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Abstract

A hypergraph H = (V,E) is a subtree hypergraph if there is a tree T on V such that
each hyperedge of E induces a subtree of T . To find a minimum size transversal for a
subtree hypergraph is, in general, NP-hard. In this paper, we show that if it is possible
to decide if a set of vertices W ⊆ V is a transversal in time S(n) ( where n = |V | ), then
it is possible to find a minimum size transversal in O(n3 S(n)).

This result provides a polynomial algorithm for the Source Location Problem : a set
of (k, l)-sources for a digraph D = (V,A) is a subset K of V such that for any v ∈ V \K

there are k arc-disjoint paths that each join a vertex of K to v and l arc-disjoint paths
that each join v to K. The Source Location Problem is to find a minimum size set of
(k, l)-sources. We show that this is a case of finding a transversal of a subtree hypergraph,
and that in this case S(n) is polynomial.

1 Introduction

A hypergraph H = (V, E) is a subtree hypergraph if there exists a tree T on V such that each
hyperedge of E induces a subtree of T . ( Subtree hypergraphs are sometimes called arboreal
hypergraphs or simply hypertrees; note that the latter term appears to have several unrelated
definitions, and hence we will avoid using it. ) A transversal of a hypergraph H is a set of
vertices that contains at least one vertex of each hyperedge. It is, in general, NP-hard to find
a minimum size transversal for a subtree hypergraph. The main result of this paper is that a
minimum transversal can be found in polynomial time whenever there is an oracle that can
decide in polynomial time if a set is a transversal or not.

Theorem 1 Let H = (V, E) be a subtree hypergraph and let n = |V |. If it is possible to check
whether or not a subset S ⊆ V is a transversal in time S(n), then it is possible to find a
minimum size transversal in time O(n3 S(n)).
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We demonstrate the value of Theorem 1 by presenting a problem where an oracle does exist.
The problem of selecting the location for facilities, subject to some constraints, in a given

network is called a location problem [11]. For example, in a multimedia network, services for
users must be located at specially selected nodes called sources. A user at a node u requests
services from a source v by communicating along a path from u to v. Then the services
are provided along a path from v to u. Thus, if the network is represented by a digraph
D = (V, A), then a measure of the robustness of the network is the number of arc-disjoint
paths between the sources and each other vertex.

Definition 1 A set of (k, l)-sources for D is a subset S of V such that for any v ∈ V \ S

there are k arc-disjoint paths that join S to v, and l arc-disjoint paths that join v to S.

For disjoint sets of vertices U and W , let λ(U,W ) denote the maximum number of arc-disjoint
paths joining U to W .

Source Location Problem

Input : A digraph D = (V, A) and nonnegative integers k and l.
Output : S ⊆ V of minimum size.
Constraint : λ(S, v) ≥ k and λ(v, S) ≥ l for all v ∈ V \ S.

( For other examples of location problems with connectivity requirements see [1, 6, 7, 8, 9,
10, 12, 13] ). Ito et al. [8] found an algorithm for the Source Location Problem that was
polynomial for fixed k and l. They left open the problem of finding an algorithm that is
polynomial when k and l are not fixed. The problem ( with l = 0 ) was also posed by Tibor
Jordán during the problem session of the Graph Theory 2003 Conference, held in Nyborg,
Denmark, 27–30 November 2003. It is easy to see ( see also the next section ) that the problem
is equivalent to finding the minimum number of vertices required to cover all sets P ⊆ V for
which there are fewer than k arcs joining V \P to P or fewer than l arcs joining P to V \P ,
a simple generalization of Problem 15 in [14].

In the next section we show that Theorem 1 provides a polynomial algorithm for the
Source Location Problem even when k and l are not fixed. In the sections after that we
present and analyse algorithms to prove Theorem 1.

2 The Source Location Problem

In this section we use results on the Source Location Problem from Ito et al. [8] to present
the problem in terms of subtree hypergraphs. Throughout, let D = (V,A) be a digraph and
let k and l be nonnegative integers.

For P ⊆ V , d−D(P ) is the number of arcs joining V \ P to P , and d+
D(P ) is the number of

arcs joining P to V \ P .

Definition 2 A non-empty set P ⊆ V is (k, l)-critical if d−D(P ) < k or d+
D(P ) < l, and no

proper subset of P has this property.
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It is clear that S is a set of sources if and only if it intersects each (k, l)-critical set. Let
the critical hypergraph of D be HD = (V,E) where the hyperedges E are the (k, l)-critical
sets of D. A transversal of HD is a set of vertices that contains at least one vertex of each
hyperedge. So the Source Location Problem is the problem to to find a transversal of HD of
minimum size.

