the fewest neighbors in L',
there has to be a neighbor y’ of y in L', not adjacent to v.
Consider a shortest (x, v)-path P(x, v). If ¥/, the neighbor
of v in P(x, v), is contained in L, then, by the same
arguments as above, v, u, y form an AT of G. Hence, v’
€ L' and we can assume that v = w.

Let ' be the neighbor of v" in P(x, v). Since d(x, y)
> d(x, v), we have yv”, y'v" ¢ E, and since P(x, v) is a
shortest (x, v)-path, we have vv” ¢ E. Consequently, v'y’
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¢ E, since, otherwise, v', v", v, y' form a claw. Further-
more, ¢ has to be adjacent to all neighbors v* of v' in L”,
because, otherwise, we have a claw v', v, v*, ¢/. This
implies that v” ¢ L (by definition of BFS) and that there is
no common neighbor y” of v" and y’ in the previous BFS
layer, since, otherwise, v”, v, y' form an AT with the paths
P, v) = (V', v, v), P(v, y") = (v, y,y"), P(y', ")
= (y', y", ¥"). (Recall that v"y" € E since ¢" has to be
adjacent to all neighbors of v" in L".)

However, by the definition of BFS, both v’ and y’ have to
have neighbors on L”, say v*, y”, respectively. Now, v, v*,
y' form an AT, where v* and y’ are joined by a path via u;
P(v, v¥) = (v, V', v¥*); P(y', v) = (y', y, v), a
contradiction.

Case 2.2. y ¢ L (ie.,y € L").

Case 2.2.1. uy € E.

First, observe that xv ¢ E since d(x, y) > 2. Now, let
v' be the neighbor of v on a shortest (x, v)-path P(x, v).
Since d(x, v) < d(x, y), v'y ¢ E and u is not adjacent to
any vertex of P(x, v)\{v'}. In particular, xu ¢ E and x
€ L. Then, there must exist a vertex x" € L’ such that xx’,
ux' € E. Furthermore, since d(x, y) = 3 > d(v, x) [i.e.,
P(x, v) is of length 2], to avoid a claw formed by v, u, v’,
x, vertices v' and u cannot be adjacent. Also, vertices x', v
are not adjacent, since, otherwise, a claw on x, x', u, v will
occur. However, now x, v, u form an AT with the paths
P(x, v), P(v, u) = (v, y, u), P(u, x) = (u, x', x).

Case 2.2.2. uy ¢ E.

Note that since uy ¢ E, ecc(v) > 2 and, thus, by (3),
diam(G) = d(x, y) > 3. Again, let ¢’ be the neighbor of
v on a shortest (x, v)-path P(x, v). Since d(x, v) < d(x,
y), y is not adjacent to any vertex of P(x, v), except v.
Further, consider a shortest (x, u)-path P’. No matter
whether x is contained in L, L' or any other layer, y cannot
have a neighbor on P’, since y € L' and d(x, y) > 3. Thus,
there is a (v, u)-path which avoids N[y]. Let P(y, u) be
a shortest (y, u)-path and let y’ be the neighbor of y on this
path. We claim that P(y, u) does not contain any neighbor
of v'. To see this, first note that the only possible neighbors
of v on P(y, u) are y and y’', since v’ is either contained in
LorL'. Wehave v'y ¢ E, since the only neighbor of y on
P(x, v) is v. However, if v'y’ € E, theny’, y, v', y” form
a claw, where y” is a neighbor of y’ in the previous layer
(which has to exist because uy ¢ E). Consequently, v’, y,
u form an AT, contradicting G being AT-free.

Thus, none of the above cases can occur, showing that (3)
cannot be satisfied. This completes the proof. "

It is easy to adapt this proof to show the following:

Corollary 8. Let G be a claw-free, AT-free graph. Con-
sider an LL, starting at some vertex u of G and let v be a
vertex of the last BFS layer. Then, ecc(v) = diam(G) — 1.
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4. K-CHORDAL GRAPHS

As mentioned in the Introduction, the examples that
show that LBFS fails to find vertices of high eccentricity all
have large induced cycles. Furthermore, both chordal and
AT-free graphs have constant bounds on the maximum size
of induced cycles, namely, 3 and 5, respectively. Thus, one
would hope that for k-chordal graphs, where k is a constant,
some form of BFS would succeed in finding a vertex whose
eccentricity is within some function of £ of the diameter. In
fact, we show that LL is sufficiently strong to ensure this.
First, we establish a lemma that is used in the proof.

Lemma 9. If vertices a and b of a disk D (u) of a k-
chordal graph are connected by a path P(a, b) outside of
D,(u) [i.e., P(a, b) N D(u) = {a, b}, then d(a, b) = | k/2..

