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ABSTRACT 
 
Cost reduction is a major concern when designing optical fiber networks. Multiwavelength 
optical devices are new technology for increasing the capacity of fiber networks while reducing 
costs, when compared to installing traditional (e.g., SONET) equipment and new fiber.  In this 
paper we discuss the development of a metaheuristic method that seeks to optimize the location 
of Wavelength Division Multiplexing (WDM) and Optical Cross-Connect (OXC) equipment in 
fiber networks.  The procedure combines ideas from the scatter search, tabu search and multi-
start methodologies.  Computational experiments with both real-world and artificial data show 
the effectiveness of the proposed procedure.  The experiments include a comparison with a 
permutation-based approach and with lower bounds generated with CPLEX. 
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1. INTRODUCTION 
 
In the last four decades, problems related to planning and routing in telecommunications 
networks have become a fertile ground for developing and applying optimization techniques.  
Two main events have driven these efforts: (1) the large investment in telecommunications, 
which offers significant opportunities for reducing costs and improving network designs, and (2) 
the rapid changes in technology. 
 
Optical fiber technology has become the preferred choice for building telecommunications 
networks, due to its cost effectiveness, reliability and its almost unlimited capacity.  Technology 
advances have motivated the development of appropriate planning tools that respond to the 
characteristics of a new structural and operational environment.   
 
Within this context, we deal with the network synthesis or provisioning problem, which consists 
of minimizing the total cost of installing capacity on links of a given network so that demand 
requirements are satisfied.  In these problems, both the physical network topology and the 
demand requirements are given and the decision variables relate only to adding capacity to links 
at minimum cost.  When the problem includes also the design of the network topology, that is, 
determining which links to install, then a complete graph and installation costs are considered. 
 
A given network topology, a cost structure and a set of demand requirements characterize a 
typical instance of a network synthesis problem.  The cost structure depends on each situation as 
well as on the available technology.  It is customary to assume that the system does not add 
routing costs once the equipment has been installed.  A requirement between two nodes is a 
single commodity flow requirement.  Multi-commodity flow requirements are also considered as 
long as the commodities involve different origins and destinations while sharing the capacity of 
the network. 
 
Another typical assumption is that the optical traffic is expressed in OC-48 units, i.e., Optical 
Carrier level 48 SONET channels.  Each such channel carries 2.488×109 bits per second, 
equivalent to 48×672 voice-grade digital channels digitized at 64,000 bits per second each, after 
subtracting out overhead bits used for routing and control. 
 
When the set of requirements consists of a single demand, the synthesis problem reduces to 
solving a shortest path problem on a graph with incremental costs as arc weights.  The 
incremental costs are associated with the equipment required to route the smallest allowed 
demand increment (i.e., 1 OC-48 if demand splitting is allowed, and the entire demand if no 
splitting is allowed).  More likely, however, the set of demand requirements consists of several 
origin-destination pairs.  In this case, the demand requirements are routed taking into account the 
spare capacity in the current network.  The spare capacity problem must be studied carefully 
because the equipment installed on links and nodes to route a given demand under consideration 
can also be used to route another demand to be considered later, making the design more cost 
effective.  Synthesis problems also consider non-simultaneous demand requirements, where the 
capacity installed to route one demand at a given time can be used to route another demand at a 
different time without additional cost. 
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1.1 Technology 
 
Wavelength Division Multiplexing is the transmission of multiple laser signals at different 
wavelengths (colors) in the same direction, at the same time and over the same strand of fiber. 
WDM with more than eight frequencies enables a low cost per bit [Ram99].  These high-capacity 
WDMs are called Dense Wavelength Division Multiplexing (DWDM) and create multiple bi-
directional �virtual fibers� per physical fiber.  DWDM solves the bandwidth bottleneck resulting 
from growth in data traffic, because it is an emerging technology that increases transportation 
capacity while preserving optical fiber systems previously installed. Hence, DWDM provides 
carriers the flexibility and scalability they need to deploy capacity when and where it is needed. 
 
The DWDM system is equipped with amplifiers that allow transmission in one channel. 
However, most of the capacity cost is related to the channel cards. Channel cards are added as 
needed and their cost is charged to the design accordingly.  This means that a system capable of 
handling up to 96 channels can be installed where only eight channels are active, and the design 
would only consider the cost of equipping the eight active channels [Lin99].  To use WDM 
technology, an equipment �unit� must be placed at both endpoints of each fiber link.  For each 
wavelength, or channel in use, channel equipment must also be placed at both endpoints of the 
link.  WDM channels are bidirectional and have the same capacity as a pair of fibers.  
Amplification is the process of restoring the optical signal to its original optical power and 
without distortion after the signal has lost power when passing through a strand of fiber.  This 
process is particularly important in DWDM environments.  The typical amplifiers are completely 
optical in that sense that they do not have electronic elements.  Consequently, they do not require 
the classical electrical-optical and optical-electrical conversions, thereby avoiding the associated 
need for additional bandwidth. 
 
Optical cross-connects (OXCs) are small space-division switches that can switch an optical 
signal from one wavelength to another on multi-fiber WDM systems or on a single fiber 
[Ram99].  Providers offer several OXC sizes, such as 16×16 (i.e., 16 incoming wavelengths that 
can be fully switched among 16 outgoing wavelengths) and up to 64×64 or more, with 512×512, 
1024×1024 and even larger sizes contemplated for future product offerings.  In this paper, we 
consider OXCs of two sizes only (namely, 32×32 and 512×512) but the formulation is general 
and can be expanded to incorporate larger OXC sizes. 
 
