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We present an O(n log*n)-time randomized algorithm for
gossiping in radio networks with unknown topology.
This is the first algorithm for gossiping in this model
whose running time is only a polylogarithmic factor away
from the optimum. The fastest previously known (deter-
ministic) algorithm for this problem works in time
0(n®*2log?n). © 2004 Wiley Periodicals, Inc.
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1. INTRODUCTION

The two classical problems of disseminating information
in computer networks are broadcasting and gossiping. In
broadcasting, we want to distribute a given message from a
distinguished source node to all other nodes in the network.
In gossiping, each node v in the network initially contains a
message m,, and we wish to distribute each message m, to
all nodes in the network. In both problems, we would like to
minimize the time needed to complete the task.

In radio networks, a message transmitted by a processor
is sent to all processors within its range. The range relation
is represented by a graph of nodes with directed edges
between them. All processors work synchronously, and if a
processor u transmits a message m at time step ¢, the
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message reaches each neighbor v of u at the same time step.
Node v will successfully receive m only if u is the only
processor, among those whose range contains v, that trans-
mits at time ¢. Since the communication links are unidirec-
tional, there is no feedback mechanism in the network (see,
e.g., [21]), and, thus, in general, a node does not know for
certain whether its transmissions were successful. Further,
we assume that collisions cannot be resolved or detected,
that is, if messages from two or more processors reach v at
time ¢, v does not receive any message and it does not know
that the collision occurred. This is motivated by situations
when message collisions are difficult to distinguish from
background noise, in which protocols that do not depend on
the accuracy of the collision detection mechanism (see [13,
15]) will be more reliable.

We focus on gossiping algorithms that do not use any
information about network topology. Such topology-inde-
pendent algorithms are useful in networks with mobile users
or unstable topologies, since, then, one does not need to
change or reconfigure the protocol after topology changes.
As long as the network is strongly connected and no
changes occur during the actual execution of the algorithm,
the task of gossiping will complete successfully. The strong
connectivity assumption is necessary for gossiping to be
meaningful.

Past Work

Most of the previous work on radio networks focused on
broadcasting. If the topology of the network is known to all
processors, Gaber and Mansour [14] showed that broadcast-
ing can be achieved in time O(D + 10g5n), where D is the
network diameter. Diks et al. [12] gave efficient broadcast-



ing algorithms for special types of known networks. It is
also known that computing an optimal broadcast schedule
for a given network is NP-hard, even for points in the plane,
where the graph is induced by node ranges, see [6, 8, 27].

For networks with unknown topology, Bar-Yehuda et al.
[3] gave randomized algorithm that achieves broadcast in
expected time O(D log n + log®n). This is very close to the
lower bound of (D log(n/D)), by Kushilevitz and Man-
sour [19], and it matches this lower bound for a wide range
of depth values, for example, when D = O(n' 9, for any
€ > 0. Further, if D is a constant, it also matches the lower
bound of Q(log®n) for constant diameter networks, ob-
tained by Alon et al. [1].

In the deterministic case, Bar-Yehuda et al. [3] gave an
Q(n) lower bound for constant-diameter networks. For gen-
eral networks, the best currently known lower bound of (n
log n) was obtained by Bruschi and del Pinto [5] and,
independently, by Chlebus et al. [7]. In [7], the authors also
presented a broadcast algorithm with time complexity
O(n'"®)—the first subquadratic upper bound. This upper
bound was later improved to O(n**log®n) by De Marco
and Pelc [11]. Chlebus et al. [8] developed several broad-
casting algorithms, including one with time complexity
O(n*'?). In an independent work, using a probabilistic
construction, Peleg [24] gave an O(n*’*Vlog n) upper
bound. Recently, Chrobak et al. [10] presented a determin-
istic algorithm for broadcasting with time complexity O(n
log®n), thus nearly matching the lower bound of Q(n log n)
from [5, 7]. As in [24], this broadcasting algorithm was
constructed using a probabilistic argument.