Proof. Assume that d(a, b) > |_k/2J, and let P be an
induced subpath of P(a, b) connecting vertices a and b.
Consider shortest paths P(a, u) and P(b, u) (connecting a
with u and b with u, respectively). Using vertices of these
paths, we can construct an induced path Q(a, b) with the
property that all its vertices except a and b are contained in
D, _(u). By our construction, the cycle C obtained by the
concatenation of P and Q(a, b) is induced. Since d(a, b)
> |_k/2J, both paths P and Q(a, b) must be of length
greater than L k/2]. Therefore, the cycle C has length at least
Lk/2] + 1 + Lk/2] + 1 > k, which is impossible. =

Theorem 10. Let G be a k-chordal graph (k = 4). Con-
sider an LL, starting at some vertex u of G, and let v be a
vertex of the last BFS layer. Then, ecc(v) = diam(G) — k2.

Proof. Let x, y be a pair of vertices such that d(x, y)
= diam(G), and consider two shortest paths P(x, v) and
P(y, v) connecting vertex v with x and y, respectively.
Also, let g be the minimum index such that

L, N (P(x, v) U P(y, v)) # D

Consider a vertex z € L, N (P(x, v) U P(y, v)), and
assume, without loss of generality, that z belongs to P(y, v)
and is the vertex of L, N P(y, v) closest to v. We have d(v,
z) + d(z, y) = d(v, y). Consider also the shortest paths
O(x, u) and Q(y, u) connecting vertex u with x and y,
respectively, and vertices x" € L, N Q(x, u) andy" € L,
N Q(y, u) [see Fig. 13(a)].

Suppose that ecc(v) < d(x, y) — Lk/2]. In particular, we
have

d(x, y) > max{d(x, v), d(y, v)} + Lk/2.. 4)
Then, the following claims hold:
Claim 1. L, N P(x, v) # <.

If L, N P(x, v) = O, then vertices x" and z belong to
D ,(u) and can be connected outside of D (u). By Lemma
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9, d(x', z) = Lk/2] must hold. We also have d(x, x')
= d(v, z) because v € L,..,y. Therefore, d(x, y) = d(x,
x")y +d(x', z) + d(z, y) = d(v, z) + Lk/2] + d(z, y)
= d(v, y) + Lk/ ZJ, which contradicts (4).

In what follows, we may assume that z # u, since if z
= u, then diam(G) = d(x, y) = d(y, u) + d(u, x) = d(y,
u) + d(u, v) = d(v, y) = ecc(v).

Now, let x, and v, be vertices of L,N P(x, v) closest
to x and v, respectively. Analogously, we can define vertices
y,and v, of L, N P(y, v). Clearly, z = v,. Consider also
in L,_; neighbors x",y", x., y! of vertices x', ¥', x,, V.
respectively [see Fig. 13(b)]. Since vertices x” and y” be-
long to D,,_;(«) and can be connected outside of D, _(u),
by Lemma 9, d(x", y") = | k/2]. Similarly, by considering
disk D (u) and its vertices v, and v,, we deduce that d(v,,
u) = k2],

Claim 2. d(x,, v,) = 1 and d(y,, v,) = 1.

Because of symmetry, we will only show that d(y,, v,)
= 1. Assume that d(y,, v,) = 2. Since vertices x” and y’,
belong to D, ;(u) and can be connected outside of
D,_,(u), by Lemma 9, d(x", y}) = Lk/2]. We also have
d(x, x") = d(v, v,). Therefore, d(x, y) = d(x, x") + 1
d(x", y) + 1+ d(y,, ) = d(v, v) + Lk/2] + 2
d(y,. y) = d(v, v) + d(vy, y,) + d(y,. y) + Lk/2]
d(v, y) + Lk/2], which contradicts (4).

I+ +

Claim 3. If d(x, v,) = 1, then d(x, x,) = d(x, x")
and d(y, y') = d(v, v,). Symmetrically, if d(y,, v)) = 1,
then d(y, y,) = d(y, y') and d(x, x") = d(v, v,).
Evidently, d(x, x') = d(x, x,). Also, since v € L., We
have d(y, y') = d(v, v,) and, by Lemma 9, d(x", y")
< [k/2]. Let now d(x,, v,) = 1 and assume that d(x, x,)
> d(x, x") or d(v, v,) > d(y, y'). Then, d(x, y) = d(x,
Xy + 1+ dix", y) + 1 + dy', y) < d(x, x,) + 1

ecc(u) T

(b) u®

Shortest paths P(x, v), P(y, v), Q(x, x"), and Q(y, y').

+ Lk/2) + 1 + d(v, v) = d(x, v) + 1 + [k/2], and a
contradiction to (4) arises.

Claim4. Ifx,= v,, thend(x, x,) = d(x,x") + 1 and
d(y, y") = d(v, v,). Symmetrically, if y, = v,, then d(y,
y,) = d(y, y") + I and d(x, x") = d(v, v,).