A WDM system must originate and terminate at an OXC or DCS (Digital Cross-Connect Signal) 
port.  Also, an OXC or DCS port is needed to add or drop traffic at the origin and destination of 
each demand carried by the network.  The OXC and DCS ports are bidirectional.  The installed 
base of DCS machines generally lacks OC-48 ports, making each DCS OC-48 port a set of 48 
DS3 ports.  Since we will be modeling at the OC-48 level, we can consider OXC and DCS 
equipment to be functionally equivalent.  Optical signals originate and terminate at network 
nodes, which typically are SONET (Synchronous Optical Network) ring nodes carrying traffic 
expressed in OC-48 units.   
 
1.2 Problem Description 
 
In order to increase the capacity of a network at a minimum cost, it is necessary to decide: 
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• Where to place WDM and OXC systems; 
• How to route the traffic within the resulting network; and 
• How to restore the network in the event of a single link failure.  

 
DWDM telecommunications network planning is often divided into four main phases: design of 
the network, routing of the demands, multiplexing and survivability.  We assume that there is a 
current network design such that our problem consists of dealing with the remaining steps of the 
planning process.  We do not tackle the problem of restoring the network after a link failure.  
However, since the restoration problem can also be treated as a provisioning problem, the 
proposed formulation for the service network is essentially the same for the restoration network, 
which normally is obtained after the service network has been configured. 
 
Cox et al. [Cox00] proposed the planning problem that simultaneously addresses the 
provisioning, routing and survivability problems.  The problem was approached using a genetic 
algorithm (GA).  The procedure is based on incrementally adding equipment to minimize the 
cost of routing each demand.  The GA uses permutations to represent solutions.  A permutation 
represents the ordering in which the demands are considered, one by one, for routing purposes.  
Therefore, a permutation is mapped into an actual solution by a procedure that uses the given 
order to route the demands in the most cost-effective way.  Since the equipment is added to 
satisfy the current demand without considering the demands that are yet to be routed, each 
permutation is expected to result in a different network design. (It is possible, but unlikely, for 
two different permutations to be mapped to the same network design.)  The approach cannot 
guarantee the existence of an ordering of the demands that would result in an optimal design.  In 
other words, even an exhaustive search of all permutations may result in a sub-optimal network 
design. 
 
The optimization problem deals with a set of demands to be routed through the existing optical 
network.  Associated with each demand is an origin node, a destination node, and a size, 
expressed in OC-48 units.  Optical fiber joining pairs of nodes is used to route demands through 
the network.  Each demand can be routed either entirely through one or more bare fibers, over 
one or more channels of a WDM system or it can be switched from a WDM to another through 
OXCs. The goal of the network planner is to minimize the total cost, which consists of the cost 
of additional fiber, WDM systems and OXC equipment. 
 
The existing physical network design (i.e., the set of exiting links) constrains where new optical 
fibers and WDM systems can be placed.  A segment is defined as a sequence of individual links 
that do not pass through any OXC system.  In this case, any intermediate node will be called 
glass-through node, meaning that fiber or a WDM system passes through the node without 
adding or dropping traffic and without requiring additional equipment.  Each OC-48 unit uses 
two bare fibers or a channel of a WDM system.  For convenience, we will refer to the capacity 
required for an OC-48 unit as a channel, regardless of whether a pair of fibers or a channel of a 
WDM system actually is used.  All links within a segment must carry the same amount of traffic 
running from its origin to its destination.  In an optimal network design, each segment should 
follow a least-cost path (with respect to fiber cost) from its origin to its destination.  Since the 
shortest path from any node to any other is treated as a potential segment, the network of 
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segments results in a complete graph, which is intractable in most cases.  Therefore, it is useful 
to generate a subset of promising segments as one of the search strategies. 
 
Once an OXC is reached, wavelengths and fibers can be rearranged.  Therefore, the capacity 
constraints on each segment simply are that enough fiber and WDM equipment must be available 
on the segment to handle the number of OC-48 units assigned to it.  Each individual link must 
have enough channel capacity to cover all demands routed over segments that uses it.  
 
Kennington et al. [Ken01] formulate and solve a similar problem.  They model the wavelength 
division multiplexing routing and provisioning problem with uncertain demands and a fixed 
budget as a multicriteria optimization problem.  The primary objective is to minimize a quadratic 
regret function that models the total amount of over and/or under provisioning of the network 
resulting from uncertainty in the demand forecast.  The secondary objective is to minimize the 
equipment cost that achieves the optimal value for regret.  They propose a two-phase robust 
optimization strategy based on mixed integer linear programs.  In the basic provisioning model 
for each scenario, the objective is to minimize the total cost for provisioning the network with 
terminal equipment located at each node and optical amplifiers and regenerators associated with 
the needed links.  Their resulting mixed integer linear programs have a large number of 
continuous variables and two integer variables per link, representing the number of fibers and the 
number of channels.  Their models are implemented using the AMPL modeling language and the 
problems are solved with CPLEX.  Kennington et al. do not use the concept of segments because 
neither OXC equipment nor glass-through nodes are considered. 
 