An undirected graph is chordal if it contains no induced cycles of length more than three
( that is, if every cycle of length at least four has a chord, an edge joining two vertices that
are not adjacent in the cycle ). A collection of sets has the Helly property if any subcollection
of pairwise intersecting sets has non-empty intersection.

Proposition 2 ( Ito et al. [8] ) For any digraph D, the line graph of the critical hyper-
graph HD is chordal and the hyperedges have the Helly property.

Note that Proposition 2 implies that any induced subgraph of HD also has a chordal line
graph and has the Helly property.

We will use the following property of chordal graphs ( see, for example, [3] )

• for any chordal graph G, there exists a simplicial vertex v ∈ V (G) such that v and its
neighbours form a clique.

Therefore, from this property and the Helly property,

• for any collection P of hyperedges in the critical hypergraph of a digraph, there exists a
simplicial hyperedge P ∈ P such that P and all hyperedges in P that intersect P have
non-empty intersection.

Using this property, Theorem 3 follows easily from Proposition 2.

Theorem 3 ( Ito et al. [8] ) A minimum size set of (k, l)-sources for a digraph D is the
same size as a maximum size family of disjoint (k, l)-critical sets.

Next we see how the Source Location Problem is solved using Theorem 1 : the following
characterization of subtree hypergraphs was found independently by several authors; see [4,
Theorem 3.8].

Proposition 4 A hypergraph is a subtree hypergraph if and only if its line graph is chordal
and its hyperedges have the Helly property.

Thus, by Proposition 2, a critical hypergraph HD = (V,E) of a digraph D = (V,A) is a subtree
hypergraph. To check that a subset W of V is a transversal of HD means checking that the
vertices are a set of (k, l)-sources for D. Recalling Definition 1, we see this is easily done by
contracting the sources into a vertex s and checking that λ(s, v) ≥ k and λ(v, s) ≥ l for all
v ∈ V . This can be done using an algorithm of Hao and Orlin [5] in time O(n m log(n2/m)),
where m is the number of arcs. Thus, by Theorem 1, a minimum size set of (k, l)-sources for
a digraph can be found in polynomial time.

We remark that Bárász, Becker and Frank [2] have also recently solved the Source Location
Problem using a completely different approach and giving different algorithms.
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3 Transversers in Hypergraphs

In the next section we present algorithms that find a minimum transversal to prove Theorem 1.
First we need several definitions and preliminary results. The algorithm will work with a
generalization of transversals.

Definition 3 A disjoint collection of non-empty sets T = {X1, . . . , Xt} is a set of trans-

versers for a hypergraph H if Xi ⊆ V for 1 ≤ i ≤ t, and
t⋃

i=1
Xi is a transversal for H.

A transverser X ∈ T is redundant if T \{X} is also a set of transversers. A set of transversers
containing no redundant set is minimal.

Definition 4 For u ∈ V and X ∈ T , if (T \ {X}) ∪ {{u}} is a set of transversers, then u

is an alternative to X. The unrestricted set of alternatives to X contains all such u and is
denoted A(X). The restricted set of alternatives to X is A(X) ∩X and is denoted B(X).

In the algorithms, a common operation is to alter a set of transversers by replacing one of
the transversers X by its ( restricted or unrestricted ) set of alternatives X ′. Notice that if
X ′ 6= ∅, then (T \ {X}) ∪ {X ′} is also a set of transversers.

Definition 5 For X ∈ T , a hyperedge is an essential hyperedge of X if it is covered by X,
but not by any other transverser.

A vertex is an alternative to X if and only if it covers its essential hyperedges. Thus if X

is not redundant, A(X) is equal to the intersection of the essential hyperedges of X; if X is
redundant, it has no essential hyperedges and A(X) = V .

Definition 6 If a set X ⊆ V is a subset of a hyperedge P , then P is a confining hyperedge
of X. If X is equal to the intersection of its confining hyperedges, then it is confined.

If a set X ∈ T is not redundant, then A(X) is confined by the essential hyperedges of X.
If X is confined, then B(X) is confined by the confining hyperedges of X and the essential
hyperedges of X.

Definition 7 A set of transversers T is stable if for each X ∈ T , X = A(X). It is consistent
if for each X ∈ T , X = B(X).

Notice that if T is stable, then it is also consistent and each X ∈ T is confined.

