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Abstract

In this paper the modulation of intensity matrices arising in cancer radiation

therapy using multileaf collimators (MLC) is investigated. It is shown that the

problem is equivalent to decomposing a given integer matrix into a positive linear

combination of (0; 1) matrices. These matrices, called shape matrices, must have
the strict consecutive-1-property, together with another property derived from the

technological restrictions of the MLC equipment. Various decompositions can be

evaluated by their beam-on-time (time in which radiation is applied to the patient)

or the treatment time (beam-on-time plus time for set-ups). We focus on the former,

and develop a nonlinear mixed integer programming formulation of the problem.

This formulation can be decomposed to yield a column generation formulation: a

linear program with a large number of variables that can be priced out by solving

a subproblem. We then develop a network model in which paths in the network

correspond to feasible shape matrices. As a consequence, we deduce that the column

generation subproblem can be solved as a shortest path problem, and so obtain our

main theoretical result that the problem is solvable in polynomial time. Furthermore,
we are able to develop two alternative models of the problem as side-constrained

network 
ow formulations. Finally, a numerical comparison of our exact solutions

with those of well-known heuristic methods shows that the beam-on time can be

reduced by a considerable margin.

1 Introduction

In most parts of the world, cancer is one of the major causes of deaths. In order to �ght this
disease, radiation therapy is used very often, in particular, in cases where the tumor can
be localized and metastases have not yet started to form. In such a situation, radiation is
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applied to destroy the tumor (target volume) while maintaining the functionality of organs
which are close to the tumor (organs at risk) and thus subject to at least some of the
radiation applied to the tumor.

In order to apply radiation from an external source, medical linear accelerators are used.
They are part of a gantry which can be rotated about the patient, who is positioned and
�xed on a couch (see Figure 1).

Figure 1: A medical linear accelarerator with a beam head and a treatment couch

In the design of the treatment plan information has to be collected and several decisions
have to be made individually for each patent, all of which are of crucial importance for the
quality of the radiation plan. (see Figure 2.)

(1) The location of the target volume and organs at risk.

(2) A discretization of the radiation beam head into bixels.

(3) A discretization of the target volume and risk organs into voxels.

(4) A set of positions at which the gantry stops in order to release radiation.

(5) A decision on the intensity function, i.e. the amount of radiation released at each
stop and in each bixel.

(6) The modulation of the uniform radiation to achieve (5).

The location of target volume and organs at risk is done using computer tomography (CT).
Correct three-dimensional images are assumed in all subsequent models. Research in this
area is on updating images due to movement of the patient on the couch or due to the
impact of previous radiation.
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Figure 2: Radiation planning problems: Stops of the gantry and the two-dimensional in-
tensity functions have to be found. For this purpose each 3-dimensional organ at risk and
the target volume are discretized into voxels and the 2-dimensional beam heads into bixels.

The radiation head is assumed to be a rectangle which is partitioned into equidistant cells.
This partitioning will be discussed in more detail in Section 2. Correspondingly, target
volume and organs at risk are assumed to be partitioned into cubes. Again, all available
models assume that this is done in an equidistant way. Better radiation plans may, however,
be achieved by considering non-equidistant partitions, a topic which is currently under
research. Radiation gantries are typically designed in such a way that they may stop at
36 positions, equally distributed on the gantry's moving circle around the patient. The
number of stops is not �xed, but in the clinical practice a number between 3 and 7 stops
is most common. The problem of �nding the best positions for stops has been addressed
in previous work, such as that on (continuous) inverse approaches to treatment planning,
which we discuss further below. However this problem can also be modeled as a discrete
location problem, an approach which is currently under investigation.

The amount of radiation released at each stop and in each bixel can be written as a system
of linear equations