2. PROBLEM FORMULATION 
 
In this section we provide a segment-based formulation for the synthesis problem with 
multicommodity flow requirements.  Our formulation is based on Cox et al. [Cox99] with the 
difference that we do not tackle simultaneously the provisioning, routing and survivability 
problems but instead deal with survivability after provisioning and routing of the service 
network.  We will show that our formulation of the problem using a path-assignment approach to 
represent solutions results in improved outcomes when compared to tackling the whole problem 
with the permutation based approach proposed by Cox et al. 
 
Consider an undirected graph ),( ENG = , where N is the set of nodes and E is the set of 
segments.  A non-simultaneous multicommodity flow requirement, consists of a set of demands 
D = {( 1s , 1t , 1d ), ( 2s , 2t , 2d ),�, ( ks , kt , kd )} to be routed through the graph.  Each single 
demand consists of an origin node, si, a destination node, ti, and a size, di.  Our formulation uses 
the following definitions. 
 
Data 
 

Facilities Input Data 
 
N = set of nodes at which demands originate and terminate 
L = set of links between pairs of nodes 
E = set of potential segments 
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J = types of DWDM systems 
I = types of OXC systems 
 
Demand Input Data 
 
D = set of demands to be carried, expressed in OC-48 units, between origin-destination node 

pairs 
is  = origin node of demand i 

it  = destination node of demand i 

id  = the amount of demand i 
 
Cost Input Data 
 
a e  = cost of a fiber on segment e (sum of costs per link along that segment), Ee∈  
b j  = cost of a type j WDM unit, Jj∈  

c l  = cost of a type l OXC unit, Il∈  
q

j
 = channel cost of a type j WDM unit, Jj∈  

r l  = port cost of a type l OXC unit, Il∈  
 
Capacity Data 
 
o j  = capacity of a type j WDM unit 
p l  = capacity of a type l OXC unit 
 
Existing Infrastructure 
 
g j

e  = spare WDM channels on WDM systems of type j on segment e, Jj∈ , Ee∈  
h l

n  = spare OXC ports on OXC systems of type l at node n, Il∈ , Nn∈  
 

Decision Variables 
 

iex  = amount of demand i routed on segment e 
F
iex  = amount of demand i routed on segment e in the forward direction 
R
iex  = amount of demand i routed on segment e in the reverse direction 

ef  = number of stand-alone (no WDM) fiber pairs on segment e 
j

ew  = number of type j WDM units on segment e 
j

eν  = number of channels on type j WDM units on segment e 
l
ny  = number of type l OXC units installed at node n 
l
nu  = number of ports on type l OXC units installed at node n 
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Objective Function 
 
The following objective function minimizes the sum of fiber costs (first term), WDM costs 
(second term) and the OXC costs (third term). 
 
 

( )( ) )uryc(vqwbafaMin l
nl

Nn

l
nl

IlJj

j
ej

j
eje

EeEe
ee +++++ ∑ ∑∑∑∑

∈ ∈∈∈∈
 

 
Constraints 
 
The following constraints require that all demand must be carried, that no link should be 
assigned more demand than its capacity allows it to carry and that no switching element should 
be assigned more traffic than its capacity allows. 

 
Conservation of Service Flow 
 

Di  ,dxxxx i

)e  start( s
Ee

R
ie

)e( end  s
Ee

F
ie

)e end(  s
Ee

R
ie

)e  start( s
Ee

F
ie

iiii

∈∀=−−+ ∑∑∑∑
=
∈

=
∈

=
∈

=
∈  

Di,dxxxx i

)e end(  t
Ee

R
ie

)e  start( t
Ee

F
ie

)e  start( t
Ee

R
ie

)e end(  t
Ee

F
ie

iiii

∈∀=−−+ ∑∑∑∑
=
∈

=
∈

=
∈

=
∈  

ii

)e end(  j
Ee

R
ie

)e  start( j
Ee

F
ie

)e  start( j
Ee

R
ie

)e end(  j
Ee

F
ie t,sj,Nj,Di   ,0xxxx ≠∈∀∈∀=−−+ ∑∑∑∑

=
∈

=
∈

=
∈

=
∈  

Ee,Di     xxx ie
R
ie

F
ie ∈∀∈∀=+

 

Segment Capacity 
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Switch Requirements 
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Integrality Constraints. All variables are nonnegative integer. 
 

This formulation assumes an undirected graph.  For directed graphs, the variables F
iex  and R

iex  
can be eliminated.  That is, the R-variables are entirely eliminated and x is used in place of the F-
variables.  With this definition, each segment needs to be listed only once, but can be used in 
either direction.  A WDM system on that segment can also be used in either direction. 
 
The preceding objective function, decision variables, and constraints specify a formal version of 
the synthesis problem, where the provisioning and routing problems are tackled simultaneously 
to solve either the service or restoration problem.  In practice, however, demands and costs often 
are uncertain, while available technology options, such as OXC and WDM system capacities, 
change frequently as new products are introduced.  Therefore, this formal version of the problem 
only approximates a more complicated synthesis problem with uncertainty in key data and 
changing constraints.  Rather than pursuing a true multi-period optimization approach with 
formulations that explicitly model uncertainty, many designers prefer to work with a simpler 
formulation and re-run the associated optimization procedure frequently as conditions change.  
Previous values of decision variables may then become initial conditions for a new optimization 
run, which may involve changes in costs and an expanded set of technically feasible options.  
Repeatedly running a static (one-period) optimization procedure with changing inputs is, in 
principle, a sub-optimal approach to adaptive planning.  However, in practice, such �rolling 
optimization� is often preferred to theoretically more realistic dynamic formulations for which 
required input data cannot be estimated with an appropriate accuracy level. 
 