We have d(y, y') = d(v, v,) = d(v, x,) and d(x, x")
= d(v, v,). If d(x, x") = d(x, x,), then d(x, y) = d(x, x,)
+ d(x,, v,) + d(v,, y) = d(x, x") + d(v,, v,) + d(vy,
y) = d(v, vy) + Lk/2] + d(v,, y) = d(v, y) + fk/zj, and
we arrive at a contradiction to (4). Thus, d(x, x,) = d(x,
x") + 1 must hold. Now, if d(x, x,) = d(x, x") + 2 or d(wv,
v,) >d(y,y") [ie., d(x, x,) + d(v, v,) = d(x, x") + d(y,
y') + 2], then d(x, y) = d(x, x") + 1 + d(x", y") + 1
+d(y',y) =d(x, x,) +d(v, x,) — 2+ 1+ Lk/2] +
1 = d(x, v) + L k/ ZJ, and, again, a contradiction to (4)
occurs.

From Claims 3 and 4, we conclude that equalities d(y,
y') = d(x, x') = d(v, v,) = d(v, v,) must always hold.
Denote this distance by ¢. Clearly, t = ecc(u) — g. We will
distinguish between three (up to symmetry) cases, depend-
ing on whether vertices v,, x, (respectively, vy, y,) are
adjacent or coincide.

Case 1. d(v,, x,) = d(v,, y,) = 1.

By Claim 3, we have r = d(y, y") = d(y, y,) = d(v, v,)
= d(x, x") = d(x, x,) = d(v, vy). We may choose x" =
x,and y' =y, [see Fig. 14(a)]. Since d(x, y) = 2t + 2
+ |k/2] and d(v, x) = d(v, y) = 2¢ + 1, by assumption
(4), we conclude that d(x, y) = 2¢t + 2 + |_k/2J, that is,
diy', x) = L2l + 2 = 4, A", y) = d(v,, ©y)
= [ k/2] = 2. (Note that Lemma 9 applies to x”, y" as well
as to v,, v,.) We will show that this situation is impossible
by creating in G an induced cycle of length at least k£ + 1.
Let P(v,, v) and P(v,, v) be subpaths of shortest paths P(x,
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(a) u®

FIG. 14.

v) and P(y, v), connecting corresponding vertices. Con-
sider in a subgraph of G induced by P(v,, v) U P(v,, v) a
shortest (v, v,)-path P'. The length of P’ is at least Ek/ 2.
Analogously, in a subgraph of G induced by subpaths Q(x",
u), Q(y", u) of paths Q(x, u), Q(y, u), consider a shortest
(x", y")-path Q. Its length again is at least | k/2]. Using
paths P’, Q' and edges y"y’, y'vy, vx', and x'x" of G, we
can create a cycle of length at least Lk/2) + 2 + Lk/2] +
2. In this cycle, because of distance requirements, only
chords v,y" and wv.x" are possible. Even having these
chords, we still have an induced cycle of length at least
Lk/2] + 1 + Lk/2] + 1 > k in G, which is impossible.

Cast 2. d(v,, x,) = d(v,, y,) = 0.

By Claim 4, we have t = d(y, y') = d(y, v)) — 1
=d(v, v,) = d(x,x") =d(x, v,) — 1 = d(v, v,) [see Fig.
14(b)]. Again, since d(x, y) = 27 + 2 + Lk/2] and d(w,
x) = d(v, y) = 2t + 1, by assumption (4), we get d(x, y)
= 2t + 2 + Lk/2]. Therefore, d(y’, x') = Lk/2] + 2
=4, d(x", y") = d(v,, v,) = Lk/2] = 2. Note also that
d(v, ') > t and d(v, x') > t as d(v, x) = d(v, y) = 2t
+ 1 and d(x, x") = d(y, y") = t. Consider a shortest (x’,
y')-path P’ in a subgraph of G induced by vertices of Q(x,
x")y U P(x, v) U P(y, v) UQ(y,y"), where Q(x, x") and
O(y, y") are corresponding subpaths of paths Q(x, u) and
O(y, u).

We claim that v,, v, € P'. Indeed, if neither v, nor vy,
is on P’, then P’ connects vertices x’, y" outside of D (u)
and, therefore, by Lemma 9, we would have d(x’', y')
= [ k/2], which contradicts d(x’, y') = Lk/2] + 2. If only
one of v,, v, (say, without loss of generality, v,) is on P’
then now a subpath of P’ connects vertices v, and y’
outside of D _(u), and, hence, d(v,, y') = L k/2], implying
that d(x, y) = d(x, v,) + d(v,, y') + d(y', y) =t + 1
+ Lk/2] + ¢t = 2t + 1 + Lk/2], which is impossible.
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Lccc(u)

(b) u®

Tllustration for Cases 1 and 2.