Px = D

where P = (pij) is the bixel-voxel unit radiation matrix, i.e. pij is the amount of radiation
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reaching voxel i if one unit of radiation is released at bixel j, and where x = (xj) is the
amount of time radiation is sent o� at bixel j. Correspondingly, D is the dosage vector
representing in each component Di the radiation of each voxel i obtained as cumulative ra-
diation from all bixels j. The dosage has to satisfy constraints, the most important of which
are lower bounds in voxels of the target volume (to destroy the cancer) and upper bounds
in voxels of the organs at risk (to maintain functionality). In general, these bounds make
the system of linear equations inconsistent and mathematical programming methods are
used to minimize the deviation from the bounds ([Bortfeld, 1995], [Burkard et al., 1995]),
[Shepard et al., 1999]. For an interesting discussion of issues that arise in modeling the
objectives of the treatment planning process, see the work of [Raphael, 1992]. Much
previous work on radiation treatment planning has attempted to handle the underlying
physics in more details, and has not necessarily assumed discretized models of the tar-
get volume and treatment space, nor simple linear relationships between treatment beam
intensities and dosages in the target volume. Examples can be found in the work of
[Kolmonen et al., 1998] and in [Tervo and Kolmonen, 2000], and references therein. Ap-
proaches such as these are based on inverse techniques, which typically lead to diÆcult
nonlinear programming or optimal control problems. [Lee et al., 2000] adopt a conception
of the problem similar to that we describe above, and give an integer programming ap-
proach. They show that in modest computational time, signi�cant improvements can be
obtained in the quality of the treatment plans over those developed by human experts.
([Hamacher and K�ufer, 2001]) have recently used multicriteria approaches to tackle this
problem. In recent work, [Wu and Zhu, 2001] also take a multicriteria approach, but use
genetic algorithms to determine both the intensities and the importance factors of the dif-
ferent criteria. In this paper we will focus on the modulation of the uniform radiation to
realize the radiation x in each stopping position.

The rest of the paper is organized as follows. In Section 2, the static, or \step-and-shoot",
multileaf technology will be introduced and optimization problems resulting from the usage
of this technology will be discussed. We focus primarily on the problem of minimizing the
total radiation time at each stopping position. The following two sections, Sections 3 and 4
will contain two di�erent models for tackling these problems. The �rst model is based on
mixed integer programming, the second one on a shortest path/network 
ow formulation.
The latter allows us to show that the problem of minimizing total treatment time can
be solved in polynomial time, and that column generation approaches yield subproblems
which take the form of shortest path problems. This insight is especially important, as the
same column generation subproblem is likely to arise within column generation approaches
to the overarching dosage problem. In Section 5, we discuss the improvements over existing
heuristic methods that result from solving the problem exactly, using the side-constrained
network 
ow model.
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2 Modulating Radiation Using Multileaf Collimators

In this section we assume that (1) - (5) from Section 1 have been dealt with. In particular,
we know for each stop of the gantry the intensity function represented as a two-dimensional
array of the amount of time uniform radiation is released in each bixel, i.e. as intensity
matrix I. We assume in the following that I is an integer valued matrix. If we have chosen
a discretization of the beam head into a 6� 6 grid,

I =

0
BBBBBB@

0 0 2 2 2 0
0 1 1 3 1 0
0 0 2 2 1 0
1 2 2 2 1 0
0 1 2 3 2 1
0 1 2 2 2 2

1
CCCCCCA

is such a possible intensity matrix.

In order to generate I the uniform radiation leaving the linear accelerator has to be modu-
lated by inserting �lters between radiation source and patient. The currently most common
way to do this is by using metal �lters and shaping them in such a way that the intensity
matrix I is generated.

A more advanced way of modulation is achieved by using a multileaf collimator (MLC).
Here, each row of I (often referred to as a channel) has an associated pair of leaves - a
right leaf and a left leaf. If I has n columns the left leaf may be positioned in column
0; 1; : : : ; n, and the right leaf can be placed in columns 1; : : : ; n; n+1, where columns 0 and
n+ 1 are notional columns used to represent the respective leaf's fully retracted position.
Radiation can pass in between left and right leaf, so, if the left leaf is in position l and the
right leaf is in position r, only the bixels in columns l + 1; : : : ; r � 1 of that channel will
transmit radiation. Clearly we require r > l. Figure 3 shows an MLC.
Each choice of left/right leaves in all rows is characterized by a (0; 1) matrix in the following
way. If the left and right leaf is positioned in column l and r, respectively, then the
corresponding row has consecutive ones in entries l + 1; : : : ; r � 1 and zeros everywhere
else. A (0; 1) matrix constructed in this way is called a shape matrix. Shape matrices and
left/right leaf con�gurations are in one-to-many correspondence, since for shape matrices
with zero rows, more than one left/right leaf con�guration can be found.

If S1; : : : ; SK are shape matrices and �1; : : : ; �K is the time the linear accelerator is opened
to release (uniform) radiation when leaf pairs are in the positions indicated by the corre-

sponding shape matrix, an intensity of
KP
k=1

�kSk is released. Since we know the intensity

matrix, the MLC problem (basic version) is therefore de�ned as follows.