Additional, and perhaps more realistic, formulations are obtained by constraining the 
optimization as follows: 
 

• Maximum length allowed for WDM systems.  The signal reach stimulated by WDM 
equipment spans a maximum of about 400 miles without electronic regenerators.  If the 
length of the segment, with an installed WDM system, exceeds that distance, additional 
WDM systems must be placed back to back along the segment.  Our proposed 
metaheuristic procedure handles this constraint, and the additional WDM systems and 
channel cards are subsumed in the formulation by adding the appropriate cost. 

 
• Allowed technologies.  The environment in which the network design problem arises may 

limit the fiber, WDM systems, and OXC equipment that can be assumed that are 
available for use. 

 
3. A METAHEURISTIC SOLUTION APPROACH 
 
This section summarizes the development of a metaheuristic procedure that searches for optimal 
solutions to the provisioning and routing problems.  As indicated above, the restoration problem 
is tackled as a synthesis problem, which is solved after the service problem, so that a similar 
procedure can be used to design the service and restoration networks.  The MIP model presented 
in the previous section has a very large number of variables and constraints, making it 
impractical for the exact solution of real instances of moderate or large size.  For small planning 
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problems, the MIP formulation can be solved in reasonable amount of computer time, as shown 
in our computational experiments.  However, the exact solution of the model is only a lower 
bound on the optimal solution to the real problem, as stated by Birkan et al. (2002). 
 
�A node-arc model has all paths implicitly available and hence produces a true lower bound for 
this problem.  The disadvantage of the node-arc model is that routing may be circuitous and 
require an unacceptably large hop count.� 
 
Our solution procedure employs the notion of a base network, which initially consists of the 
current network design.  A base is an incomplete network design that does not satisfy the set of 
demand requirements that a complete design should be capable of handling.  As the process 
iterates, the base network evolves and the estimated cost of routing a demand becomes more 
accurate.  An evolved base network includes additional equipment, which has been tentatively 
added to the original base.  When a demand is considered for routing on an evolved base 
network, this demand can share the additional capacity with other demand requirements, making 
the cost estimates more accurate, due to a decreasing fraction of the capacity that is not shared 
for costing purposes.  The evolution of the base network is linked to an adaptive memory 
mechanism that keeps track of where new equipment is added in the best solutions recorded 
during the search.  The solution approach that we propose builds a list of paths for each demand 
by making use of an efficient implementation of the k-shortest path algorithm.  This procedure 
identifies a controlled set of feasible paths for each demand [Glo93] and is a variant of the k-
shortest path algorithm reported in [Law76].  The paths for a given demand are found calculating 
the incremental cost of routing the entire demand in the base network.  For example, one of the 
possible paths would be to add the necessary fiber and WDM systems to create a segment from 
the origin to the destination of a given demand.  Other paths are created using alternative ways of 
carrying the demand from origin to destination, which would most likely imply adding WDMs 
and OXCs. 
 
Four basic elements are common to heuristic search, regardless of the specific methodology or 
strategic design choices: (1) a solution representation, (2) an objective, (3) an evaluation 
function, and (4) a move mechanism.  The specifications for our proposed search procedure are: 

 
Solution representation.  The construction of a solution starts with the selection of a path for 
each demand requirement.  Once each demand is assigned to a path, the cost of the resulting 
design is calculated.  The cost is associated with the equipment that is required to satisfy the 
demands using the chosen paths.  A solution is fully determined by a data structure that 
stores the path assignments and the equipment required in each element of the original 
network. 
 
Objective.  The goal of the DWDM planning problem is to minimize the sum of additional 
fiber cost, WDM equipment cost and its terminal equipment (OXC units) cost, subject to the 
appropriate technology constraints. 
 
Evaluation.  Once each demand has been assigned to a path in its list of potential paths, the 
evaluation of the solution consists of calculating the increase of capacity required in the 
elements of the network that route the demands through the assigned paths.  The increased 
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capacity is then translated into cost of installing additional fiber and adding WDMs and 
OXCs. 
 
Move mechanism.  Every solution has a neighborhood, which consists of all the feasible 
solutions that are reached by changing a demand from one path to another. 

 
Our overall solution strategy consists of an adaptive metaheuristic method that combines ideas 
from scatter search [Lag02], multi-start [Glo00], and tabu search [Glo97].  The hybrid 
metaheuristic takes advantage of strategies that can explore a large solution space effectively.  
Specifically, tabu search contributes with a short term memory component that is designed to 
avoid cycling.  Scatter search adds a mechanism to generate new solutions from the combination 
of solutions in an updated reference set of solutions.  Finally, the multi-start component uses a 
long term memory that forces construction of new solutions in a wider range of the solution 
space. 
 
Figure 1 shows the main steps of our proposed procedure.  The procedure starts with the 
generation of a set of promising segments using the shortest path algorithm (with distances as 
weights).  Specifically, we first decide the density with respect to number of segments that we 
wish to obtain in the network.  For instance, suppose that the original network consists of 12 
nodes and 17 links.  The density of this network is 17/66 = 25.75%.  If we wish to augment this 
network to a density of 50% then we need to add 33-17 = 16 segments, because the original links 
are considered segments corresponding to existing WDM systems and are also included in the 
promising set.  The 16 new segments are the shortest paths between any two nodes using 
distances as weights. 
 