Proposition 5 If H has a minimum size transversal T and a stable set of transversers T ,
then |T | ≥ |T |.
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In the next section, we will see that from a stable set, it is possible to find a transversal that
contains one vertex from each transverser. This will prove that |T | ≤ |T |. Thus |T | = |T |.

Proof of Proposition 5 : Let T = {X1, . . . , Xt}. We will prove that |T | ≥ |T | by finding a
disjoint collection of hyperedges P1, . . . , Pt.

As each transverser in T is its own set of alternatives, it is equal to the intersection of its
essential hyperedges, and each of these essential hyperedges intersects only one transverser.
Let H1 be the subhypergraph of H containing all the essential hyperedges. Let P1 be a
simplicial hyperedge of H1, and suppose that P1 is an essential hyperedge for X1. Thus
X1 = A(X1) ⊆ P1, and the essential hyperedges of X1 are P1 and none, some or all of its
neighbours in the line graph of H1. Recall from Proposition 2 that the intersection of P1 with
all these neighbours is non-empty. Each vertex in this intersection is certainly an alternative
to X1 — it covers all the essential hyperedges — and thus a member of X1. Therefore, as the
essential hyperedges each intersect only one of the transversers, P1 and all of its neighbours
are essential hyperedges of X1.

Now consider the hypergraph H2 of the essential hyperedges except those of X1. Let P2

be a simplicial hyperedge and suppose it is an essential hyperedge for X2. Note that P2

does not intersect P1 as no essential hyperedge that intersects P1 is included in H2. By the
same argument as before, P2 and all of its neighbours in the line graph of H2 are essential
hyperedges of X2.

Then we look for a simplicial hyperedge in the hypergraph containing all essential hyper-
edges except those of X1 and X2. From this and further repetitions we find P3, . . . , Pt. 2

4 The Algorithms

We present two polynomial algorithms ( see next page ) : StableTransversers finds a
stable set of transversers for a digraph D, and MinimumTransversal takes a stable set and
finds a transversal containing a single vertex from each transverser. By Proposition 5, this
transversal will have minimum size.

We must prove the efficacy of the two algorithms, which we will do one by one.
To begin, StableTransversers considers the vertex set of V as a set of transversers T .

Redundant sets are discarded until T is minimal.
The main part of the algorithm contains three nested while loops labelled L1, L2 and L3.

We say that the algorithm enters a loop if the loop condition is satisfied. For example, the
loop condition for L2 is that T contains a redundant set. Inside the loops T is altered by
replacing transversers by their sets of alternatives or by discarding transversers. We shall
show that after each alteration T is still a set of transversers. Thus if the algorithm does not
enter L1, then for each X ∈ T , X = A(X). Hence T is a stable set of transversers and we
have the required output.

We shall prove the following stronger claims. ( Recall that a set of transversers T is
consistent if X = B(X) for each X ∈ T . )
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Algorithm StableTransversers

Input : A hypergraph H = (V, E) where V = {v1, . . . , vn}.
Output : A stable set of transversers T for H.

let T = {{v1}, . . . , {vn}};
while there exists a redundant set R ∈ T do

let T = T \ {R};
end /∗ while ∗/
while there exists Y ∈ T , Y 6= A(Y ) do /∗ L1 ∗/

let T = (T \ {Y }) ∪ {A(Y )};
while there exists a redundant set R ∈ T then /∗ L2 ∗/

let T = T \ {R};
while there exists Z ∈ T , Z 6= B(Z) do /∗ L3 ∗/

let T = (T \ {Z}) ∪ {B(Z)}.
end /∗ while ∗/

end /∗ while ∗/
end /∗ while ∗/

Output T .

Algorithm MinimumTransversal

Input : A hypergraph H = (V, E) with a stable set of transversers T .
Output : T , a minimum size transversal for H.

while there exists R′ ∈ T , |R′| ≥ 2 do /∗ L4 ∗/
choose u ∈ R′;
let T = (T \ {R′}) ∪ {{u}};
while there exists Z ∈ T , Z 6= B(Z) do /∗ L5 ∗/

let T = (T \ {Z}) ∪ {B(Z)}.
end /∗ while ∗/

end /∗ while ∗/
let T =

⋃
X∈T

X.

Output T .

Claim 6 (a) Each time the algorithm considers the loop condition for L1, T is a consistent
set of transversers, and each X ∈ T is confined or a singleton, but not redundant.
(b) Each time the algorithm considers the loop condition for L2, T is a consistent set of
transversers, and each X ∈ T is confined or a singleton.