Given an integer matrix I, �nd K, and shape matrices S1; : : : ; SK and �1; : : : ; �K > 0 such
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Figure 3: Leaf pairs of an MLC. Radiation will pass through the openings.

that
KX
k=1

�k Sk = I:

Example 2.1 Let

I =

0
BBBBBB@

0 0 4 4 3 0
0 1 1 6 3 0
0 0 3 4 1 0
1 3 4 4 3 0
0 2 3 6 4 3
0 1 3 3 4 4

1
CCCCCCA

Then I = 3S1 + 1S2 + 2S3; where

S1 =

0
BBBBBB@

0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1

1
CCCCCCA
; S2 =

0
BBBBBB@

0 0 1 1 1 0
0 1 1 1 0 0
0 0 1 1 1 0
1 1 1 1 0 0
0 0 1 1 1 0
0 1 1 1 1 1

1
CCCCCCA

6



S3 =

0
BBBBBB@

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 1 0 0
0 0 1 1 0 0

1
CCCCCCA

The leaf con�gurations corresponding to the shape matrices S1; S2 and S3 are shown in
Figure 4.
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Figure 4: Leaf con�gurations of shape matrices S1; S2, and S3 of Example 2.1.

It is obviously easy to represent any given intensity matrix I as a positive linear combina-
tion of shape matrices Sk. If I = (Iij)i=1;:::;m

j=1;:::;n
(i.e. the discretization of the beam head is

into m rows (or channels) and n columns) we could, for instance, choose I =
mP
i=1

nP
j=1

IijSij

where Sij is a shape matrix with entries

Sij(k; l) :=

�
1 if k = i and l = j

0 otherwise

i.e. a matrix which has just one non-zero entry at position (i; j). For this trivial decom-
position of I, the beam-on-time, i.e. the time at which the linear accelerator is sending
o� radiation is

KX
k=1

�k =
mX
i=1

nX
j=1

Iij

The next example shows that this decomposition is, in general, not a good one.

Example 2.2 Let

I =

�
2 3
4 2

�
:

The trivial decomposition described above yields

I = 2

�
1 0
0 0

�
+ 3

�
0 1
0 0

�
+ 4

�
0 0
1 0

�
+ 2

�
0 0
0 1

�
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with a beam-on time of
4P

k=1

�k = 2 + 3 + 4 + 2 = 11.

Alternatively, I can be decomposed into

I = 2

�
1 1
1 1

�
+ 1

�
0 1
1 0

�
+ 1

�
0 0
1 0

�

giving a beam-on time of
3P

k=1

�0k = 2 + 1 + 1 = 4.

Since beam-on time is related to the duration of the radiation treatment and since the latter
time is to be minimized (in order to avoid discomfort to the patient, and his/her movement
which would change the data of all optimization models in the radiation problem) we
formulate an MLC optimization problem, the MLC problem with minimal beam-on

time:

min
X
t2T

�t

subject to
X
t2T

�tSt = I (1)

�t � 0:

Here, T is the index set of all possible shape matrices. This is the problem which we will
study in more detail in the subsequent sections. Before doing so let us mention additional
models which are currently under investigation.

If we assume that the switch between two shape matrices will take a given �xed amount
of time (set-up time), say Tc seconds, then the objective of the MLC problem with

minimal beam-on time and constant set-up time is

KX
k=1

�k + (K � 1)Tc: (2)

When the set-up time is dominant, this objective is minimized by minimizing the number
of shape matrices used, K.

In fact, it is likely that the set-up time between shape matrices depends on the form of
these matrices. In the MLC problem with minimal beam-on time and variable

set-up time we would thus consider the objective

KX
k=1

(�k + c(Sk; Sk+1)) (3)

where c(Sk; Sk+1) is the time it takes to change from Sk to Sk+1 (and where c(SK; SK+1) =
0)).
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A number of authors have considered the problems of minimizing the beam-on time plus
constant set-up time, and of minimizing the number of shape matrices used. A very in
u-
ential paper is that of [Xia and Verhey, 1998], who introduce a heuristic method in which
all beam-on times are powers of two. Larger powers of two are \stripped o�" �rst. They
compare their method computationally with earlier methods of [Bortfeld et al., 1994] and
[Galvin et al., 1993], on randomly generated test problems, and a small number of clinical
data sets. Their method was clearly more e�ective than either of the others for mini-
mizing the number of shape matrices used. This verdict was borne out by [Que, 1999],
who also tested several variations of the Xia and Verhey heuristic, as well as the IM-
FAST algorithm, which is based on the work of [Siochi, 1999], and is implemented in
the commercial system CORVUS. [Que, 1999] also used many more clinical data sets
for his comparisons. Que's conclusions were that the Xia and Verhey heuristic outper-
formed the others on a statistical basis. However there were cases in which other algo-
rithms performed better, and the clinical data sets, in particular, showed a lot of varia-
tion. In other work, [Yu et al., 1995a] present models and methods for realizing contin-
uous 2D intensity functions by dynamic control of both the leaf velocities and the ra-
diation intensity. [Tervo and Kolmonen, 2000] tackle the overarching treatment planning
problem directly in terms of the leaf positions. Their work is more general than that
of [Bortfeld et al., 1994, Galvin et al., 1993, Que, 1999, Xia and Verhey, 1998], and of our
own, in the sense that they allow collimator leaves to take on any positions; we allow only n
positions for each leaf in each channel. However they must, as a consequence, solve rather
diÆcult nonlinear problems. Furthermore, their approach is implicitly dynamic, whereas
we focus on the static case. Their idea of working directly with the leaf variables to solve
the treatment planning problem is, however, intriguing, and we intend in future work to
consider embedding the work we present here in a treatment planning problem, in a similar
way.