The problem of gossiping has been intensely studied in
various network models (see, e.g., [16]), but relatively little
work has been done for radio networks. Ravishankar and
Singh [25, 26] studied gossiping algorithms for some re-
stricted topologies, including paths and rings, under proba-
bilistic assumptions on the spatial distribution of nodes. In
our previous work, [10], we developed a deterministic al-
gorithm for gossiping with time complexity O(n*'*log®n),
which, to our knowledge, is the only subquadratic algorithm
for gossiping in radio networks with unknown topology.

The case of undirected graphs, that is, networks with
bidirectional links, is known to be easier. For this case,
Chlebus et al. [7] showed an algorithm that can achieve
gossiping in linear time. (They presented it as an algorithm
for broadcasting, but it can be easily extended to perform
gossiping.) Even if the messages are restricted to have size
O(log n), the work of Bar-Yehuda et al. [4] implies that,
using randomization, gossiping in undirected graphs can be
achieved in expected time O(n log?n).

The results from [4] underscores the difference between
the directed and undirected networks, since, for directed
graphs, it is known that if the messages have size O(log n)
then any gossiping algorithm must take time Q(n?), even if
the input graph is revealed (see [9]). In this paper (as well
as in [10]), we make no assumptions on the message size.

120 NETWORKS—2004

Our Results

We give a randomized O(n log*n)-time algorithm for
gossiping in radio networks with unknown topology. Our
basic algorithm is Monte Carlo and it has the following
performance characteristics: For any 0 < € < 1, in time O(n
log®n log(n/€)) it completes gossiping with probability at
least 1 — €. This easily yields a Las Vegas algorithm with
expected running time O(n log*n).

2. PRELIMINARIES

Radio Networks

A radio network (see [3, 8]) is defined as an n-node
directed graph whose nodes are assigned unique identifiers
from the set {1, 2, ..., n}. Throughout the paper, for
gossiping to be meaningful, we assume that the network is
strongly connected. If there is an edge from u to v, then we
say that v is an out-neighbor of u and u is an in-neighbor of
0.

Initially, each node v contains a message m,, and has no
other information. The time is divided into discrete time
steps. All nodes start simultaneously, have access to a
common clock, and work synchronously. (As noted by
Peleg [24], the assumption about a common clock is not
necessary.) At any time step, a node can be in one of two
states: the receiving state or the transmitting state. A gos-
siping algorithm is a protocol that, for each identifier id and
for each time step ¢, given all past messages received by id,
specifies the state of id at time ¢. If id transmits at time 7, the
protocol specifies the message. A message m transmitted at
time 7 from a node u is sent instantly to all its out-neighbors.
However, an out-neighbor v of u receives m at time step ¢
only if vis in the receiving state and if no collision occurred,
that is, if the other in-neighbors of v do not transmit at time
t at all. Further, collisions cannot be distinguished from
background noise. If v does not receive any message at time
t, it knows that either none of its in-neighbors transmitted at
time ¢ or that at least two did, but it does not know which of
these two events occurred.

The running time of a gossiping algorithm is the smallest
t such that, for any strongly connected network topology
and for any assignment of identifiers to the nodes, each node
receives all messages m,, no later than at step ¢.

Simplifying Assumptions

For clarity of presentation, we will present our algo-
rithms as if the nodes knew n, the size of the network. This
assumption can be eliminated by a standard doubling tech-
nique (see [7, 8]) that works as follows: We organize the
computation into phases, and we modify a given algorithm
so that in phase i only nodes with labels at most 2’ partic-
ipate in the algorithm. This does not change the asymptotic
running time.

Further, we will also assume throughout the paper that n



is a power of 2. For other n, the processors can execute the
algorithm for the nearest power of 2 larger than n, without
changing the asymptotic running time.

Notation

By V, we denote the set of nodes, and individual nodes
are denoted by letters u, v, . ... Messages are denoted by
the letter m, possibly with indices. The message originating
from a node v is denoted by m,. The whole set of initial
messages is M = {m, : v € V}. During the computation,
each node v will store a set of messages M, that have been
received by v so far. Initially, M, = {m,}. Without loss of
generality, whenever a node is in the transmit mode, we can
assume that it transmits the whole M . This is achieved by
a procedure denoted transmit(M,). Procedure receive( )
puts v in the receive mode and it returns the received
message or null if no message has been received.