We prove the claim by induction. The first time the algorithm considers the loop condition
for L1, T is a set of singletons and minimal. Thus each transverser is non-redundant and its
own restricted set of alternatives, and hence T is consistent.
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Suppose that X = B(X) and X is non-redundant for each X ∈ T and that L1 is entered.
A set Y is replaced by Y ′ = A(Y ) ( and Y $ Y ′ since Y = B(Y ) ⊆ A(Y ) 6= Y ). Clearly
B(Y ′) = Y ′, Y ′ is confined, and T is still a set of transversers. For each X ∈ T , X 6= Y ′, X

remains a singleton or confined, and also the set of alternatives to X will, if anything, have
grown when Y was replaced by A(Y ). Thus for all X ∈ T , the claim that X is confined or
a singleton and X = B(X) still holds when the loop condition for L2 is considered. So if L2
is not entered, none of the transversers is redundant; the algorithm returns to consider the
condition for L1 and Claim 6 (a) holds.

Suppose that L2 is entered and a redundant set R is removed from T . If L3 is not entered,
then Claim 6 (b) holds.

So suppose that L3 is entered. We call the process encoded by L3 reduction : to reduce
a set of transversers is to arbitrarily choose a transverser X and replace it by B(X), and to
repeat this until a consistent set is obtained ( note that after each alteration, the restricted
sets of alternatives of each transverser must be recalculated ). A set of transversers is reducible
if this process is possible, that is, if each time we replace a transverser X by B(X) we obtain
a set of transversers ( clearly the process must eventually terminate as the transversers are
continually getting smaller ). We need the following result.

Proposition 7 Let T be a consistent set of transversers such that each X ∈ T is confined or
a singleton. Let Z ∈ T and let Z ′ = ∅ or Z ′ = {z} for some z ∈ Z. If (T \ {Z}) ∪ {Z ′} is a
set of transversers, then it is reducible. Moreover, each X in the set of transversers obtained
after the reduction is confined or a singleton.

The proof is at the end of the paper.
Apply the proposition to the set T obtained just before R is discarded with Z = R and

Z ′ = ∅. Thus after the algorithm has finished looping through L3, Claim 6 (b) holds. Then an-
other redundant set may be discarded and the algorithm may begin to loop through L3 again.
When no more redundant sets can be found, the algorithm has finished its run through L1
and Claim 6 (a) holds. We have shown that StableTransversers will output a stable set
of transversers.

MinimumTransversal contains two nested while loops, L4 and L5. If the algorithm does
not enter L4, then each transverser contains one vertex and from this we obtain a minimum
size transversal

As before, we must show that as T is altered, it is always a set of transversers.

Claim 8 Each time the algorithm considers the loop condition for L4, T is a consistent set
of transversers, and each X ∈ T is confined or a singleton.

We use induction to prove the claim. The first time the algorithm considers the loop condition
for L4, T is stable and the claim holds ( see the remark after Definition 7 ). Assume the claim
holds as L4 is entered. After replacing a transverser R′ by one of its alternatives, T is still
a set of transversers ( by Definition 4 ). If the algorithm does not enter L5, then the claim
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is true. All that remains to be proved is that once the algorithm finishes going through L5,
the resulting T satisfies the conditions in the claim. Notice that L5 is identical to L3 : so
applying Proposition 7 with Z = R′ and Z ′ = {u} will guarantee that this is the case. We
have shown that MinimumTransversal will output a minimum transversal.

5 Running Time of the Algorithms

The algorithms StableTransversers and MinimumTransversal contain three consecu-
tive steps that must be taken to obtain a minimum size transversal.
1. Find a minimal set of transversers.
2. Find a stable set of transversers (L1).
3. Find a minimum size transversal (L4).

We will show that Step 2 is the bottleneck and determine the overall running time.
Let S(n) be the complexity of an algorithm that checks whether or not a set is a transver-

sal.
The complexity of Step 1 is O(nS(n)) : for each of the n transversers {vi} ∈ T , we check

whether T \ {{vi}} is a set of transversers.
Note that each while loop in the algorithms has two consecutive steps : checking the

loop condition and, if the condition is satisfied, performing the loop content. To find the
complexity of a loop, it is necessary to find the complexity of each step and how many times
the algorithm may cycle through the loop. In fact, since we can assume that adding or
removing elements from a set can be done in constant time, we only have to consider the
complexity of checking the loop conditions.