Less work has been done which considers variable (sequence dependent) set-up time. The
work of [Dai and Hu, 1999] is notable. In a two-phase approach, they �rstly use the Xia
and Verhey heuristic to determine the shape matrices and associated beam-on times, and
then seek a sequence which minimizes the leaf-moving times between shape matrices using
simulated annealing. However their paper gives very little detail on their method. How
leaf-moving times between pairs of shape matrices are determined is not given, nor is any
detail of their simulated annealing approach. The simulated annealing achieves roughly a
10% improvement in the total leaf-moving time, over the initial sequence output by the
Xia and Verhey heuristic. (It should be noted that the main thrust of Dai and Hu's paper
is to examine independent collimators, rather than multi-leaf collimators, and their results
on the former are more signi�cant.)

In this paper, we do not consider set-up times, but only consider the MLC problem with
minimal beam-on time. In the next section we develop a nonlinear mixed binary pro-
gramming model, in which we also discuss restrictions on the shape matrices enforced by
technological constraints.
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3 A Nonlinear Mixed-Integer Programming Formula-

tion

In this section we will give a formulation of the MLC problem as nonlinear program with
continuous and binary variables. As before, we assume that I is a given, integer-valued
m� n intensity matrix.

For any shape matrix S = (yij)i=1;:::;m
j=1;:::;n

, we introduce (0; 1) variables characterizing the

positions of left and right leaves in each row i = 1; : : : ; m.

Lij :=

�
1 if the left leaf in row i is positioned in column j

0 otherwise
(4)

8j = 0; : : : ; n

Rij :=

�
1 if the right leaf in row i is positioned in column j

0 otherwise
(5)

8j = 1; : : : ; n+ 1

Next, we will characterize shape matrices suitable for modeling MLCs by introducing
constraints on the Lij and Rij variables.

� Each row has exactly one left and right leaf, respectively:

nX
j=0

Lij = 1 8i = 1; : : : ; m (6)

n+1X
j=1

Rij = 1 8i = 1; : : : ; m (7)

� \Left" and \right" leaves deserve their name:

nX
j=0

jLij �
n+1X
j=1

jRij � 1 8i = 1; : : : ; m (8)

Conditions (6) - (8) characterize left and right leaf positions. Next, we relate variables Lij

and Rij to the entries yij of the shape matrix. Obviously, this relationship is given by the
index condition

yij = 1 , Lij0 = 1 for some j 0 < j and Rij00 = 1 for some j 00 > j
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where j 0 and j 00 are uniquely de�ned due to (6) and (7). The following set of conditions
translates these constraints on the indices into constraints on the variables:

yij �

j�1X
l=0

Lil �

jX
r=1

Rir (9)

yij �

j�1X
l=0

Lil (10)

yij �
n+1X

r=j+1

Rir (11)

The constraints hold for i = 1; : : : ; m; j = 1; : : : ; n. It is easy to show that the index
condition and constraints (9) - (11) are equivalent. Hence we have shown the following
result.

Lemma 3.1 The m�n (0; 1)-matrix S = (yij) is a shape matrix with left and right leaves
in positions Lij and Rij, respectively, if and only if Lij; Rij and yij are (0; 1) variables
satisfying (6) - (11).

If we want to distinguish di�erent shape matrices St we add an additional index t to the
variables characterizing left and right leaf position and radiation, i.e. we use in (6) - (11)
the notation Lijt; Rijt and yijt. We use T to denote an upper bound on the number of
shape matrices required.

