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Abstract

We address the problem of discovering routes in strongly connected pla-
nar geometric networks with directed links. We consider two types of di-
rected planar geometric networks: Eulerian (in which every vertex has the
same number of ingoing and outgoing edges) and outerplanar (in which a
single face contains all the vertices of the network). Motivated by the ne-
cessity for establishing communication in wireless networking based only
on geographic proximity, in both instances we give algorithms that use only
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information that is geographically local to the vertices participating in the
route discovery.

1 Introduction

The most extensively used model of wireless network has bidirectional links in the
sense that packets may flow in any direction between any pair of adjacent vertices.
This type of connectivity arises by considering a network in which all wireless
hosts have the same transmission power, thus resulting in identical reachability
radii. Such a network can be represented by a unit disk graph model.

A most important consideration is how to discover a route (among the many
potential candidates) that must accommodate three rather contradictory goals:
(1) avoiding flooding the network, (2) efficiency of the resulting path, (3) us-
ing only geographically local information. Although it is generally accepted that
flooding must be avoided in order to increase the network lifetime, limitations
on the knowledge of the hosts make it necessary that in practice one may need
to drop the second goal in favour of the third. Indeed, this is the case in geo-
metric planar networks whereby algorithms are given for discovering routes (see
Kranakis et al. [8]). Another important consideration is to construct a planar ge-
ometric network from a rather complicated wireless network. This question is
addressed in Bose et al. [4] as well as in several subsequent papers. The basic
idea is to preprocess the wireless network in order to abstract a planar geometric
network over which the algorithm in Kranakis et al. [8] (compass routing, face
routing, and other related routing algorithms) can be applied.

1.1 A fundamental issue

In principle, routing must be preceded by a radiolocation based vertex discov-
ery process relying on an available Geographic Positioning System (or GPS) that
will enable vertices to discover their neighbors. Although vertex discovery is not
the purpose of study of this paper it is important to note that bidirectional com-
munication will be rarely valid in practice. This may be due to several factors,
including obstacles that may either obstruct direct view to a host and/or diminish
the strength of a signal during propagation or even wireless hosts with different
power capabilities.

A fundamental issue is whether geographically local routing is possible in
arbitrary graphs. If the underlying network is either not planar or its links are

2



not bidirectional the techniques outlined above may fail to route and/or traverse
the network using only “geographically” local information. In general this is ex-
pected to be a difficult problem because one will never be able to avoid “loops”
based only on geographically local information. Therefore there is a need for re-
examination of the structure of the underlying backbone network that gives rise
to our basic communication model in order to accomplish routing satisfying the
previously set conditions.

1.2 Related literature

There has been extensive literature related to discovering routes in wireless ad-hoc
networks when the underlying graph is a undirected planar geometric network,
e.g., see Bose et al. [4], Kranakis et al. [8], Kuhn et al. [9, 10]. A problem re-
lated to routing is traversal which is addressed in several papers Avis et al. [1],
Bose et al. [3], Chavez et al. [5], Czyczowicz et al. [6], Gold et al. [7], Peu-
quet et al. [11, 12]. However, traversing all the vertices of a graph may be an
“overkill” especially if all one requires is a single path from a source to a destina-
tion host.

1.3 Results of the paper

In this paper we address the problem of discovering routes in strongly connected
planar geometric networks with directed links using only local information. After
clarifying the model in Section 2 we consider two types of directed planar ge-
ometric networks. In Section 3 we look at Eulerian planar geometric networks
in which every vertex has the same number of ingoing and outgoing edges. In
Section 4 we investigate outerplanar geometric networks whereby a single face
contains all the vertices of the network.

2 Model

A planar geometric network is a planar graph
�

with vertex set � , edge set �
and the face set � together with its straight line embedding into the plane ��� . In
this paper we always consider only finite graphs. Furthermore, we assume that
no edge passes through any vertex except its end-vertices. A geometric network
is connected if its graph is connected. An orientation � of a planar geometric
network

�
is an assignment of a direction to every edge � of

�
. For an edge �
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with endpoints � and � , we write ��� � �����	� if its direction is from � to � . The
geometric network together with its orientation is denoted by �� .

We assume that every vertex � is uniquely determined by the pair 
�����
�� where
� is its horizontal coordinate and 
 is its vertical coordinate.