3. LIMITED BROADCAST

One component of our algorithm is a procedure for
limited broadcasting. Given an integer k and a node v, the
goal of limited broadcasting is to send the message M, to at
least k nodes in the network. We refer to v as the source
node or the node that initiates the broadcast and to M, as the
source message.

In [10], the broadcasting algorithm is defined by a se-
quenceg =S¢5, ...ofsubsetsof {1,2,...,n}. Werefer
to the sets S, as transmission sets. At time ¢, any node v that
has already received the source message checks whether v
€ S,. If so, v transmits the message; otherwise, v is quiet.
We modify the algorithm from [10], so that it performs the
broadcasting procedure for only O(k log®n) steps. Below,
we appropriately refine the correctness proof, since the
proof from [10] is not sufficient for our purpose.

The pseudocode for the algorithm executed by each node
is given below. Each node v has a Boolean flag active,, that
indicates whether v is active, that is, whether v has received
a source message. Each iteration of the for-loop lasts one
time step. The value of constant y will be determined later.

Procedure LTpBroADCAST, (k).
for r =0, 1,..., yk log’n — 1 do
if active,, and v € S, then transmit(M ,)
else
m < receive();
if m # null then
M,< M,U {m};
active,, <— true

Lemma 1. Assume that, initially, exactly one node u is
active and that all nodes v begin executing
LtpBroapcast, (k) simultaneously. Then, for some constant
v independent of k, after the computation is complete, at
least k nodes will receive the message from u.

Proof. Without loss of generality, assume that n = 2.
We first explain the construction of the transmission sets
from [10].

It was shown in [10] that there is a constant « such that

for eachj = 0, ..., log n there is a family S‘j = (Sjyo,
Sids e Sj,aj_l) of a; = a2’ log n sets with the following
property:

(*) For any two disjoint sets X, ¥ with 2/~ ' < |X| = 2/ and
|Y| = 2/ there exists a set §;;in §; such that X N qui|
=landY NS, =0

Let y = 12a + 2. The sequence S consists of stages,
with each stage, except possibly the last one, having log n
+ 1 steps. Note that the number of stages is [ vk log”n/(log
n+1)] = 6ak log n + 1. The transmission set at the jth
step of stage s, that is, S, for 7 = s(logn + 1) + j, is
Sj,s mod a;*

Among the active nodes, we distinguish two types of
nodes: frontier nodes, which still have inactive out-neigh-
bors, and inner nodes, which do not. If there is a time step
t < vk logzn when there are k or more frontier nodes, then
the lemma holds trivially. So, from now on, we assume that,
at each step, the number of frontier nodes is less than k.

We define a sequence of stages s, = 0, sy, ..., ;4
= 6ak log n, where 1 = 5., — 5. = 2ak log n for all
c. Denote by i, and f, the number of inner and frontier
nodes, respectively, when stage s, is about to start. We will
choose s, ..., s; so that the following invariant holds for
each ¢ = [

N

c

2l“+f“22a logn’

ey

Given (1), we can prove the lemma as follows: The number
of nodes that have received the message when stage s, ,
ends is at least

$;41 — 2aklogn -

S
D=L )=

= =
4a logn 4alogn

So, it is sufficient to construct s, . . ., s, that satisfy (1).
We define these stages inductively. For ¢ = 0, we have s,
=0, i, = 0, and f, = 1, so (1) holds. Suppose that we
have determined some s,.. If 5. > 4ak log n, set [ = c and
we are done. Otherwise, we proceed as follows:

Let F be the set of frontier nodes at the beginning of
stage s, and let g be such that 28! =< |F| = f. < 2%. For
eachj=1,...,¢g,let Y; be the set of nodes that received
the message in stages s., s, + 1,...,s. + a; — 1 (but
were inactive when stage s, started). We have two subcases:

Cast 1. There is j for which |Y;| = 2/. In this case, take
Sex1 = 8. + a;. At least |Y;| new nodes received the
message, SO
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Se+1

j
2 " 2alogn’

2if+1 +fc+l = 2lc+fc + |Y1| = za l:)gn

Cask 2. For each j, we have |Y;| = 2/. We show that, in this
case, all nodes in F will become inner after a, stages.