With this notation �tyijt is the amount of time shape matrix St = (yijt) is releasing
radiation at bixel (i; j). The problem of decomposing a given m � n intensity matrix
I = (Iij) into shape matrices can therefore be written as the problem of �nding �t � 0
and yijt 2 f0; 1g satisfying (6) - (11), so that

TX
t=1

�t yijt = Iij 8i = 1; : : : ; m; j = 1; : : : ; n (12)

holds. Consequently, the MLC problem (1) can be formulated as the following (nonlinear)
mixed integer program

min
TX
t=1

�t (13)

subject to (6)� (12)

Lijt; Rijt; yijt 2 f0; 1g 8i = 1; : : : ; m; j = 1; : : : ; n; t = 1; : : : ; T

Li0t; Ri(n+1)t 2 f0; 1g 8i = 1; : : : ; m; t = 1; : : : ; T

�t � 0 8t = 1; : : : ; T:
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As a mathematical programming model, in contrast to approaches considered so far in the
literature (for example, those of [Siochi, 1999], [Xia and Verhey, 1998], [Yu et al., 1995b]),
(13) is very versatile and can be easily modi�ed and extended to accommodate additional
constraints. As an example, we consider the exclusion of interleaf motion, i.e. the left
leaf in one row should not be to the right of the right leaf in an adjacent row and vice versa
(otherwise crashes between the two leaf points or signi�cant radiation leakage in areas
which ought to be blocked will occur). Similar to the left-right condition (8), the exclusion
can easily be modeled by

nX
j=0

jLij �
n+1X
j=1

jRi�1;j � 1 8i = 2; : : : ; m (14)

and
nX

j=0

jLij �
n+1X
j=1

jRi+1;j � 1 8i = 1; : : : ; m� 1 (15)

An additional example, the exclusion of so-called tongue-and-groove pairs has been
discussed in Lenzen (2000).

The complexity status of problem (13) has so far not been discussed, nor have its variations
with objective functions (2) and (3). Furthermore, although the mixed integer program in
(13) has the disadvantage of being nonlinear, it can be approached by column generation,
with the y, L and R variables becoming variables in the column generation subproblem,
and (13) becoming the (now linear programming) master problem in � (see Section 4 for
details of this approach).

In the next section we will show that the MLC problem can be solved in polynomial time
by using a reformulation as a network 
ow problem with side constraints. In doing so,
we also show that the column generation subproblems correspond to pure network 
ow
problems, and so the column generation approach can solve the problem in polynomial
time. This result will be more widely useful, as the same column generation subproblem
is likely to arise within column generation approaches to the dosage problem.

4 A Network Flow Formulation

In this section we will show that shape matrices satisfying the interleaf motion constraints
can be represented as paths in a suitably chosen network, the shape matrix graph

Gs = (Vs; Es). This network is introduced �rst.

Gs is a layered digraph, consisting of m layers which correspond to the m rows of a shape
matrix. In each layer i = 1; : : : ; m there are 1

2
(n + 1)(n + 2) vertices, denoted by (i; l; r),

which represent potential positions l and r of the left and right leaf in row i, respectively.
Here l 2 f0; 1; : : : ; ng; r 2 f1; : : : ; n; n + 1g and l + 1 � r. Two dummy nodes D and D0
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which act as start and end nodes will be added, so

Vs := f(i; l; r) : i = 1; : : : ; m; l = 0; 1; : : : ; n; r = 1; : : : ; n; n+ 1; l + 1 � rg [ fD;D0g:
(16)

The arc set Es contains all edges from D to the �rst layer 1 and from the last layer m to
D0, i.e. Es contains

E+(D) := f(D; (1; l; r)) : (1; l; r) 2 Vsg (17)

E�(D
0) := f((m; l; r); D0) : (m; l; r) 2 Vsg (18)

For i = 1; : : : ; m� 1 we de�ne the arcs between layers to be

E+(i) := f((i; l; r); (i+ 1; l0; r0)) : (i; l; r; ); (i+ 1; l0; r0) 2 Vs; l
0 � r � 1; r0 � l + 1g : (19)

These arcs re
ect the exclusion of interleaf motion (see (14) and (15)). Finally we add the
return arc (D0; D), so the set of all arcs is given by

Es := E+(D) [ E�(D
0) [ f(D0; D)g [

m�1[
i=1

E+(i): (20)

An example of a shape matrix graph Gs is shown in Figure 5

D

101 102 103 112 113 123

201

301

401

202

302

402

203

303

403

212

312

412

213

313

413

223

323

423

D’

Figure 5: Shape matrix graph with complete vertex set Vs and some of the arcs of Es,
including two cycles C1 and C2 (straight and dotted arcs).