The procedure uses these segments to execute the k-shortest path algorithm for each demand 
(with incremental costs from a base network B as weights).  After the execution of this step (line 
5) each demand has a set of paths that are used as the basis for building solutions.  Given the 
network of segments, the spare capacity on the segments and nodes is determined.  Obtaining 
spare capacities allows the procedure to assess incremental costs of routing demands in each 
segment. 
 
The initial reference set is constructed in lines 6 and 7.  The set is populated using a constructive 
procedure (line 7) that attempts to assign demands to paths in order to utilize efficiently the spare 
capacity in the original base network.  The rationale behind this initialization is that spare 
capacity for channels in the final network design should be zero except for channels on WDM 
systems covering a segment without slack.  The strategy acknowledges that spare capacity in the 
original network simply accounts for existing network infrastructure.  The solutions in the 
reference set are ordered according to their total cost, where the first solution, labeled RefSet1, is 
the one with lowest cost.  The reference set is updated as the process iterates (lines 16 and 20).  
The notion of a reference set is the same as the one used in the scatter search methodology 
[Lag03], where it is used as a repository of solutions that are submitted to a combination method.  
In some basic designs, the reference set contains the best solutions (according to the objective 
function value) found during the search.  However, in more advanced designs, the reference set 
strategically mixes high quality solutions and diverse solutions, as explained below. 
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1. procedure DWDM_planning 
2. { 
3.  generate (segments); 
4.  B = initial_base; 
5.  Paths = find_k-shortest_ paths ( B ); 
6.  for ( i = 1, �, |RefSet| ) 
7.   RefSeti = constructive ( B, Paths ); 
8.  S = RefSet1; 
9.  do { 
10.   find_demand_order ( S, B ); 
11.   while ( improving move ) { 
12.    move = find_next_improving_move; 
13.    if ( move ) { 
14.     S = execute ( move ); 
15.     if ( S better that RefSetlast ) 
16.      RefSet = update ( S ); 
17.    } 
18.   } 
19.   if ( equal (RefSet ) ) 
20.    rebuild ( RefSet ); 
21.   B = evolve ( RefSet ); 
22.   Paths = find_k-shortest_paths ( B ); 
23.   S = constructive ( B, Paths ); 
24.  } until (stopping criterion) 
25. } 

 
Figure 1. Proposed Metaheuristic Procedure. 

 
We use the current solution S, which at the beginning is the first solution in the reference set 
(line 8), to obtain an ordering of the demands according to their unit cost (where a unit is an OC-
48).  In this ordering, the demand that contributes most (per OC-48) to the total cost of the design 
is first and the one that contributes least (per OC-48) is last.  The demand ordering is important, 
because the local search, which is based on changing one demand from its current path to 
another, starts with the demand that has the largest unit cost.  To calculate the unit cost, the 
demands are examined one by one.  The examination consists of deleting the demand from the 
current solution and calculating the cost reduction.  The cost reduction is then divided by the 
bandwidth requirement of the demand under consideration.  Once all demands have been 
examined, the unit cost associated with each demand is known. 
 
The neighborhood search (line 12) within the local search in lines 11 to 18 examines moves 
employing the ordering of the demands determined in line 10.  That is, the first candidate move 
is to reassign the demand that is at the top of the unit cost list.  If reassigning this demand leads 
to an improving move, the move is executed to change the current solution (lines 13 and 14).  If 
the new solution is better than the worst in the current reference set, then the reference set is 
updated (line 16).  If an improving move that involves reassigning the first demand in the list 
cannot be found, then the second demand is considered.  The process continues until a demand is 
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found for which a reassignment of paths leads to an improving move.  If all the demands are 
examined and no improving move is found, the local search is abandoned.  Once the local search 
is abandoned, the procedure compares the current reference set with the reference set before the 
last time the local search was executed (line 19).  If the reference set did not change after the last 
execution of the local search, the set is rebuilt (line 20).  The process of evolving the base 
network from a reference set is mainly deterministic and therefore if the reference set does not 
change, then the base does not evolve properly.  Rebuilding of the reference set entails keeping 
the top |RefSet|/2 solutions and generating new solutions to substitute the worst |RefSet|/2 in the 
set, as generally done in implementations of scatter search. 
 
Numerous studies show that effective metaheuristic procedures keep a balance between search 
intensification and diversification, that is, between reinforcing attributes associated with good 
solutions and driving the search into regions not visited yet.  To achieve this balance, the original 
base is evolved (line 21) employing the information embedded in the reference set.  One of the 
main criteria used to evolve the base network relates to the number of times a segment has 
appeared in the paths assigned to the demands in the RefSet solutions.  The procedure also uses 
global (referred to the whole search process) and local (referred to the current reference set) 
information in the form of counters that keep track of the number of channels used in each 
segment in order to decide where to add equipment to the current base.  The difference between 
the maximum global and the maximum local number of channels used in each segment shows its 
importance.  The smaller the difference the more important the segment is in the final network 
design. 
 