Fix any node v that is inactive when stage s, starts and
whose set X of in-neighbors in F is not empty. Pick j such
that 2! = [X] < 2/. Since |Y;| = 2/, by property (¥),
family S ', contains a set S; ; that his X and avoids ;. This S, ;
will occur in one of the stages s, s, + 1,...,s. + q;
- 1.

All in-neighbors of v are either in X or are inactive when
stage s, starts. When we use §; ; for transmission, then

(i)  Exactly one in-neighbor of v in X will transmit be-
cause [S;, N X| = 1,

(ii)  The nodes from Y; will not interfere because S;; N Y;
= J, and

(iii) The nodes that were inactive at the beginning of stage
s. and are not in Y; remain inactive when §;; is
issued, so they will not transmit.

Therefore, v will receive the message when §; ; is issued
(unless it has already received it earlier). Since v was an
arbitrary inactive out-neighbor of F, we conclude that all
nodes in F will become inner after a, stages.

Take 5., = s, + a,. In this case, i.,; =i, + f. and
f.=28"" 5o

2iv+1 +.fc'+1 = 2(lc +f£) + O = 21c +f;. +.fL

S
g1 — ctl

- e > tefl
2a logn 2alogn’

We thus proved that (1) holds for s, ,. Further, since |F| =
k, we have a, = a28log n = 2ak log n, and, thus, in both
subcases, we have 5., ; — s. = 2ak log n. Thus, the proof
of the lemma is now complete. "

4. DISTRIBUTED COUPON COLLECTION

In each phase of our algorithm, we will attempt to
distribute each message m, to some number of nodes, by
performing a sequence of limited broadcasts. We need to
achieve two goals. To obtain a good running time, the
number of limited broadcasts must be small. Further, each
message m,, should participate in at least one limited broad-
cast, that is, m, must be in at least one M,,, for some u that
initiates a limited broadcast.

To choose the nodes v for which we initiate a limited
broadcast, we use randomization. The principle behind the
random process that we use is similar to that in the coupon
collector’s problem. There are two differences though. First,
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each coupon may have several copies. Second, since we do
not have enough time to coordinate the choices, we cannot
guarantee that exactly one node will initiate broadcasting.

We think of V as a set of n bins and M as a set of n
coupons. Each coupon has at least k copies, each copy
belonging to a different bin. M, is the set of coupons in bin
v. Consider the following process: At each step, we open
bins at random, by choosing each bin, independently, with
probability 1/n. If exactly one bin, say v, is opened, all
coupons from M, are collected. If no bin is opened, or if two
or more bins are opened, a failure occurs and no coupons are
collected. How many steps do we need so that with high
probability (a copy of) each coupon is collected?

The distributed coupon collection can be written in
pseudocode as follows:

Procedure DistCouponColl(s).
repeat s times
for each bin v do
with probability 1/n do open v
else close v
if exactly one bin v is opened then
collect all coupons from M,

Lemma 2. Assume that we have n bins and n coupons and
that each coupon has at least k copies, each copy belonging
to a different bin. Let & be a given constant, 0 < 6 < 1, and
s = (4nlk)In(n/d). Then, after performing DistCoupon-
Coll(s), with probability at least 1 — 0, all coupons will be
collected.

Proof. The lemma is trivially true for n = 1, so we can
assume that n = 2. Let x,, ; be the event that coupon m is
collected at a given step j. Then, Pr[,, ;] is the probability
that one bin containing m is opened and all other bins are
closed.