The next lemma states some properties of Gs. The proof of this lemma is an immediate
consequence of the de�nition of Gs.
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Lemma 4.1

(1) Gs n f(D0; D)g is an acyclic digraph.

(2) Every cycle in Gs corresponds to a shape matrix without interleaf motion and vice
versa.

Figure 6 shows the shape matrix and the leaf con�guration corresponding to the cycle

C = (D; (102); (213); (303); (402); D0; D)

in the shape matrix graph of Figure 5.

0
BB@

1 0
0 1
1 1
1 0

1
CCA

0 1 2 3

Figure 6: Shape matrix (left) and leaf con�guration (right) corresponding to cycle C =
(D; (102); (213); (303); (402); D0; D) in Gs of Figure 5.

The column generation master problem for the column generation form of the MLC problem
(13) is given by the following linear program in �:

min
X
t2T

�t (21)

subject to
X
t2T

�tSt = I

�t � 0 8t 2 T

where T is the index set of all feasible shape matrices, which we now allow to be generated
\on the 
y". Consider the column generation subproblem, which seeks the shape matrix of
least reduced cost. If we let vij denote the dual multiplier of the (ij)th intensity constraint,
where St = (yijt), X

t2T

�t yijt = Iij 8i = 1; : : : ; m; j = 1; : : : ; n; (22)

then the column generation subproblem can be expressed as

min 1�
mX
i=1

nX
j=1

vij yij (23)

s.t S = (yij) is shape matrix:
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Using Lemma 4.1 this subproblem can be solved as a shortest path problem in the shape
network Gs = (Vs; Es) by setting arc length

le := �
r�1X

j=l+1

vij (24)

for each arc e 2 Es with end node (i; l; r) 2 Vs and l + 1 < r. All other arcs have zero
arc length. Clearly, the shortest path from D to D0 in Gs corresponds to the shape matrix
which solves the column generation subproblem (23). Since a shortest path problem in
an acyclic network is solvable in polynomial time, and so is a linear program, then by the
equivalence between separation and optimization (see e.g. [Nemhauser and Wolsey, 1988])
we have shown the following result.

Theorem 4.2 The MLC problem with minimal beam-on time is solvable in time polyno-
mial in n and m.

While Theorem 4.2 is proved by the column generation argument above, we will subse-
quently give an alternative proof by transforming the MLC problem into a polynomially
solvable network 
ow problem with side constraints.

The key observation is that due to formulation (21) and the equivalence between shape
matrices and cycles in Gs;

P
t2T

�t can be interpreted as the value x(D0; D) of a circulation

x which is a composite of 
ows �t on cycles Ct corresponding to the shape matrices St.

If we consider, for instance, the two cycles

C1 = (D; (102); (213); (303); (402); D0; D)

and

C2 = (D; (113); (203); (302); (413); D0; D)

of the shape matrix graph in Figure 5 and x(C1) = 3; x(C2) = 2, (i.e. x is a circulation
formed by taking 3 units of 
ow on cycle C1 and adding 2 units of 
ow on cycle C2), we
get a 
ow corresponding to the intensity matrix

3

0
BB@

1 0
0 1
1 1
1 0

1
CCA+ 2

0
BB@

0 1
1 1
1 0
0 1

1
CCA =

0
BB@

3 2
2 5
5 3
3 2

1
CCA :

Since by part (1) of Lemma 4.1 all cycles contain arc (D0; D) we have that

x(D0; D) = x(C1) + x(C2) = 5

represents the 
ow value which is to be minimized. Since, conversely, every circula-
tion can be decomposed into cycles containing arc (D0; D) (see [Ahuja et al., 1993] or
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[Hamacher and Klamroth, 2000]), the MLC problem can be solved as a network 
ow prob-
lem in Gs, in fact as a minimum cost circulation problem, with respect to arc costs given
by

ce :=

�
1 if e = (D0; D)
0 if e 2 Es n f(D0; D)g

for each e 2 Es.

We have, however, to enforce the side constraint that the values Iij of the intensity matrix
I are generated by the circulation, i.e. we have the side constraints

j�1X
l=0

n+1X
r=j+1

X
e2E�(i;l;r)

xe = Iij (25)

for all i = 1; : : : ; m and all j = 1; : : : ; n, where we write E�(q) to denote the set of edges
in Es entering node q, i.e. f(p; q) 2 Esg.

The network circulation formulation, together with the side constraints (25), provide a
linear programming formulation for the MLC problem with minimal beam-on time. Note
that its size, in terms of numbers of variables and constraints, is polynomial in n and m,
as opposed to the column generation formulation, which has exponentially many variables.