Consider a connected planar geometric network �� � �
��� ��� . We say �� is

Eulerian if for every vertex ��� � , the size of ��� � ����������� � ��������� ��� equals
the size of �! � ���"�#�$
%� � 
%�����&� �'� ; i.e. the number of edges outgoing from �
equals the number of edges ingoing into � .

3 Route discovery in Eulerian Planar Geometric Net-
works

First consider a planar geometric network
�

without any orientation. Given a ver-
tex � on a face ( in

�
, the boundary of ( can be traversed in the counterclockwise

(clockwise if ( is the outer face) direction using the well-known right hand rule
[2] which states that it is possible to visit every wall in a maze by keeping your
right hand on the wall while walking forward. Treating this face traversal tech-
nique as a subroutine, Kranakis et al. [8] give an elegant algorithm for routing in
a planar geometric network from a vertex ) to a vertex * .

If we impose an orientation � on
�

, then this algorithm will not work since
some edges may be directed in an opposite direction while traversing a face. In
this section, we describe a simple technique on how to overcome this difficulty.
In particular, we propose a method for routing a message to the other end of an
oppositely directed edge in Eulerian geometric networks.

Now suppose � is so that �� is an Eulerian planar geometric network. For a
given vertex � of �� , we order edges

� ������� where �+���,� � ��� clockwise around �
starting with the edge closest to the vertical line passing through � . Similarly we
order edges

� 
������ where 
!�-�. � ��� clockwise around � ; see Figure 1. Clearly,
this orderings are unique and can be determined locally at each vertex.

Let �/� � 
������ be the 0 -th ingoing edge to � in �� . The function 1325464 � �$� will
return a pointer to the edge

� ������� so that
� ������� is the 0 -th outgoing edge from

� . For an illustration of the function see Figure 2. Again, this function is easy to
implement using only local information.

Obviously, the function 1325464 � � is injective, and thus, for every edge �7� � �����	�
of �� , we can define a closed walk by starting from ��� � �����	� and then repeatedly
applying the function 1328464 � � until we arrive at the same edge �7� � �����	� . Since ��
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Figure 1: Circled numbers represent the ordering on outgoing edges, squared
numbers on ingoing ones.
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Figure 2: In this example the ingoing edge
� 
������ is third, so the chosen outgoing

edge
� ������� is also third. Both these edges are depicted bold.

is Eulerian, the walk is well defined and finite. We call such a walk a quasi-face
of �� .

The following is the route discovery algorithm from [8] for planar geometric
networks. We modify it so that it will work on Eulerian planar geometric network.
For this, we only need to extend the face traversal routine as follows:

Whenever the face traversal routine wants to traverse an edge �7�� �����	� that is oppositely directed, we traverse the following edges in
this order: 1328464 � �$� � 1328464 � �$� �3������� � 1 25464 � �$� � , so that 1 25464 � �$� � � � �� �����	� . After traversing 1325464 � �$� � , the routine resumes to the original
traversal of the face.

This modification obviously guarantees (in Eulerian geometric networks) that all
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edges of the face will be visited.

Algorithm 1 EULERIAN GEOMETRIC NETWORK ROUTE DISCOVERY.
Input: Connected Eulerian geometric network �� � �

��� � �
Starting vertex: )
Destination vertex: *

1: ��� ) {Current vertex = starting vertex.}
2: repeat
3: Let ( be a face of

�
with � on its boundary that intersects the line � - * at a

point (not necessarily a vertex) closest to * .
4: for all edges � 
 of ( do
5: if � 
�� � - *���� and ��� 1
	 � � ��* ���
��� 1
	 � �%� * � then
6: �����
7: end if
8: end for
9: Traverse ( until reaching the edge � 
 containing the point � .

10: until �'� *
Theorem 1. Algorithm 1 will reach * from ) in at most � ��� � � steps.

Proof. Follows from the proof of the correctedness of the traversal algorithm for
planar geometric networks from [8] and from the discussion above. The bound
on the number of steps follows from the � ��� � bound on the number of steps of
the algorithm from [8] and the fact that every edge on the route can be oppositely
oriented and may need up to � ��� � steps to route through.

Examples which show that the bound cannot be improved in general are easy
to construct, they typically include a large face that needs to be traversed whose
boundary contains � ��� � edges which are all oriented the opposite way.