It takes time O(nS(n)) to check the loop condition of L3 : for each Z ∈ T and each
vertex v ∈ Z, we must see if v is an alternative to Z, that is, if (T \ {Z}) ∪ {{v}} is a set of
transversers. The algorithm may pass through L3 at most n times within each run through L2
( as during each pass through L3 at least one vertex is removed from the sets of transversers ).
Thus L3 has complexity O(n2 S(n)). It takes time O(nS(n)) to check the loop condition
of L2 : we check whether T \{X} is a set of transversers for each X ∈ T . The content of L2 is
the loop L3 and, within each run through L1, the number of times the algorithm may consider
the loop conditions for L2 and L3 is, in total, n ( since both loops have an operation that
removes vertices ). Thus L2 has complexity O(n2 S(n)). The loop condition of L1 is checked
in time O(n2 S(n)) : for each vertex v and each transverser Y ∈ T , we must see if v is an
alternative to Y , that is, if (T \ {Y }) ∪ {{v}} is a set of transversers. The content of L1 is
loop L2, and the algorithm may enter L1 at most n times ( as the number of transversers is
reduced each time ). Thus the complexity of L1 is O(n3 S(n)).

The loop condition for L5 has complexity O(nS(n)). The loop condition for L4 has
complexity O(n). Since loops L4 and L5 together are checked at most n times, we find that
the third step has complexity O(n2 S(n)).

Thus the total running time of the algorithms is O(n3 S(n)).
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6 Proof of Proposition 7

We require one further result on chordal graphs before we prove Proposition 7.

Lemma 9 Let u and v be non-adjacent vertices in a chordal graph G, and suppose that W1,
the set of vertices adjacent to both u and v, is non-empty. Let W2 contain each vertex ( other
than u and v ) that is adjacent to every vertex in W1. Then u and v are in different components
in G− (W1 ∪W2).

Proof : We show that if there is a u-v path in J = G− (W1 ∪W2), then there is an induced
cycle of length greater than 3 in G.

Let up1 · · · prv be the shortest u-v path in J ( r ≥ 2 as p1 /∈ W1 ). As p1 /∈ W2, there exists
w ∈ W1 such that p1 and w are not adjacent in G. If possible, choose the smallest i ≥ 2 such
that pi is adjacent to w in G : then {u, p1, . . . , pi, w} induces a cycle in G. If no pi is adjacent
to w, then {u, p1, . . . , pr, v, w} induces a cycle. 2

Proof of Proposition 7 : Let T , Z and Z ′ be as in the proposition. During the reduction
of (T \ {Z}) ∪ {Z ′} we repeatedly select a transverser X to replace with its restricted set
of alternatives B(X). A singleton will never be selected as it is equal to its restricted set of
alternatives. If X is confined, then B(X) is also confined, and if B(X) 6= ∅, then replacing X

by B(X) will give a new set of transversers. Hence the proposition holds if B(X) 6= ∅ for all
transversers X encountered during reduction. Thus we will assume that we find a transverser
with an empty restricted set of alternatives and show that this leads to a contradiction.

First some terminology : if a set X ′ is obtained from X by any number of replacements,
then we say that X is an ancestor of X ′ and X ′ is a descendant of X ( a set is its own ancestor
and descendant ).

Every transverser obtained during reduction is a subset of a transverser of T . Thus if X

and X∗ are unrelated confined transversers ( neither is the ancestor of the other ), then they
are disjoint and there is a confining hyperedge of X that does not intersect all the confining
hyperedges of X∗ ( since if the confining hyperedges of X and X∗ were pairwise intersecting,
there would, by the Helly property, be a vertex contained in all of them, hence in X ∩X∗ ).
So there is a confining hyperedge of X that does not intersect X∗.

Now we assume that X is the first transverser obtained during reduction with B(X) = ∅,
and find a contradiction. We can assume that |X| ≥ 2 and X is confined. Thus B(X) is
equal to the intersection of the confining hyperedges of X and the essential hyperedges of X.
As B(X) = ∅, by Proposition 2, two of these sets, say V1 and V2, are disjoint ( and V1 and V2

must be essential hyperedges of X, as X is a subset of each of its confining hyperedges ).
Let G be the line graph of H. Apply Lemma 9 with u = V1 and v = V2 ( W1 is non-empty as
it includes all the confining hyperedges of X ) : we obtain a graph J = G − (W1 ∪W2) such
that V1 and V2 are in separate components of J , say J1 and J2.