However, we do not rest there: it is possible to get a linear programming formulation which
is even closer to a pure network 
ow formulation. Rather than stating (25) as an algebraic
constraint, the shape matrix graphs is expanded to a network Ĝs = (V̂s; Ês) de�ned as
follows (see Figure 7).

Each node (i; l; r) 2 Ns := Vs n fD;D0g is split into two nodes (i; l; r)1 and (i; l; r)2. The
idea is that 
ow will always enter row i via a node of the form (i; l; r)1 and may only leave
row i via a node of the form (i; l; r)2. In between, we will have the 
ow go through arcs
representing cells which are irradiated in row i if leaf positions (l; r) are used. Thus we
introduce new nodes of the form (i; j); i = 1; : : : ; m; j = 0; : : : ; n. Hence

V̂s :=
�
(i; l; r)1; (i; l; r)2 : (i; l; r) 2 Ns

	
(26)

[f(i; j) : i = 1; : : : ; m; j = 0; : : : ; ng [ fD;D0g

Note that
jV̂sj = m(n + 1)(n+ 3) + 2

nodes, since jNsj =
1
2
m(n + 1)(n + 2), and jV̂sj = 2jNsj +m(n + 1) + 2 = m(n + 1)(n +

2) +m(n+ 1) + 2. Obviously this is polynomial in n and m; it is O(mn2).
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The arc set Ês consists of the following subsets

Êold
s :=

��
(i; l; r)2; (i+ 1; l0; r0)1

�
: ((i; l; r); (i+ 1; l0; r0)) 2 Es

	
[
n�
D; (1; l; r)1

�
: (1; l; r)1 2 V̂s

o

[
n�

(m; l; r)2; D0
�
: (m; l; r)2 2 V̂s

o
[f(D0; D)g (27)

are copies of the edges in Es connected with appropriate nodes in V̂s. In addition we have
new arcs of two types.

Ê1
s =

n�
(i; l; r)1; (i; l)

�
: (i; l; r)1 2 V̂s

o

[
n�

(i; r � 1); (i; l; r)2
�
: (i; l; r)2 2 V̂s

o

All arcs e 2 Êold
s [ Ê1

s considered so far have

lower capacities ue = 0 and upper capacities ue =1 (28)

The second set of new arcs is given by

Ê2
s := f((i; j � 1); (i; j)) : i = 1; : : : ; m; j = 1; : : : ; ng :

These are called the intensity arcs, since the 
ow on these arcs has to be equal to the
intensity. Therefore, we set lower and upper capacity on these arcs to be

ue = ue = Iij 8e = ((i; j � 1); (i; j)) 2 Ê2
s (29)

The idea is that where previously 
ow went into a node (i; l; r), and implicitly this meant
the 
ow would contribute to the intensity constraint for cells (i; j); j = l + 1; : : : ; r � 1,
now we force the 
ow to go into node (i; l; r)1, then through arcs ((i; j � 1); (i; j)) for
j = l + 1; : : : ; r � 1, thus contributing to the requirement for lower = upper capacity (=
intensity) in those arcs, and then back to node (i; l; r)2 before going on to the next row
i + 1. However, to ensure this 
ow sequence occurs in the 
ow decomposition, we must
still enforce a side constraint, albeit a simpler one than (25), namely that the 
ow in arc
((i; l; r)1; (i; l)) must equal the 
ow in arc ((i; r � 1); (i; l; r)2) for all (i; l; r) 2 Vs.

It is straightforward to show that jÊsj is O(mn4), (for each of the m rows, there are O(n2)
nodes, so there are O(n4) arcs of the form ((i; l; r)2; (i+ 1; l0r0)1), passing from one row to
the next, and this is the dominant term), which is polynomial in n and m.

We have therefore established the following result.

Theorem 4.3 The MLC problem with minimal beam-on-time is equivalent to the network

ow problem
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Figure 7: Extended shape matrix graph. Only nodes and arcs of extended cycles C1 and C2

of Figure 5 are shown.
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minx(D0; D)

subject to x a circulation in Ĝs lying between lower and upper capacity limits u and u,
de�ned by (28) and (29), and satisfying

x
�
(i; l; r)1; (i; l)

�
= x

�
(i; r � 1); (i; l; r)2

�
8(i; l; r) 2 Vs: (30)

Theorem 4.3 also yields an alternative proof of the polynomial solvability of the MLC
problem with minimal beam-on time.