For each demand, the k-shortest paths are again calculated (line 22) by using the incremental 
costs of routing the demand through the new base network.  This step updates the list of best 
candidate paths according to the current base network.  The new paths take advantage of the 
additional channels included in the evolved base network that can be used without increasing the 
total cost of the design.  The local search now starts from an initial solution constructed to best 
utilize the spare resources in the new base (line 23).  The procedure includes intensification and 
diversification strategies in the evolution of the base network and in the utilization of the spare 
capacity during the construction of a starting solution for the local search.  The procedure 
terminates after a pre-specified number of iterations. 
 
4. COMPUTATIONAL RESULTS 
 
In this section, we present and discuss our computational experiments.  We first describe the 
problem instances that were used to carry out the experimentation.  Then we report the results of 
our experiments.  All programs were implemented in C and compiled with Microsoft Visual C++ 
6.0.  All experiments were performed on a PC with one Pentium 4 processor at 2.53 GHz. 
 
The problem instances used for testing are both real (shared by Dr. Leonard Lu of AT&T Labs) 
and randomly generated.  The random instances are based on the networks corresponding to the 
real instances, with the demands and existing equipment randomly generated.  The motivation 
for generating random instances is to study the performance of our methods on instances with 
various characteristics.  We consider five different network sizes (with number of nodes varying 
from 11 to 113) and we generate links to create several densities.  Finally, several sets of uniform 
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and clustered sets of demands are randomly created.  Uniform demands are generated by 
randomly selecting an origin and a destination, where each pair has the same probability of being 
selected.  Clustered demands are generated selecting a subset of nodes as �high traffic� locations 
and then generating a demand pattern that has a higher density around those nodes.  The 
magnitude of the demands ranges between 1 and 105 OC-48s.  The problem instances used for 
testing are summarized in Table 1.  For each set, Table 1 shows the name, the number of nodes 
N , links L , and the different number of demands D  corresponding to the clustered, uniform 

and real instances. 
 

|D| 
Set Name |N| |L| 

Clustered Uniform Real 

MetroD 11 16 10,20,30 54  

  27 10,20,30 54  

  42 10,20,30 54 48 

Extant0D 12 17 15,21,44 66 19 

  33 15,21,44 66  

  46 15,21,44 66  

Example2D 17 26 27,36,81 135 79 

  68 27,36,81 135  

NationalD 50 63 45,65,91  112 

108_annealed-3D 113 137 150,200,250,400  130 

 
Table 1 : Data characteristics 

 
Table 2 summarizes the data regarding the equipment cost used in the solution of the problem 
instances listed in Table 1. 

 
Constant Cost Description 

a e  $1,400 * length(e) Cost of a fiber on a segment e 
B $95,000 cost of a WDM unit 
C $120,000 cost of an OXC unit 
Q $18,000 channel cost  of a WDM unit 
R $10,000 port cost of an OXC unit 

 
Table 2 : Description of costs 

 
For comparison purposes, we have implemented a permutation-based algorithm that follows the 
same structure as the one proposed in [Cox00].  In this approach, a permutation represents the 
ordering in which the demands are considered for routing.  A permutation is mapped into a 
solution by a procedure that uses the given order to route the demands in the most cost-effective 
way.  When the first demand is considered for routing the current design consists of the original 
network.  The demands are considered one by one as specified by the order in the current 
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permutation.  Additional equipment is added as required and the design is updated.  The 
permutation is fully mapped when all the demands have been considered.  The approach has the 
goal of locally minimizing the addition of equipment as each demand is routed through the 
network.  More details of the approach can be found in [Cox00] where the permutation search is 
conducted using a genetic algorithm.  Since the genetic algorithm used in [Cox00] is a 
proprietary code of Cox and Associates, Inc., we employ OptQuest [Opt01], a commercial 
scatter search solver that is capable of searching a permutation space. 
 
Our first experiment consists of comparing the solutions obtained by the permutation-based 
metaheuristic and our hybrid metaheuristic approach applying the Wilcoxon Signed Ranks Test 
[Dan90].  The objective is to determine if we may conclude from sample evidence that there is a 
significant difference between these two procedures.  We apply both procedures to the problems 
in Table 1 and record the objective function values obtained by each procedure.  Then, we 
compute the absolute objective function value differences (without regard of the sign) for each 
problem and all differences of zero are omitted. Let the number of pairs remaining be denoted by 
n. Ranks from 1 to n are assigned to these n pairs according to the relative size of the absolute 
difference, as follows. Rank 1 is given to the pair with the smallest absolute difference; rank 2 is 
given to the pair with the second smallest difference; and so on, until rank n is assigned to the 
pair with the largest absolute difference. If several pairs have absolute differences that are equal 
to each other, we assign to each of these several pairs the average of the ranks that they would 
have been assigned if ties were broken arbitrarily.  
 
Wilcoxon suggested a T statistic, which has the approximate quantiles given by the normal 
distribution, under the null hypothesis that there are no significant differences between the two 
compared procedures. The critical region of approximate size α = 0.001 corresponds to all values 
of T less than -3.0902.  Since in our case T = -3.756, the null hypothesis is rejected and we may 
conclude that there are significant differences between the two metaheuristic procedures. 
 