As in Case 1, we also consider a shortest (x”, y”)-path Q'
in a subgraph of G induced by subpaths Q(u, x"), O(u, y").
Paths P’, Q' together with edges x'x", y'y"” form a cycle C
in G. Since P'\{x', v,, vy, y'} C WD ,(u) and o"\{x",
y"} © D,_,(u), any possible chord of C must go from
vertices x”, y” to vertices x', v,, Uy y'.

By the distance requirement d(y’, x') = 4, chords x"y’
and y”x' are impossible. Also, x"vy, y'v, ¢ E(G), because,
otherwise, d(x, y) =t + 2 + ¢t + 1 = 2t + 3, which is
less than 2¢ + 2 + Lk/2] for k = 4. Hence, the only
possible chords in C are x"v, and y"v,. Since d(x", y")
= d(v,, v,) = Lk/ 2J, even with those chords we obtain an
induced cycle (subcycle of C) in G of length at least Lk/2]
+ 1+ k2]+1 >k

Cast 3. d(v,, x,) = 0 and d(v,, y,) = 1.

Similar to Cases 1 and 2, we can show that this case is
also impossible; we can create an induced cycle of length at
least k + 1 in G. .

Note that Theorem 10 does not hold for chordal graphs
(i.e., k = 3) as Figure 4 shows. To get the bound of
diam(G) — Lk/2] = diam(G) — 1 on ecc(v), for chordal
graphs, we need to choose a vertex v visited last by BFS.

For 4-chordal graphs and 5-chordal graphs (in particular,
for AT-free graphs), we have the following corollary:

Corollary 11. Let G be a 5-chordal graph. Consider an
LL, starting at some vertex u of G, and let v be a vertex of
the last BFS layer. Then, ecc(v) = diam(G) — 2.

Again, this bound on ecc(wv) is tight. Figure 8 represents
a 4-chordal graph G for which an LBFS exists such that the
vertex v, last visited by this LBFS, has eccentricity equal to
diam(G) — 2.



FIG. 15. LL: ulik|fdch|lengm|abv.

Examples of k-chordal graphs with a larger difference
between the diameter and the eccentricity of the vertex
visited last in some variant of BFS are given in the follow-
ing two figures. Figure 15 shows a 6-chordal graph. For this
graph G, there is an LL, starting at vertex u, that ends at
vertex v, where ecc(v) = diam(G) — 3. This shows that the
bound of diam(G) — 3 given by Theorem 10 is tight for
6-chordal graphs.

In Figure 16, each of the dashed edges stand for a path of
length k. Thus, this graph G is 4k-chordal. The diameter of
G is also 4k, and the eccentricity of v, the vertex visited last
by some LBFS started at u, is ecc(v) = 2k + 1. Hence, the
difference between the diameter and the eccentricity ecc(v)
is 2k — 1. This shows that, at least for the 4k-chordal
graphs, the bound on ecc(v) (for LL) given in Theorem 10
is close to the best possible. It is within 1 of the bound that
could be achieved by LBFS.

5. CONCLUDING REMARKS

In this paper, we have shown that various versions of
BFS, when applied to certain restricted families of graphs,
end at a vertex whose eccentricity is close to the diameter of
the graph. All these restricted families have no induced
cycles greater than a small constant. This motivated our
look at the behavior of LL on k-chordal graphs and we
discovered that the difference between the graph’s diameter
and the eccentricity of the last vertex visited by LL is at
most | k/2 . This raises the question of whether other ver-
sions of BFS or a multisweep algorithm could improve on
this bound. Furthermore: Are there interesting restricted
families of graphs where there is no bound on the size of
induced cycles, yet some variant of BFS ends at a vertex

v
.

a A b
@ « @ )
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u

FIG. 16. LBFS: u].. .Jcablv.

whose eccentricity is within a small constant of the graph’s
diameter?

One of the referees of the paper raised the following
interesting question: Is there a “robust” algorithm (see
[12, 15]) for determining, in linear time, the diameter of
an {AT, claw}-free graph? Note that we have shown that,
given an {AT, claw}-free graph, both LL+ and LBFS
will end at a vertex of maximum eccentricity. Although
this algorithm requires linear time, no linear time recog-
nition algorithm is known for {AT, claw}-free graphs,
and, thus, one would like to have a linear time algorithm
that would either find a vertex of maximum eccentricity
or show that the graph is not {AT, claw}-free by dem-
onstrating either a claw or an AT. Note that the same type
of question can be asked for AT-free graphs, in particu-
lar: Is there a linear time algorithm that can get within 1
of the graph’s diameter or show that the graph is not
AT-free by demonstrating an AT? We leave such ques-
tions for future investigation.
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