We shall find a path in J from J1 to J2, a contradiction. We need the following result.

9



Assertion 10 Suppose that a transverser Y is replaced by B(Y ) during reduction and that P

is an essential but not confining hyperedge of Y . Then either
• P ∩ Z 6= ∅, or
• there is a transverser T that was replaced by B(T ) earlier during reduction ( i.e., before Y

is replaced by B(Y ) ), and P ∩ T 6= ∅ but P ∩B(T ) = ∅.

Proof : Let Y ′ be the ancestor of Y in T . As P is not a confining hyperedge of Y , it is not a
confining hyperedge of Y ′. Thus P was covered by another transverser in T ( else Y ′ 6= B(Y ′),
contradicting that T is consistent ). If this was Z, then P ∩ Z 6= ∅. Otherwise suppose a
transverser W covered P . When Y is replaced by B(Y ), no descendant of W covers P . Thus
at some point before Y was replaced, a descendant of W that does cover P was replaced by
its restricted set of alternatives that does not cover P . Let this descendant be T . 2

We use the assertion to find a sequence X1P1X2 · · ·XrPr where,
• X1 = X and P1 = V1;
• for 1 ≤ j ≤ r, Xj is a confined transverser, Pj is an essential but not confining hyperedge

of Xj ;
• for 1 ≤ j ≤ r − 1, Pj is covered by Xj+1 but not by B(Xj+1);
• Pr ∩ Z 6= ∅;
• sets that are not consecutive in the sequence are disjoint.

The first two terms of the sequence are given. When the first 2 j terms, X1P1X2 · · ·XjPj ,
are known, apply Assertion 10 with Y = Xj and P = Pj . If Pj ∩ Z 6= ∅, then the sequence
is found. Otherwise let Xj+1 = T . Since X was the first transverser encountered with an
empty restricted set of alternatives, B(Xj+1) 6= ∅ and is confined. As B(Xj+1) does not
cover Pj , Xj+1 must have an essential hyperedge that does not cover Pj : let this set be Pj+1.
Note that Pj+1 is not a superset of Xj and thus not a confining hyperedge of it. We must
show that Xj+1 and Pj+1 are each disjoint from the sets they are not consecutive to in the
sequence. By the choice of Pj+1 and Xj+1, Pj∩Pj+1 = ∅; and Xj+1 is unrelated to Xj so they
are disjoint. Let Qj and Qj+1 be disjoint confining hyperedges of Xj and Xj+1, respectively.
Then Pj+1 ∩Xj = ∅, else {Qj , Pj , Qj+1, Pj} induces a 4-cycle in G. If j > 1, we must show
that, for 1 ≤ j′ ≤ j − 1, Xj+1 and Pj+1 do not intersect Xj′ or Pj′ . Apply Lemma 9 with
u = Pj and v = Pj−1 (W1 is not empty as it includes all the confining hyperedges of Xj ) :
we obtain a graph J = G − (W1 ∪ W2) such that Pj and Pj−1 are in separate components
of J , say J1 and J2. As Qj+1 covers Pj and does not intersect Xj , it must be in J1. For
1 ≤ j′ ≤ j − 1, let Qj′ be a confining hyperedge of Xj′ that does not intersect Xj . Note
that Pj−1Qj−1Pj−2 · · ·P1Q1 is a path in G and must be in J2 since none of these hyperedges
intersect Xj . Thus, for 1 ≤ j′ ≤ j − 1, Pj+1 and Qj+1 ( and so Xj+1 ) are disjoint from Pj′

and Qj′ .
Every time in the construction above we find a set Xj that is replaced by its restricted set

of alternatives B(Xj) during reduction earlier than Xj−1 was replaced by B(Xj−1). Therefore
after a finite number of steps the sequence must end with a suitable Pr.
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Once the sequence is found, let Q′
j , 2 ≤ j ≤ r, be a confining hyperedge of Xj that does

not intersect X = X1. Then P1Q
′
2P2 · · ·Q′

rPr must be a path in J1. Thus we have found a
hyperedge Pr in J1 that intersects Z.

Use the same argument to find a hyperedge W in J2 that intersects Z ( find a path
from V2 ). If |Z| ≥ 2, then there is a confining hyperedge U of Z that does not intersect every
confining hyperedge of X. Thus Pr−1UW is a path in J from J1 to J2. If |Z| = 1, then
Pr−1 ∩W ⊇ Z. Hence Pr−1W is an edge in J . This final contradiction completes the proof
of Proposition 7. 2
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