We have now established that our procedure performs significantly better than the permutation-
based approach, as indicated by the statistical test.  In our second experiment, we assess the 
quality of the solutions obtained by the application of our hybrid metaheuristic.  For this 
experiment, we give the MIP formulation presented in section 4 to the CPLEX 8.0 MIP solver.  
The solution of this model provides a lower bound because the number of intermediate nodes for 
paths between origin and destination pairs is not bounded.  The first column in Table 3 identifies 
the problem set.  Columns 2, 3, and 4, contain the number of nodes, number of segments, and 
number of demands.  Under the headings �PERM� and �METAH� we report the total costs in 
millions of dollars and CPU times in seconds corresponding to the permutation based procedure 
and the proposed metaheuristic, respectively.  Under the heading CPLEX we report the total cost 
obtained by solving our MIP formulation and the solution time if CPLEX with its default 
parameters is capable of finding and confirming the optimal solution in 24 CPU hours.  The last 
three columns in this table show the deviation between the PERM solution (CP) and the METAH 
solution (CM), between the METAH solution and CPLEX solution (CC) if the optimal was found, 
and between the METAH solution and the best lower bound (CBLB) if the optimal solution to the 
MIP model was not found. 
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PERM METAH CPLEX Set 
Name 

|N| |E| |D| 
Cost 

millions 
Time 

seconds 
Cost 

millions 
Time 

seconds 
Cost 

millions 
Time 

seconds P

MP

C
CC −

 (%) 
M

CM

C
CC −

(%) 
M

BLBM

C
CC −

 

(%) 
MetroD 11 16 10 4.09 5.12 4.09 0.13 4.09 0.20 0 0  
   20 4.38 9.77 4.38 4.90 4.38 0.75 0 0  
   30 8.42 15.02 8.42 7.37 8.42 0.39 0 0  
   54 14.13 27.02 14.12 16.60 14.03 6.53 0.07 0.63  
  27 10 2.75 5.21 2.75 1.96 2.75 0.29 0 0  
   20 4.31 10.28 4.26 4.30 4.03 1.09 1.16 5.39  
   30 6.46 15.35 6.46 6.35 6.40 1.76 0 0.92  
   54 11.39 27.52 11.24 14.69 10.84 17.34 1.31 3.55  
  42 10 1.96 5.49 1.96 2.03 1.94 0.38 0 1.02  
   20 3.08 11.16 3.08 3.48 3.06 1.21 0 0.64  
   30 5.40 16.24 5.38 4.86 5.38 7.21 0.37 0  
   48 7.31 26.72 7.11 12.24 6.99 10.89 2.73 1.68  
   54 8.80 29.86 8.50 13.18 8.35 39.44 3.40 1.76  
Extant0D 12 17 15 3.69 8.16 3.69 3.25 3.69 0.75 0 0  
   19 6.26 10.41 6.26 9.99 6.26 8.04 0 0  
   21 6.21 11.43 6.21 9.46 6.21 3.45 0 0  
   44 14.48 23.55 14.36 27.19 14.36 96.11 0.82 0  
   66 11.99 35.71 12.14 41.00 11.83 81.81 -1.25 2.55  
  33 15 3.69 7.82 3.69 3.57 3.69 20.09 0 0  
   21 7.32 11.60 7.32 7.21 6.03 269.68 0 17.62  
   44 13.94 23.69 14.23 19.99 13.66 67709.06 -2.08 -  
   66 11.83 35.81 11.83 29.93 11.87 - 0 - 0.25 
  46 15 3.69 7.94 3.69 2.30 3.69 38.61 0 0  
   21 7.32 11.61 7.32 3.83 6.03 770.15 0 17.62  
   44 13.97 24.43 13.95 18.54 14.29 - 0.14 - 11.46 
   66 11.83 36.19 11.77 28.82 13.24 - 0.50 - 11.46 
Example2D 17 26 27 23.22 26.11 23.22 21.59 22.47 38.42 0 3.22  
   36 81.84 33.34 81.84 20.69 81.84 492.57 0 0  
   79 180.70 78.27 178.05 93.94 182.94 - 1.46 - 2.60 
   81 98.80 75.44 97.37 89.57 96.65 5438.10 1.44 0.73  
   135 177.42 127.73 173.03 191.46 182.04 - 2.47 - 2.41 
  68 27 24.43 27.12 24.43 18.11 19.27 4406 0 21.12  
   36 68.15 35.19 68.10 20.20 69.51 - 0.07 - 9.45 
   81 84.09 80.05 82.65 80.24 102.12 - 1.71 - 15.29 
   135 149.71 135.11 144.14 169.60 - - 3.72 - 13.32 
NationalD 50 63 45 37.63 125.12 37.36 61.77 44.08 - 0.71 - 28.13 
   65 51.16 192.28 50.87 141.70 56.25 - 0.56 - 26.34 
   91 59.18 267.46 59.13 162.75 62.77 - 0.08 - 24.38 
   112 44.44 296.16 42.88 230.70 51.51 - 3.51 - 36.14 
 

Table 3 : Summary of Results 
 
Several observations can be made regarding the results shown in Table 3.  First, the instance-by-
instance comparison between PERM and METAH shows that only in 2 instances (Extand0D-12-
17-66 and Extand0D-12-33-44) out of 40 the PERM solutions are better than the METAH 
solutions.  The deviations of the METAH solutions from the optimal solutions found with 
CPLEX are generally small, ranging from 0 to 5.39%, except for Extant0D-12-33-21, Extant0D-
12-46-21 and Example2D-17-68-27.  For the problem for which CPLEX could not terminate 
within 24 CPU hours, our hybrid metaheuristic was able to always improve upon the best upper 
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bound.  However, the deviations against the best lower bounds for the largest problems in Table 
3 (NationalD) are such that provide little information regarding the solution quality of the 
solutions obtained with the proposed metaheuristic. 
 