The two side-constrained network 
ow models we have presented here may be of some
interest in their own right. For example, we will address the question of integrality of
solutions in future work. Combinatorial algorithms for solving them, such as generalization
of negative dicycle and shortest augmenting dipath algorithms, (see [Ahuja et al., 1993]),
which consider side constraint (30), are currently under investigation ([G�org, 2001]).

5 Numerical Experience

In this section, we compare the results of solving the MLC problem with minimal beam-
on time using the network 
ow approach with those of the well-known heuristic methods
of [Siochi, 1999] and [Xia and Verhey, 1998]. Note that we showed in Section 4 that the
network 
ow algorithms solve this problem up to optimiality in polynomial time while the
latter two heuristics usually compute suboptimal solutions.

We implemented both network 
ow approaches introduced in the preceding sections using
the package AMPL (see [Fourer et al, 1993]), and found that the one on the graph Gs

required less CPU time on our test problems than the model on the expanded graph.
(Of course, the solutions given by both were the same.) However in both cases, the time
required by the CPLEX solver in AMPL to solve the linear programs is negligible.

We refer to our method asNetFlow in Table 1 and Figure 8. The methods of [Siochi, 1999]
and [Xia and Verhey, 1998] (denoted Siochi and XV, respectively) were implemented in
C++. Details of the methods as implemented by us can be found in [Lenzen, 2000].

Our test set consists of �fteen 10�10 randomly generated intensity matrices. Each entry in
the matrix is an integer value between 1 and 15, with each integer having equal probability
of being selected. All methods were run on the same machine (1 GHz PC). The results,
summarized in Table 1 and Figure 8, show that the network 
ow approach produces, as
expected, a radiation plan with the smallest beam-on time in every single example. The
di�erence in the beam-on times computed by the three methods in in some examples
quite large. We note, however, that the comparison here is slightly unfair, in that the
emphasis of the [Xia and Verhey, 1998] heuristic is on minimizing the number of shape
matrices required. [Siochi, 1999] was concerned with both the number of shape matrices
and beam-on time.
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Table 1: Total beam-on time used by the three methods

Data Set XV Siochi NetFlow

1 87 50 39
2 79 40 33
3 95 42 37
4 87 39 37
5 81 58 46
6 77 51 45
7 87 52 47
8 73 48 41
9 87 40 33
10 89 47 40
11 71 47 41
12 93 43 37
13 69 40 32
14 93 47 43
15 93 42 37

The same dominance of the network 
ow approach can, however, also be observed if the
set-up time is taken into consideration as well (for instance by multiplying the number of
di�erent shape matrices with a �xed set-up time and adding it to the beam-on time). In
every example we have tested so far, the resulting treatment time was shorter than the
treatment times obtained by the algorithms of [Siochi, 1999] and [Xia and Verhey, 1998].
These results are not completely understood at this point of time and will be discussed in
a forthcoming paper.

6 Conclusion and Further Research

We have presented new formulations for the multileaf collimator problem: a mixed integer,
nonlinear model, a decomposition of this model leading to a column generation formulation,
and two alternative network 
ow models with side constraints. The latter is derived using
a network in which paths from a designated source to a designated sink node correspond
to feasible shape matrices. This network is used to show that the column generation
subproblem can be modelled as a shortest path problem. This, and more directly the side-
constrained network 
ow formulations, show that the MLC problem with minimum beam-
on time is polynomially solvable. We illustrated this result by solving a set of randomly
generated test problems, and comparing the solutions with those of well known heuristics.
We found that the beam-on time is, indeed, reduced by a considerable amount of time
using our new approach.
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Our future research e�orts go into the following directions.

Currently, we use AMPL to solve the network 
ow problem with side constraints. This
approach is reasonable for the MLC problem with minimal beam-on-time since the CPU
time for a single problem is neglectably small. Nevertheless, streamlining of the network

ow algorithm is investigated in a diploma thesis (G�org 2002). We expect an additional
speed up by taking more advantage of the network structure of the problem. This speed
up can be of use in solving the other versions of the MLC problem. In particular, we will
bene�t from this by tackling the MLC problem with minimal beam-on time and constant
set-up time.

Moreover, variable set-up times ought to be considered. As a measure of switching from
one shape matrix Sp to another Sq one could, for instance, investigate

c(Sp; Sq) = � max
i=1;:::;m

max fjlpi � l
q
i j ; jr

p
i � v

q
i jg ;

the largest distance a left or right leaf will have to move (multiplied with some time factor
�). As brie
y discussed at the end of Section 3, the resulting MLC problems will have a
TSP like constraint. Although the variable set-up time MLC model is more realistic than
the ones described in this paper, its solution will be a very big challenge.
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