4 Route Discovery in Strongly Connected Outerpla-
nar Geometric Networks

A planar geometric network
�

is outerplanar if one of the elements in � contains
all the vertices—the outerface. We will assume that this face is a convex polygon
in � � . For a given triple of vertices ����
 , and � , let ��� � ����
����6� [ ��� � ����
%���6� , resp.]
denote the ordered set of vertices distinct from � and � that are encountered while
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Figure 3: The dashed part of the outer face represents the vertices in � � � ����
%���6�
and the bold solid part represents vertices in � � � ����
���� � , respectively. Note that 

belongs to both these sets and is in fact the first element of those sets.

moving from 
 counterclockwise [clockwise, resp.] around the outerface of
�

until either � or � is reached; see Figure 3.
Now consider an orientation � of the geometric network

�
. Let � � � ����
%���6� �

� � � ����
���� � �"�+� � ��� and let � � � ����
%���6� � � � � ����
���� � �"�+� � ��� . If ��� � ����
%���6����

, let � � � ����
%���6� denote the first vertex in ��� � ����
%���6� . Similarly we define
� � � ����
%���6� as the first vertex in � � � ����
%���6� , if it exists. A geometric network
with fixed orientation is strongly connected if for every ordered pair of its ver-
tices, there is a (directed) path joining them.

Algorithm 2 OUTERPLANAR GEOMETRIC NETWORK ROUTE DISCOVERY.

Input: Strongly connected outerplanar geometric network �� � �
� � � �

Starting vertex: )
Destination vertex: *

1: ��� ) {Current vertex = starting vertex.}
2: � ����� � � ) {counterclockwise and clockwise bound = starting vertex.}
3: while ���� * do
4: if

� � ��* � � � then
5: �%��� ����� � � * {Move to � .}
6: else if ��� � � ��* ��� � ���� 


and � � � � ��* ��� � � � 

then {No-choice vertex;

greedily move to the only possible counterclockwise direction toward � .}
7: �%��� � � � � � � ��* ��� � �
8: else if ��� � � ��* ��� � �/� 


and � � � � ��* ��� � ���� 

then {No-choice vertex;

greedily move to the only possible clockwise direction toward � .}
9: �%��� � � � � � � ��* ��� � �

10: else if ��� � � ��* ��� � ���� 

and � � � � ��* ��� � ���� 


then {Decision vertex;
first take the "counterclockwise" branch but remember the vertex for the
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backtrack purpose.}
11: � � � ; � ��� � � � � � � ��* ��� � �
12: else if ��� � � ��* ��� � �'� 


and � � � � ��* ��� � �'� 

then {Dead-end vertex;

backtrack to the last vertex where a decision has been made. No updates
to � � and � � are necessary.}

13: if � � � � � * ������* � then
14: while ������ do
15: ��� � � � �%���$��� �
16: end while
17: end if
18: if � � ��� � * ������* � then
19: while ������ do
20: ��� � � � �%���$��� �
21: end while
22: end if
23: � ��� � � � � � � ��* ��� � � {Take the "clockwise" branch toward � .}
24: end if
25: end while

Note 1. The implementation of tests in lines 6, 8, 10, 12 is simple. Since the
vertices of

�
are in convex position, one can easily (and locally—remembering

only two best candidates, one for each direction) compute the first vertex in � � � �	�
that is in clockwise (resp. counterclockwise) direction from * or to determine
that such vertex does not exist. Similarly, tests in lines 13 and 18 are simple to
implement and require constant memory.

Lemma 1. Suppose Algorithm 2 reaches a decision vertex � (line 11). Next sup-
pose that � � ��� � ������� ��� � are vertices reached in subsequent steps and that all are
no-choice vertices, i.e. determined at line 7 or 9. Finally suppose that next ver-
tex reached is a dead-end vertex � � � � (determined at line 12). Then vertices
� � ��� � ������� ��� � � � are all either in � � � * ���$� * � or in ��� � * ������* � .
Proof. By way of contradiction, suppose 0 is maximum so that ��� and ��� � � are
not both in � � � * ������* � or in ��� � * ������* � . We may suppose ��� � � � � * ���$� * � and
��� � � � � �

� * ������* � (The other case is analogous.), see Figure 4.
Since �� is strongly connected, there must exist a path from � to * . Ev-

ery such path must pass either through �	� or ��� � � . Since �
� is a no-choice ver-
tex and since �
� � � � � � � * ������* � , such a path must always pass through �	� � � .
By the choice of 0 , all vertices ��� � � ����� � � ������� ��� � � � are in � � � * ������* � and thus
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Figure 4: Dashed parts at some vertices represent the area with no outgoing edges
from the corresponding vertex in that direction. The exception are the three dotted
lines which represent possible edges going into �	� . However these edges cannot
help to reach * . Note that � � � �$� * ��� ������* �7� � � � * ������* �����
��� and ��� � ����* ��� ������* �7�
� � � * ���$� * ���7�
�3� .

such a path must eventually pass through the vertex � � � � and continue to a ver-
tex in ��� � � � � � ��* ����� ���-� �

� � � � � ��* ��� � � � � . However, � � � � � � � ��* ����� � �



and
� � � � � � � ��* ��� � � � � �



, a contradiction.

Lemma 2. Suppose Algorithm 2 reaches a dead-end vertex � (line 12). Then it
will eventually return to the vertex � (last decision vertex defined in line 11).

Proof. Suppose � � ��� � ������� ��� � are all vertices reached (in this order) after reach-
ing the decision vertex � and before reaching the dead-end vertex �+� � � � � . By
Lemma 1, we may assume � � ��� � ������� ��� � � � � � �

� * ������* � . The other case is analo-
gous. Since �� is strongly connected, there must exist a (directed) path from � to
� . Suppose by way of contradiction that the algorithm backtracks to some vertex
� �� � for which � � � ����������� � 
 . Suppose furthermore that � lies between ��� and
��� � � going from � to * around the outer face; see Figure 5.

By our assumption none of the edges
� ��� � � ��� � �

� ��� � � ��� � ������� �
� � � � � ��� � exist,

for otherwise the backtrack procedure would follow such an edge directly to � .
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Figure 5: Dashed parts at some vertices represent the area with no outgoing edges
from the corresponding vertex in that direction. The bold curve from � to � rep-
resents the backtrack path.

Hence every path from � to � must eventually pass � and continue to a vertex in
� � � ����������� . However � � � ����������� � 
 by our assumption, a contradiction.

Lemma 3. If the "counterclockwise" branch taken at a decision vertex leads to a
dead-end vertex, then no dead-end vertex is reached on the "clockwise" branch at
that vertex before reaching a new decision vertex.

Proof. The proof is similar to the two previous proofs. If �$� ) � � ) � ������� � ) � where
) � is a dead-end vertex is the counterclockwise branch at � and ��� � � � � � ������� �

���
where

���
is a dead-end vertex is the clockwise branch at � , then by Lemma 1,

vertices ) � � ) � ������� � ) � � � �
�
����* ��� � and vertices

�
� � � � ������� �

��� � ��� � ����* ��� � . Now
it is clear that every (directed) path from � to * must pass either through ) � or

���
and

then continue to a vertex either in � � � ) � ��* ��� � �+� � � ) � � * ��� � or in ��� ����� ��* ��� � �
� � ����� ��* ��� � . However all these sets are empty by our assumption, a contradiction.

Lemma 4. At each step of Algorithm 2 which is not the backtracking step, either
� � or � � is moved closer to * (measured as the graph distance on the outer face
of
�

.

Proof. This follows directly from the definition of � � � � ��* ��� � � and � � � � ��* ��� � �
and the update performed at lines 5, 7, 9, 11, and 23, respectively.

Theorem 2. Algorithm 2 will reach * from ) in at most � ���	� steps.
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Proof. The proof that the algorithm will reach the destination vertex * follows
from the above lemmas. The fact that no more than � � � �

steps are needed
follows from the fact that

�
has at most � � �	� edges, that the algorithm process

an edge at each step, and the fact that no edge is processed twice.

5 Conclusion

Routing in oriented ad-hoc networks is much more difficult than routing in non-
oriented networks. Except for flooding, there seems to be no simple extension of
the known routing algorithms that would be applicable to general oriented net-
works. In this paper we give routing algorithms for two cases of oriented planar
networks: Eulerian and Outerplanar. No doubt, routing in oriented ad-hoc net-
works is far from being settled and further progress in this area is needed.
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