For all m and j, we have

P k | "' ok | 1\" &
1= — — > — | =>=—
r[X”’"]_n n T n n) — 4n’

where the last inequality follows from the fact that the
sequence (1 — 1/n)" is monotonely increasing. The prob-
ability that some m is not collected in s steps is

K\
Pt \/ wen /N j=s=Xm ] = n(] - 4n> = ne M < §,

by the definition of s. "

5. THE GOSSIPING ALGORITHM

We now present our Monte Carlo algorithm for gossip-
ing. Each node v performs its version of the algorithm:



Algorithm RanpGossrp,(€).
6 < €llogn
fori =0,1,...,logn — 1 do (phase i)
§; < (4n/2H1n(n/8)
repeat s, times
with probability 1/n do active, < true
else active, < false
LtpBRroapcast, (271

Theorem 1. Let €, 0 < € < 1, be a given constant. With
probability at least 1 — €, Algorithm RanDGoOsSIP(€) com-
pletes gossiping in time O(n log’n log(n/e)).

Proof. In phase i, the call to LtpBroapcast, (2"
costs O(2log?n), so phase i costs O(s;2log’n) = O(n
log?n log(n/8)). Since we have log n phases and 8 = e/log
n, this implies the bound on the running time of the algo-
rithm.

Initially, when phase O starts, each m,, is in one set M,
namely, in M,. The algorithm attempts to maintain the
invariant that after phase i each m, is in at least 2'*' sets
M., If this invariant is preserved at each phase, the gossip-
ing will complete successfully, since after phase logn — 1,
each m,, will be in n sets M. Thus, it is sufficient to prove
that the probability that the invariant fails in some phase is
at most €.

The process of distributing messages in a given phase i is
equivalent to the distributed coupon collection problem
described in the previous section, where we view each node
as a bin and active nodes correspond to open bins. Thus, by
Lemma 2, the probability that the invariant fails in this
phase, assuming that it has not failed in any previous phase,
is at most 8. So, overall, the probability of failure in some
phase is at most log n + 6 = e. "

To obtain a Las Vegas algorithm, run RanpGossip(e)
with € = 1/n. After the algorithm halts, each node that has
not received n different initial messages announces that a
failure occurred. Since all these nodes send out the same
message, this can be achieved with just one broadcast. If B
is the running time of the broadcasting algorithm, after B
steps, each node knows whether the gossiping was success-
ful or not. If the gossiping failed, we run a naive, determin-
istic RounpROBIN algorithm that consists of n rounds, with
each node transmitting once in each round. This will
achieve gossiping in time O(n?). Overall, the expected
running time will be O((1 — 1/n)n 10g4n + (1/m)n?)
= O(n log*n). Concluding, we get the following theorem:

Theorem 2. There exists a randomized Las Vegas algo-
rithm for gossiping with expected running time O(n log*n).

6. FINAL COMMENTS

Several open problems remain: The only known lower
bounds for gossiping are those for broadcasting [1, 5, 8], a
seemingly easier problem. The gap between lower and

upper bounds is particularly wide in the deterministic case:
between ()(n log n) and 0(n3/210g2n). Closing or at least
reducing this gap is an interesting open problem.

Our algorithm is probably not optimal. One possible
research direction is to investigate whether one can improve
the running time of our algorithm by using the randomized
broadcasting algorithm from [3] to perform limited broad-
cast. It is not quite clear whether the algorithm from [3] can
be modified to satisfy Lemma 1. Further, the analysis of this
modified algorithm will probably be much more compli-
cated.

Improving the bounds on gossiping or broadcasting may
resolve the question whether gossiping is harder than is
broadcasting in the radio network model (both in the ran-
domized and the deterministic case). Our result implies that,
at least in the randomized case, the difference is at most a
polylogarithmic factor.
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Note added in proof. D. Kowalski and A. Pelc showed
recently that the lower bound of Q(n) in [13] mentioned in
the introduction is not valid. See [D. Kowalski and A. Pelc,
Deterministic broadcasting time in radio networks of un-
known topology, in Proc., 43rd Annual IEEE Symposium
on Foundations of Computer Science, 2002, pp. 63-72.]
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