We now compare the performance of METAH and PERM on the largest problems in our data set 
(i.e., 108_annealed-3D).  The results of this experiment are shown in Table 4.  The relative 
deviations shown in the last column of Table 4 favor the solutions found by METAH.  Note that 
although the relative differences decrease with the size of the clustered problems (|D| = 150, �, 
400), the absolute differences are always more than $30 million.  We do not include a column for 
CPLEX in Table 4 because the bounds found after 24 hours of CPU time do not provide any 
useful information. 
 

PERM METAH |N| |E| |D| 
Cost in 
millions 

Time in 
seconds 

Cost in 
millions 

Time in 
seconds P

MP

C
CC −

 (%) 
113 137 130 118.30 1124.07 107.50 682.47 9.13 

  150 142.25 1348.44 108.75 839.24 23.55 
  200 181.43 1801.84 141.45 1116.23 22.04 
  250 225.22 2239.37 181.71 1787.53 19.32 
  400 390.77 3728.42 355.55 3057.21 9.01 

 
Table 4 : Comparative Results for 108_Annealed-3D 

 
One of the main components of our hybrid metaheuristic is the local search.  In our third 
experiment, we use the permutation-based procedure to independently test the effectiveness of 
the local search.  That is, we use the procedure to isolate the local search from other components 
of our hybrid metaheuristic in order to assess its effectiveness.  As described in the previous 
section, the local optimizer performs a first-improving local search in the neighborhood of the 
current solution.  When a network design is obtained using a permutation of the demands, it is 
possible to execute our local search to try to improve upon the given solution.  Our experiments 
show that the designs obtained after executing the local search are generally better than the initial 
designs obtained using the permutation procedure alone.  We applied the permutation based 
approach augmented with the local search to all the instances in Table 1 and use the results to 
test for significant differences between this approach (PERM+LS) and the one that does not use 
the local search (PERM). 
 
We once again use Wilcoxon�s test with α = 0.001. Since for the procedures PERM and 
PERM+LS, T = -3.516 < -3.0902, we conclude that the differences between the permutation 
based procedure and the permutation based procedure with the local search are statistically 
significant.  Therefore, we may say that the application of the local search to the designs 
obtained by the permutation based procedure generally improves upon the final network designs 
by reducing their total costs.   
 
Our previous experiment and associated statistical test have determined that the performance of 
the permutation-based procedure is enhanced with the application of our local search.  In our 
final comparison, we test if there is a significance difference between PERM+LS and our hybrid 
metaheuristic (METAH).  The application of Wilcoxon�s test results in T = -0.355. The critical 
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region of size α = 0.05 corresponds to values of T less than -1.6449. Since T > -1.6449, the test 
leads to the conclusion that the performance of PERM+LS is not significantly different than the 
performance of METAH.  This conclusion indicates that the local search that we have designed 
is quite effective and can be used to improve upon solutions yielded by construction procedures. 
 
Our last experiment consists of comparing the solutions obtained by our hybrid metaheuristic 
approach and a multistart search that does not include the tabu and scatter search features 
applying the Wilcoxon Signed Ranks Test [Dan90].  The objective is to determine if we may 
conclude from sample evidence that the tabu and scatter search elements in our metaheuristic 
make a significant difference.  The critical region of approximate size α = 0.001 corresponds to 
all values of T less than -3.0902.  Since in our case T = -4.516, the null hypothesis is rejected and 
we may conclude that there is a significant difference between the metaheuristic procedure with 
and without the tabu and scatter search mechanisms. 
 
5. CONCLUSIONS AND FUTURE WORK 
 
In this paper, we have addressed an important and current problem in the telecommunications 
industry.  We have provided the motivation for studying this optimization problem and have 
discussed the technology behind it.  Our segment-based formulation is used as the framework for 
developing heuristic procedures and as a means for finding lower and upper bounds.   
 
Our experiments with real and randomly generated data show the merit of our proposed solution 
procedure when compared to a permutation-based approach and to the upper bounds generated 
by solving an MIP formulation with CPLEX.  We used a nonparametric statistical test to 
compare our hybrid procedure and two variants of a permutation-based approach.  The test 
revealed the effectiveness of our local search, which is capable of improving solutions 
constructed with the permutation-based approach to a point that the resulting method is 
statistically comparable to the proposed hybrid metaheuristic.  Additional experiments showed 
that the scatter and tabu search elements significantly contribute to the quality of the solutions 
found with the proposed metaheuristic. 
 
Although our general approach contemplates solving the protection problem as part of the design 
process, in the scope of this paper we have not included the implementation and experimentation 
associated with network survivability.  An extension of our work will include solving the 
restoration problem using the last reference set obtained when the termination criterion (line 24 
in Figure 1) is satisfied.  Specifically, given a network design (i.e., a solution in the reference 
set), the restoration problem would consist of finding the most cost-efficient way of routing 
demands after a link failure.  We believe that the lessons learned while tuning the procedure for 
finding good solutions to the service problem will be valuable in the development of a 
comprehensive procedure that includes the restoration problem. 
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